Step | Hyp | Ref
| Expression |
1 | | ccoa 18004 |
. 2
class
compa |
2 | | vc |
. . 3
setvar π |
3 | | ccat 17608 |
. . 3
class
Cat |
4 | | vg |
. . . 4
setvar π |
5 | | vf |
. . . 4
setvar π |
6 | 2 | cv 1541 |
. . . . 5
class π |
7 | | carw 17972 |
. . . . 5
class
Arrow |
8 | 6, 7 | cfv 6544 |
. . . 4
class
(Arrowβπ) |
9 | | vh |
. . . . . . . 8
setvar β |
10 | 9 | cv 1541 |
. . . . . . 7
class β |
11 | | ccoda 17971 |
. . . . . . 7
class
coda |
12 | 10, 11 | cfv 6544 |
. . . . . 6
class
(codaββ) |
13 | 4 | cv 1541 |
. . . . . . 7
class π |
14 | | cdoma 17970 |
. . . . . . 7
class
doma |
15 | 13, 14 | cfv 6544 |
. . . . . 6
class
(domaβπ) |
16 | 12, 15 | wceq 1542 |
. . . . 5
wff
(codaββ) = (domaβπ) |
17 | 16, 9, 8 | crab 3433 |
. . . 4
class {β β (Arrowβπ) β£
(codaββ) = (domaβπ)} |
18 | 5 | cv 1541 |
. . . . . 6
class π |
19 | 18, 14 | cfv 6544 |
. . . . 5
class
(domaβπ) |
20 | 13, 11 | cfv 6544 |
. . . . 5
class
(codaβπ) |
21 | | c2nd 7974 |
. . . . . . 7
class
2nd |
22 | 13, 21 | cfv 6544 |
. . . . . 6
class
(2nd βπ) |
23 | 18, 21 | cfv 6544 |
. . . . . 6
class
(2nd βπ) |
24 | 19, 15 | cop 4635 |
. . . . . . 7
class
β¨(domaβπ), (domaβπ)β© |
25 | | cco 17209 |
. . . . . . . 8
class
comp |
26 | 6, 25 | cfv 6544 |
. . . . . . 7
class
(compβπ) |
27 | 24, 20, 26 | co 7409 |
. . . . . 6
class
(β¨(domaβπ), (domaβπ)β©(compβπ)(codaβπ)) |
28 | 22, 23, 27 | co 7409 |
. . . . 5
class
((2nd βπ)(β¨(domaβπ),
(domaβπ)β©(compβπ)(codaβπ))(2nd βπ)) |
29 | 19, 20, 28 | cotp 4637 |
. . . 4
class
β¨(domaβπ), (codaβπ), ((2nd βπ)(β¨(domaβπ),
(domaβπ)β©(compβπ)(codaβπ))(2nd βπ))β© |
30 | 4, 5, 8, 17, 29 | cmpo 7411 |
. . 3
class (π β (Arrowβπ), π β {β β (Arrowβπ) β£ (codaββ) =
(domaβπ)} β¦
β¨(domaβπ), (codaβπ), ((2nd βπ)(β¨(domaβπ),
(domaβπ)β©(compβπ)(codaβπ))(2nd βπ))β©) |
31 | 2, 3, 30 | cmpt 5232 |
. 2
class (π β Cat β¦ (π β (Arrowβπ), π β {β β (Arrowβπ) β£ (codaββ) =
(domaβπ)} β¦
β¨(domaβπ), (codaβπ), ((2nd βπ)(β¨(domaβπ),
(domaβπ)β©(compβπ)(codaβπ))(2nd βπ))β©)) |
32 | 1, 31 | wceq 1542 |
1
wff
compa = (π β Cat β¦ (π β (Arrowβπ), π β {β β (Arrowβπ) β£ (codaββ) =
(domaβπ)} β¦
β¨(domaβπ), (codaβπ), ((2nd βπ)(β¨(domaβπ),
(domaβπ)β©(compβπ)(codaβπ))(2nd βπ))β©)) |