Detailed syntax breakdown of Definition df-coa
| Step | Hyp | Ref
| Expression |
| 1 | | ccoa 18072 |
. 2
class
compa |
| 2 | | vc |
. . 3
setvar 𝑐 |
| 3 | | ccat 17681 |
. . 3
class
Cat |
| 4 | | vg |
. . . 4
setvar 𝑔 |
| 5 | | vf |
. . . 4
setvar 𝑓 |
| 6 | 2 | cv 1539 |
. . . . 5
class 𝑐 |
| 7 | | carw 18040 |
. . . . 5
class
Arrow |
| 8 | 6, 7 | cfv 6536 |
. . . 4
class
(Arrow‘𝑐) |
| 9 | | vh |
. . . . . . . 8
setvar ℎ |
| 10 | 9 | cv 1539 |
. . . . . . 7
class ℎ |
| 11 | | ccoda 18039 |
. . . . . . 7
class
coda |
| 12 | 10, 11 | cfv 6536 |
. . . . . 6
class
(coda‘ℎ) |
| 13 | 4 | cv 1539 |
. . . . . . 7
class 𝑔 |
| 14 | | cdoma 18038 |
. . . . . . 7
class
doma |
| 15 | 13, 14 | cfv 6536 |
. . . . . 6
class
(doma‘𝑔) |
| 16 | 12, 15 | wceq 1540 |
. . . . 5
wff
(coda‘ℎ) = (doma‘𝑔) |
| 17 | 16, 9, 8 | crab 3420 |
. . . 4
class {ℎ ∈ (Arrow‘𝑐) ∣
(coda‘ℎ) = (doma‘𝑔)} |
| 18 | 5 | cv 1539 |
. . . . . 6
class 𝑓 |
| 19 | 18, 14 | cfv 6536 |
. . . . 5
class
(doma‘𝑓) |
| 20 | 13, 11 | cfv 6536 |
. . . . 5
class
(coda‘𝑔) |
| 21 | | c2nd 7992 |
. . . . . . 7
class
2nd |
| 22 | 13, 21 | cfv 6536 |
. . . . . 6
class
(2nd ‘𝑔) |
| 23 | 18, 21 | cfv 6536 |
. . . . . 6
class
(2nd ‘𝑓) |
| 24 | 19, 15 | cop 4612 |
. . . . . . 7
class
〈(doma‘𝑓), (doma‘𝑔)〉 |
| 25 | | cco 17288 |
. . . . . . . 8
class
comp |
| 26 | 6, 25 | cfv 6536 |
. . . . . . 7
class
(comp‘𝑐) |
| 27 | 24, 20, 26 | co 7410 |
. . . . . 6
class
(〈(doma‘𝑓), (doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔)) |
| 28 | 22, 23, 27 | co 7410 |
. . . . 5
class
((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓)) |
| 29 | 19, 20, 28 | cotp 4614 |
. . . 4
class
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓))〉 |
| 30 | 4, 5, 8, 17, 29 | cmpo 7412 |
. . 3
class (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ {ℎ ∈ (Arrow‘𝑐) ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓))〉) |
| 31 | 2, 3, 30 | cmpt 5206 |
. 2
class (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ {ℎ ∈ (Arrow‘𝑐) ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓))〉)) |
| 32 | 1, 31 | wceq 1540 |
1
wff
compa = (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ {ℎ ∈ (Arrow‘𝑐) ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓))〉)) |