Detailed syntax breakdown of Definition df-coa
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ccoa 18099 | . 2
class
compa | 
| 2 |  | vc | . . 3
setvar 𝑐 | 
| 3 |  | ccat 17707 | . . 3
class
Cat | 
| 4 |  | vg | . . . 4
setvar 𝑔 | 
| 5 |  | vf | . . . 4
setvar 𝑓 | 
| 6 | 2 | cv 1539 | . . . . 5
class 𝑐 | 
| 7 |  | carw 18067 | . . . . 5
class
Arrow | 
| 8 | 6, 7 | cfv 6561 | . . . 4
class
(Arrow‘𝑐) | 
| 9 |  | vh | . . . . . . . 8
setvar ℎ | 
| 10 | 9 | cv 1539 | . . . . . . 7
class ℎ | 
| 11 |  | ccoda 18066 | . . . . . . 7
class
coda | 
| 12 | 10, 11 | cfv 6561 | . . . . . 6
class
(coda‘ℎ) | 
| 13 | 4 | cv 1539 | . . . . . . 7
class 𝑔 | 
| 14 |  | cdoma 18065 | . . . . . . 7
class
doma | 
| 15 | 13, 14 | cfv 6561 | . . . . . 6
class
(doma‘𝑔) | 
| 16 | 12, 15 | wceq 1540 | . . . . 5
wff
(coda‘ℎ) = (doma‘𝑔) | 
| 17 | 16, 9, 8 | crab 3436 | . . . 4
class {ℎ ∈ (Arrow‘𝑐) ∣
(coda‘ℎ) = (doma‘𝑔)} | 
| 18 | 5 | cv 1539 | . . . . . 6
class 𝑓 | 
| 19 | 18, 14 | cfv 6561 | . . . . 5
class
(doma‘𝑓) | 
| 20 | 13, 11 | cfv 6561 | . . . . 5
class
(coda‘𝑔) | 
| 21 |  | c2nd 8013 | . . . . . . 7
class
2nd | 
| 22 | 13, 21 | cfv 6561 | . . . . . 6
class
(2nd ‘𝑔) | 
| 23 | 18, 21 | cfv 6561 | . . . . . 6
class
(2nd ‘𝑓) | 
| 24 | 19, 15 | cop 4632 | . . . . . . 7
class
〈(doma‘𝑓), (doma‘𝑔)〉 | 
| 25 |  | cco 17309 | . . . . . . . 8
class
comp | 
| 26 | 6, 25 | cfv 6561 | . . . . . . 7
class
(comp‘𝑐) | 
| 27 | 24, 20, 26 | co 7431 | . . . . . 6
class
(〈(doma‘𝑓), (doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔)) | 
| 28 | 22, 23, 27 | co 7431 | . . . . 5
class
((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓)) | 
| 29 | 19, 20, 28 | cotp 4634 | . . . 4
class
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓))〉 | 
| 30 | 4, 5, 8, 17, 29 | cmpo 7433 | . . 3
class (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ {ℎ ∈ (Arrow‘𝑐) ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓))〉) | 
| 31 | 2, 3, 30 | cmpt 5225 | . 2
class (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ {ℎ ∈ (Arrow‘𝑐) ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓))〉)) | 
| 32 | 1, 31 | wceq 1540 | 1
wff
compa = (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ {ℎ ∈ (Arrow‘𝑐) ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓))〉)) |