MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-idfu Structured version   Visualization version   GIF version

Definition df-idfu 17910
Description: Define the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
Assertion
Ref Expression
df-idfu idfunc = (𝑡 ∈ Cat ↦ (Base‘𝑡) / 𝑏⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))⟩)
Distinct variable group:   𝑡,𝑏,𝑧

Detailed syntax breakdown of Definition df-idfu
StepHypRef Expression
1 cidfu 17906 . 2 class idfunc
2 vt . . 3 setvar 𝑡
3 ccat 17709 . . 3 class Cat
4 vb . . . 4 setvar 𝑏
52cv 1536 . . . . 5 class 𝑡
6 cbs 17245 . . . . 5 class Base
75, 6cfv 6563 . . . 4 class (Base‘𝑡)
8 cid 5582 . . . . . 6 class I
94cv 1536 . . . . . 6 class 𝑏
108, 9cres 5691 . . . . 5 class ( I ↾ 𝑏)
11 vz . . . . . 6 setvar 𝑧
129, 9cxp 5687 . . . . . 6 class (𝑏 × 𝑏)
1311cv 1536 . . . . . . . 8 class 𝑧
14 chom 17309 . . . . . . . . 9 class Hom
155, 14cfv 6563 . . . . . . . 8 class (Hom ‘𝑡)
1613, 15cfv 6563 . . . . . . 7 class ((Hom ‘𝑡)‘𝑧)
178, 16cres 5691 . . . . . 6 class ( I ↾ ((Hom ‘𝑡)‘𝑧))
1811, 12, 17cmpt 5231 . . . . 5 class (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))
1910, 18cop 4637 . . . 4 class ⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))⟩
204, 7, 19csb 3908 . . 3 class (Base‘𝑡) / 𝑏⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))⟩
212, 3, 20cmpt 5231 . 2 class (𝑡 ∈ Cat ↦ (Base‘𝑡) / 𝑏⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))⟩)
221, 21wceq 1537 1 wff idfunc = (𝑡 ∈ Cat ↦ (Base‘𝑡) / 𝑏⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))⟩)
Colors of variables: wff setvar class
This definition is referenced by:  idfuval  17927
  Copyright terms: Public domain W3C validator