Detailed syntax breakdown of Definition df-idfu
| Step | Hyp | Ref
| Expression |
| 1 | | cidfu 17873 |
. 2
class
idfunc |
| 2 | | vt |
. . 3
setvar 𝑡 |
| 3 | | ccat 17681 |
. . 3
class
Cat |
| 4 | | vb |
. . . 4
setvar 𝑏 |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑡 |
| 6 | | cbs 17233 |
. . . . 5
class
Base |
| 7 | 5, 6 | cfv 6536 |
. . . 4
class
(Base‘𝑡) |
| 8 | | cid 5552 |
. . . . . 6
class
I |
| 9 | 4 | cv 1539 |
. . . . . 6
class 𝑏 |
| 10 | 8, 9 | cres 5661 |
. . . . 5
class ( I
↾ 𝑏) |
| 11 | | vz |
. . . . . 6
setvar 𝑧 |
| 12 | 9, 9 | cxp 5657 |
. . . . . 6
class (𝑏 × 𝑏) |
| 13 | 11 | cv 1539 |
. . . . . . . 8
class 𝑧 |
| 14 | | chom 17287 |
. . . . . . . . 9
class
Hom |
| 15 | 5, 14 | cfv 6536 |
. . . . . . . 8
class (Hom
‘𝑡) |
| 16 | 13, 15 | cfv 6536 |
. . . . . . 7
class ((Hom
‘𝑡)‘𝑧) |
| 17 | 8, 16 | cres 5661 |
. . . . . 6
class ( I
↾ ((Hom ‘𝑡)‘𝑧)) |
| 18 | 11, 12, 17 | cmpt 5206 |
. . . . 5
class (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧))) |
| 19 | 10, 18 | cop 4612 |
. . . 4
class 〈( I
↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))〉 |
| 20 | 4, 7, 19 | csb 3879 |
. . 3
class
⦋(Base‘𝑡) / 𝑏⦌〈( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))〉 |
| 21 | 2, 3, 20 | cmpt 5206 |
. 2
class (𝑡 ∈ Cat ↦
⦋(Base‘𝑡) / 𝑏⦌〈( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))〉) |
| 22 | 1, 21 | wceq 1540 |
1
wff
idfunc = (𝑡 ∈ Cat ↦
⦋(Base‘𝑡) / 𝑏⦌〈( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))〉) |