MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfuval Structured version   Visualization version   GIF version

Theorem idfuval 17940
Description: Value of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
idfuval.i 𝐼 = (idfunc𝐶)
idfuval.b 𝐵 = (Base‘𝐶)
idfuval.c (𝜑𝐶 ∈ Cat)
idfuval.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
idfuval (𝜑𝐼 = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
Distinct variable groups:   𝑧,𝐵   𝑧,𝐶   𝑧,𝐻   𝜑,𝑧
Allowed substitution hint:   𝐼(𝑧)

Proof of Theorem idfuval
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idfuval.i . 2 𝐼 = (idfunc𝐶)
2 idfuval.c . . 3 (𝜑𝐶 ∈ Cat)
3 fvexd 6935 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) ∈ V)
4 fveq2 6920 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
5 idfuval.b . . . . . 6 𝐵 = (Base‘𝐶)
64, 5eqtr4di 2798 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
7 simpr 484 . . . . . . 7 ((𝑐 = 𝐶𝑏 = 𝐵) → 𝑏 = 𝐵)
87reseq2d 6009 . . . . . 6 ((𝑐 = 𝐶𝑏 = 𝐵) → ( I ↾ 𝑏) = ( I ↾ 𝐵))
97sqxpeqd 5732 . . . . . . 7 ((𝑐 = 𝐶𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵))
10 simpl 482 . . . . . . . . . . 11 ((𝑐 = 𝐶𝑏 = 𝐵) → 𝑐 = 𝐶)
1110fveq2d 6924 . . . . . . . . . 10 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) = (Hom ‘𝐶))
12 idfuval.h . . . . . . . . . 10 𝐻 = (Hom ‘𝐶)
1311, 12eqtr4di 2798 . . . . . . . . 9 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) = 𝐻)
1413fveq1d 6922 . . . . . . . 8 ((𝑐 = 𝐶𝑏 = 𝐵) → ((Hom ‘𝑐)‘𝑧) = (𝐻𝑧))
1514reseq2d 6009 . . . . . . 7 ((𝑐 = 𝐶𝑏 = 𝐵) → ( I ↾ ((Hom ‘𝑐)‘𝑧)) = ( I ↾ (𝐻𝑧)))
169, 15mpteq12dv 5257 . . . . . 6 ((𝑐 = 𝐶𝑏 = 𝐵) → (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑐)‘𝑧))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧))))
178, 16opeq12d 4905 . . . . 5 ((𝑐 = 𝐶𝑏 = 𝐵) → ⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑐)‘𝑧)))⟩ = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
183, 6, 17csbied2 3961 . . . 4 (𝑐 = 𝐶(Base‘𝑐) / 𝑏⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑐)‘𝑧)))⟩ = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
19 df-idfu 17923 . . . 4 idfunc = (𝑐 ∈ Cat ↦ (Base‘𝑐) / 𝑏⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑐)‘𝑧)))⟩)
20 opex 5484 . . . 4 ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩ ∈ V
2118, 19, 20fvmpt 7029 . . 3 (𝐶 ∈ Cat → (idfunc𝐶) = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
222, 21syl 17 . 2 (𝜑 → (idfunc𝐶) = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
231, 22eqtrid 2792 1 (𝜑𝐼 = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  csb 3921  cop 4654  cmpt 5249   I cid 5592   × cxp 5698  cres 5702  cfv 6573  Basecbs 17258  Hom chom 17322  Catccat 17722  idfunccidfu 17919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-idfu 17923
This theorem is referenced by:  idfu2nd  17941  idfu1st  17943  idfucl  17945  idfusubc0  17963  catcisolem  18177  curf2ndf  18317
  Copyright terms: Public domain W3C validator