MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfuval Structured version   Visualization version   GIF version

Theorem idfuval 17893
Description: Value of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
idfuval.i 𝐼 = (idfunc𝐶)
idfuval.b 𝐵 = (Base‘𝐶)
idfuval.c (𝜑𝐶 ∈ Cat)
idfuval.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
idfuval (𝜑𝐼 = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
Distinct variable groups:   𝑧,𝐵   𝑧,𝐶   𝑧,𝐻   𝜑,𝑧
Allowed substitution hint:   𝐼(𝑧)

Proof of Theorem idfuval
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idfuval.i . 2 𝐼 = (idfunc𝐶)
2 idfuval.c . . 3 (𝜑𝐶 ∈ Cat)
3 fvexd 6901 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) ∈ V)
4 fveq2 6886 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
5 idfuval.b . . . . . 6 𝐵 = (Base‘𝐶)
64, 5eqtr4di 2787 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
7 simpr 484 . . . . . . 7 ((𝑐 = 𝐶𝑏 = 𝐵) → 𝑏 = 𝐵)
87reseq2d 5977 . . . . . 6 ((𝑐 = 𝐶𝑏 = 𝐵) → ( I ↾ 𝑏) = ( I ↾ 𝐵))
97sqxpeqd 5697 . . . . . . 7 ((𝑐 = 𝐶𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵))
10 simpl 482 . . . . . . . . . . 11 ((𝑐 = 𝐶𝑏 = 𝐵) → 𝑐 = 𝐶)
1110fveq2d 6890 . . . . . . . . . 10 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) = (Hom ‘𝐶))
12 idfuval.h . . . . . . . . . 10 𝐻 = (Hom ‘𝐶)
1311, 12eqtr4di 2787 . . . . . . . . 9 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) = 𝐻)
1413fveq1d 6888 . . . . . . . 8 ((𝑐 = 𝐶𝑏 = 𝐵) → ((Hom ‘𝑐)‘𝑧) = (𝐻𝑧))
1514reseq2d 5977 . . . . . . 7 ((𝑐 = 𝐶𝑏 = 𝐵) → ( I ↾ ((Hom ‘𝑐)‘𝑧)) = ( I ↾ (𝐻𝑧)))
169, 15mpteq12dv 5213 . . . . . 6 ((𝑐 = 𝐶𝑏 = 𝐵) → (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑐)‘𝑧))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧))))
178, 16opeq12d 4861 . . . . 5 ((𝑐 = 𝐶𝑏 = 𝐵) → ⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑐)‘𝑧)))⟩ = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
183, 6, 17csbied2 3916 . . . 4 (𝑐 = 𝐶(Base‘𝑐) / 𝑏⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑐)‘𝑧)))⟩ = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
19 df-idfu 17876 . . . 4 idfunc = (𝑐 ∈ Cat ↦ (Base‘𝑐) / 𝑏⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑐)‘𝑧)))⟩)
20 opex 5449 . . . 4 ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩ ∈ V
2118, 19, 20fvmpt 6996 . . 3 (𝐶 ∈ Cat → (idfunc𝐶) = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
222, 21syl 17 . 2 (𝜑 → (idfunc𝐶) = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
231, 22eqtrid 2781 1 (𝜑𝐼 = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  csb 3879  cop 4612  cmpt 5205   I cid 5557   × cxp 5663  cres 5667  cfv 6541  Basecbs 17230  Hom chom 17285  Catccat 17679  idfunccidfu 17872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-res 5677  df-iota 6494  df-fun 6543  df-fv 6549  df-idfu 17876
This theorem is referenced by:  idfu2nd  17894  idfu1st  17896  idfucl  17898  idfusubc0  17916  catcisolem  18127  curf2ndf  18263  idfudiag1bas  49222  idfudiag1  49223
  Copyright terms: Public domain W3C validator