| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idfuval | Structured version Visualization version GIF version | ||
| Description: Value of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| idfuval.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idfuval.b | ⊢ 𝐵 = (Base‘𝐶) |
| idfuval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| idfuval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| idfuval | ⊢ (𝜑 → 𝐼 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfuval.i | . 2 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 2 | idfuval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | fvexd 6846 | . . . . 5 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) ∈ V) | |
| 4 | fveq2 6831 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
| 5 | idfuval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 6 | 4, 5 | eqtr4di 2786 | . . . . 5 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
| 7 | simpr 484 | . . . . . . 7 ⊢ ((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵) | |
| 8 | 7 | reseq2d 5935 | . . . . . 6 ⊢ ((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) → ( I ↾ 𝑏) = ( I ↾ 𝐵)) |
| 9 | 7 | sqxpeqd 5653 | . . . . . . 7 ⊢ ((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵)) |
| 10 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) → 𝑐 = 𝐶) | |
| 11 | 10 | fveq2d 6835 | . . . . . . . . . 10 ⊢ ((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) → (Hom ‘𝑐) = (Hom ‘𝐶)) |
| 12 | idfuval.h | . . . . . . . . . 10 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 13 | 11, 12 | eqtr4di 2786 | . . . . . . . . 9 ⊢ ((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) → (Hom ‘𝑐) = 𝐻) |
| 14 | 13 | fveq1d 6833 | . . . . . . . 8 ⊢ ((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) → ((Hom ‘𝑐)‘𝑧) = (𝐻‘𝑧)) |
| 15 | 14 | reseq2d 5935 | . . . . . . 7 ⊢ ((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) → ( I ↾ ((Hom ‘𝑐)‘𝑧)) = ( I ↾ (𝐻‘𝑧))) |
| 16 | 9, 15 | mpteq12dv 5182 | . . . . . 6 ⊢ ((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) → (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑐)‘𝑧))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))) |
| 17 | 8, 16 | opeq12d 4834 | . . . . 5 ⊢ ((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) → 〈( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑐)‘𝑧)))〉 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉) |
| 18 | 3, 6, 17 | csbied2 3883 | . . . 4 ⊢ (𝑐 = 𝐶 → ⦋(Base‘𝑐) / 𝑏⦌〈( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑐)‘𝑧)))〉 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉) |
| 19 | df-idfu 17774 | . . . 4 ⊢ idfunc = (𝑐 ∈ Cat ↦ ⦋(Base‘𝑐) / 𝑏⦌〈( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑐)‘𝑧)))〉) | |
| 20 | opex 5409 | . . . 4 ⊢ 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉 ∈ V | |
| 21 | 18, 19, 20 | fvmpt 6938 | . . 3 ⊢ (𝐶 ∈ Cat → (idfunc‘𝐶) = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉) |
| 22 | 2, 21 | syl 17 | . 2 ⊢ (𝜑 → (idfunc‘𝐶) = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉) |
| 23 | 1, 22 | eqtrid 2780 | 1 ⊢ (𝜑 → 𝐼 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⦋csb 3846 〈cop 4583 ↦ cmpt 5176 I cid 5515 × cxp 5619 ↾ cres 5623 ‘cfv 6489 Basecbs 17127 Hom chom 17179 Catccat 17578 idfunccidfu 17770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-res 5633 df-iota 6445 df-fun 6491 df-fv 6497 df-idfu 17774 |
| This theorem is referenced by: idfu2nd 17792 idfu1st 17794 idfucl 17796 idfusubc0 17814 catcisolem 18025 curf2ndf 18161 cofidvala 49277 cofidval 49280 idfudiag1bas 49685 idfudiag1 49686 |
| Copyright terms: Public domain | W3C validator |