![]() |
Metamath
Proof Explorer Theorem List (p. 179 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30158) |
![]() (30159-31681) |
![]() (31682-47805) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | cidfu 17801 | Extend class notation with identity functor. |
class idfunc | ||
Syntax | ccofu 17802 | Extend class notation with functor composition. |
class βfunc | ||
Syntax | cresf 17803 | Extend class notation to include restriction of a functor to a subcategory. |
class βΎf | ||
Definition | df-func 17804* | Function returning all the functors from a category π‘ to a category π’. Definition 3.17 of [Adamek] p. 29, and definition in [Lang] p. 62 ("covariant functor"). Intuitively a functor associates any morphism of π‘ to a morphism of π’, any object of π‘ to an object of π’, and respects the identity, the composition, the domain and the codomain. Here to capture the idea that a functor associates any object of π‘ to an object of π’ we write it associates any identity of π‘ to an identity of π’ which simplifies the definition. According to remark 3.19 in [Adamek] p. 30, "a functor F : A -> B is technically a family of functions; one from Ob(A) to Ob(B) [here: f, called "the object part" in the following], and for each pair (A,A') of A-objects, one from hom(A,A') to hom(FA, FA') [here: g, called "the morphism part" in the following]". (Contributed by FL, 10-Feb-2008.) (Revised by Mario Carneiro, 2-Jan-2017.) |
β’ Func = (π‘ β Cat, π’ β Cat β¦ {β¨π, πβ© β£ [(Baseβπ‘) / π](π:πβΆ(Baseβπ’) β§ π β Xπ§ β (π Γ π)(((πβ(1st βπ§))(Hom βπ’)(πβ(2nd βπ§))) βm ((Hom βπ‘)βπ§)) β§ βπ₯ β π (((π₯ππ₯)β((Idβπ‘)βπ₯)) = ((Idβπ’)β(πβπ₯)) β§ βπ¦ β π βπ§ β π βπ β (π₯(Hom βπ‘)π¦)βπ β (π¦(Hom βπ‘)π§)((π₯ππ§)β(π(β¨π₯, π¦β©(compβπ‘)π§)π)) = (((π¦ππ§)βπ)(β¨(πβπ₯), (πβπ¦)β©(compβπ’)(πβπ§))((π₯ππ¦)βπ))))}) | ||
Definition | df-idfu 17805* | Define the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ idfunc = (π‘ β Cat β¦ β¦(Baseβπ‘) / πβ¦β¨( I βΎ π), (π§ β (π Γ π) β¦ ( I βΎ ((Hom βπ‘)βπ§)))β©) | ||
Definition | df-cofu 17806* | Define the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ βfunc = (π β V, π β V β¦ β¨((1st βπ) β (1st βπ)), (π₯ β dom dom (2nd βπ), π¦ β dom dom (2nd βπ) β¦ ((((1st βπ)βπ₯)(2nd βπ)((1st βπ)βπ¦)) β (π₯(2nd βπ)π¦)))β©) | ||
Definition | df-resf 17807* | Define the restriction of a functor to a subcategory (analogue of df-res 5687). (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ βΎf = (π β V, β β V β¦ β¨((1st βπ) βΎ dom dom β), (π₯ β dom β β¦ (((2nd βπ)βπ₯) βΎ (ββπ₯)))β©) | ||
Theorem | relfunc 17808 | The set of functors is a relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ Rel (π· Func πΈ) | ||
Theorem | funcrcl 17809 | Reverse closure for a functor. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ (πΉ β (π· Func πΈ) β (π· β Cat β§ πΈ β Cat)) | ||
Theorem | isfunc 17810* | Value of the set of functors between two categories. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (Baseβπ·) & β’ πΆ = (BaseβπΈ) & β’ π» = (Hom βπ·) & β’ π½ = (Hom βπΈ) & β’ 1 = (Idβπ·) & β’ πΌ = (IdβπΈ) & β’ Β· = (compβπ·) & β’ π = (compβπΈ) & β’ (π β π· β Cat) & β’ (π β πΈ β Cat) β β’ (π β (πΉ(π· Func πΈ)πΊ β (πΉ:π΅βΆπΆ β§ πΊ β Xπ§ β (π΅ Γ π΅)(((πΉβ(1st βπ§))π½(πΉβ(2nd βπ§))) βm (π»βπ§)) β§ βπ₯ β π΅ (((π₯πΊπ₯)β( 1 βπ₯)) = (πΌβ(πΉβπ₯)) β§ βπ¦ β π΅ βπ§ β π΅ βπ β (π₯π»π¦)βπ β (π¦π»π§)((π₯πΊπ§)β(π(β¨π₯, π¦β© Β· π§)π)) = (((π¦πΊπ§)βπ)(β¨(πΉβπ₯), (πΉβπ¦)β©π(πΉβπ§))((π₯πΊπ¦)βπ)))))) | ||
Theorem | isfuncd 17811* | Deduce that an operation is a functor of categories. (Contributed by Mario Carneiro, 4-Jan-2017.) |
β’ π΅ = (Baseβπ·) & β’ πΆ = (BaseβπΈ) & β’ π» = (Hom βπ·) & β’ π½ = (Hom βπΈ) & β’ 1 = (Idβπ·) & β’ πΌ = (IdβπΈ) & β’ Β· = (compβπ·) & β’ π = (compβπΈ) & β’ (π β π· β Cat) & β’ (π β πΈ β Cat) & β’ (π β πΉ:π΅βΆπΆ) & β’ (π β πΊ Fn (π΅ Γ π΅)) & β’ ((π β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯πΊπ¦):(π₯π»π¦)βΆ((πΉβπ₯)π½(πΉβπ¦))) & β’ ((π β§ π₯ β π΅) β ((π₯πΊπ₯)β( 1 βπ₯)) = (πΌβ(πΉβπ₯))) & β’ ((π β§ (π₯ β π΅ β§ π¦ β π΅ β§ π§ β π΅) β§ (π β (π₯π»π¦) β§ π β (π¦π»π§))) β ((π₯πΊπ§)β(π(β¨π₯, π¦β© Β· π§)π)) = (((π¦πΊπ§)βπ)(β¨(πΉβπ₯), (πΉβπ¦)β©π(πΉβπ§))((π₯πΊπ¦)βπ))) β β’ (π β πΉ(π· Func πΈ)πΊ) | ||
Theorem | funcf1 17812 | The object part of a functor is a function on objects. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (Baseβπ·) & β’ πΆ = (BaseβπΈ) & β’ (π β πΉ(π· Func πΈ)πΊ) β β’ (π β πΉ:π΅βΆπΆ) | ||
Theorem | funcixp 17813* | The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (Baseβπ·) & β’ π» = (Hom βπ·) & β’ π½ = (Hom βπΈ) & β’ (π β πΉ(π· Func πΈ)πΊ) β β’ (π β πΊ β Xπ§ β (π΅ Γ π΅)(((πΉβ(1st βπ§))π½(πΉβ(2nd βπ§))) βm (π»βπ§))) | ||
Theorem | funcf2 17814 | The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (Baseβπ·) & β’ π» = (Hom βπ·) & β’ π½ = (Hom βπΈ) & β’ (π β πΉ(π· Func πΈ)πΊ) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (ππΊπ):(ππ»π)βΆ((πΉβπ)π½(πΉβπ))) | ||
Theorem | funcfn2 17815 | The morphism part of a functor is a function. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ π΅ = (Baseβπ·) & β’ (π β πΉ(π· Func πΈ)πΊ) β β’ (π β πΊ Fn (π΅ Γ π΅)) | ||
Theorem | funcid 17816 | A functor maps each identity to the corresponding identity in the target category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (Baseβπ·) & β’ 1 = (Idβπ·) & β’ πΌ = (IdβπΈ) & β’ (π β πΉ(π· Func πΈ)πΊ) & β’ (π β π β π΅) β β’ (π β ((ππΊπ)β( 1 βπ)) = (πΌβ(πΉβπ))) | ||
Theorem | funcco 17817 | A functor maps composition in the source category to composition in the target. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (Baseβπ·) & β’ π» = (Hom βπ·) & β’ Β· = (compβπ·) & β’ π = (compβπΈ) & β’ (π β πΉ(π· Func πΈ)πΊ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β (ππ»π)) & β’ (π β π β (ππ»π)) β β’ (π β ((ππΊπ)β(π(β¨π, πβ© Β· π)π)) = (((ππΊπ)βπ)(β¨(πΉβπ), (πΉβπ)β©π(πΉβπ))((ππΊπ)βπ))) | ||
Theorem | funcsect 17818 | The image of a section under a functor is a section. (Contributed by Mario Carneiro, 2-Jan-2017.) |
β’ π΅ = (Baseβπ·) & β’ π = (Sectβπ·) & β’ π = (SectβπΈ) & β’ (π β πΉ(π· Func πΈ)πΊ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π(πππ)π) β β’ (π β ((ππΊπ)βπ)((πΉβπ)π(πΉβπ))((ππΊπ)βπ)) | ||
Theorem | funcinv 17819 | The image of an inverse under a functor is an inverse. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ π΅ = (Baseβπ·) & β’ πΌ = (Invβπ·) & β’ π½ = (InvβπΈ) & β’ (π β πΉ(π· Func πΈ)πΊ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π(ππΌπ)π) β β’ (π β ((ππΊπ)βπ)((πΉβπ)π½(πΉβπ))((ππΊπ)βπ)) | ||
Theorem | funciso 17820 | The image of an isomorphism under a functor is an isomorphism. Proposition 3.21 of [Adamek] p. 32. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ π΅ = (Baseβπ·) & β’ πΌ = (Isoβπ·) & β’ π½ = (IsoβπΈ) & β’ (π β πΉ(π· Func πΈ)πΊ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β (ππΌπ)) β β’ (π β ((ππΊπ)βπ) β ((πΉβπ)π½(πΉβπ))) | ||
Theorem | funcoppc 17821 | A functor on categories yields a functor on the opposite categories (in the same direction), see definition 3.41 of [Adamek] p. 39. (Contributed by Mario Carneiro, 4-Jan-2017.) |
β’ π = (oppCatβπΆ) & β’ π = (oppCatβπ·) & β’ (π β πΉ(πΆ Func π·)πΊ) β β’ (π β πΉ(π Func π)tpos πΊ) | ||
Theorem | idfuval 17822* | Value of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ πΌ = (idfuncβπΆ) & β’ π΅ = (BaseβπΆ) & β’ (π β πΆ β Cat) & β’ π» = (Hom βπΆ) β β’ (π β πΌ = β¨( I βΎ π΅), (π§ β (π΅ Γ π΅) β¦ ( I βΎ (π»βπ§)))β©) | ||
Theorem | idfu2nd 17823 | Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ πΌ = (idfuncβπΆ) & β’ π΅ = (BaseβπΆ) & β’ (π β πΆ β Cat) & β’ π» = (Hom βπΆ) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (π(2nd βπΌ)π) = ( I βΎ (ππ»π))) | ||
Theorem | idfu2 17824 | Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 28-Jan-2017.) |
β’ πΌ = (idfuncβπΆ) & β’ π΅ = (BaseβπΆ) & β’ (π β πΆ β Cat) & β’ π» = (Hom βπΆ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β πΉ β (ππ»π)) β β’ (π β ((π(2nd βπΌ)π)βπΉ) = πΉ) | ||
Theorem | idfu1st 17825 | Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ πΌ = (idfuncβπΆ) & β’ π΅ = (BaseβπΆ) & β’ (π β πΆ β Cat) β β’ (π β (1st βπΌ) = ( I βΎ π΅)) | ||
Theorem | idfu1 17826 | Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ πΌ = (idfuncβπΆ) & β’ π΅ = (BaseβπΆ) & β’ (π β πΆ β Cat) & β’ (π β π β π΅) β β’ (π β ((1st βπΌ)βπ) = π) | ||
Theorem | idfucl 17827 | The identity functor is a functor. Example 3.20(1) of [Adamek] p. 30. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ πΌ = (idfuncβπΆ) β β’ (πΆ β Cat β πΌ β (πΆ Func πΆ)) | ||
Theorem | cofuval 17828* | Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ (π β πΉ β (πΆ Func π·)) & β’ (π β πΊ β (π· Func πΈ)) β β’ (π β (πΊ βfunc πΉ) = β¨((1st βπΊ) β (1st βπΉ)), (π₯ β π΅, π¦ β π΅ β¦ ((((1st βπΉ)βπ₯)(2nd βπΊ)((1st βπΉ)βπ¦)) β (π₯(2nd βπΉ)π¦)))β©) | ||
Theorem | cofu1st 17829 | Value of the object part of the functor composition. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ (π β πΉ β (πΆ Func π·)) & β’ (π β πΊ β (π· Func πΈ)) β β’ (π β (1st β(πΊ βfunc πΉ)) = ((1st βπΊ) β (1st βπΉ))) | ||
Theorem | cofu1 17830 | Value of the object part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ (π β πΉ β (πΆ Func π·)) & β’ (π β πΊ β (π· Func πΈ)) & β’ (π β π β π΅) β β’ (π β ((1st β(πΊ βfunc πΉ))βπ) = ((1st βπΊ)β((1st βπΉ)βπ))) | ||
Theorem | cofu2nd 17831 | Value of the morphism part of the functor composition. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ (π β πΉ β (πΆ Func π·)) & β’ (π β πΊ β (π· Func πΈ)) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (π(2nd β(πΊ βfunc πΉ))π) = ((((1st βπΉ)βπ)(2nd βπΊ)((1st βπΉ)βπ)) β (π(2nd βπΉ)π))) | ||
Theorem | cofu2 17832 | Value of the morphism part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ (π β πΉ β (πΆ Func π·)) & β’ (π β πΊ β (π· Func πΈ)) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ π» = (Hom βπΆ) & β’ (π β π β (ππ»π)) β β’ (π β ((π(2nd β(πΊ βfunc πΉ))π)βπ ) = ((((1st βπΉ)βπ)(2nd βπΊ)((1st βπΉ)βπ))β((π(2nd βπΉ)π)βπ ))) | ||
Theorem | cofuval2 17833* | Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ (π β πΉ(πΆ Func π·)πΊ) & β’ (π β π»(π· Func πΈ)πΎ) β β’ (π β (β¨π», πΎβ© βfunc β¨πΉ, πΊβ©) = β¨(π» β πΉ), (π₯ β π΅, π¦ β π΅ β¦ (((πΉβπ₯)πΎ(πΉβπ¦)) β (π₯πΊπ¦)))β©) | ||
Theorem | cofucl 17834 | The composition of two functors is a functor. Proposition 3.23 of [Adamek] p. 33. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ (π β πΉ β (πΆ Func π·)) & β’ (π β πΊ β (π· Func πΈ)) β β’ (π β (πΊ βfunc πΉ) β (πΆ Func πΈ)) | ||
Theorem | cofuass 17835 | Functor composition is associative. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ (π β πΊ β (πΆ Func π·)) & β’ (π β π» β (π· Func πΈ)) & β’ (π β πΎ β (πΈ Func πΉ)) β β’ (π β ((πΎ βfunc π») βfunc πΊ) = (πΎ βfunc (π» βfunc πΊ))) | ||
Theorem | cofulid 17836 | The identity functor is a left identity for composition. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ (π β πΉ β (πΆ Func π·)) & β’ πΌ = (idfuncβπ·) β β’ (π β (πΌ βfunc πΉ) = πΉ) | ||
Theorem | cofurid 17837 | The identity functor is a right identity for composition. (Contributed by Mario Carneiro, 3-Jan-2017.) |
β’ (π β πΉ β (πΆ Func π·)) & β’ πΌ = (idfuncβπΆ) β β’ (π β (πΉ βfunc πΌ) = πΉ) | ||
Theorem | resfval 17838* | Value of the functor restriction operator. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ (π β πΉ β π) & β’ (π β π» β π) β β’ (π β (πΉ βΎf π») = β¨((1st βπΉ) βΎ dom dom π»), (π₯ β dom π» β¦ (((2nd βπΉ)βπ₯) βΎ (π»βπ₯)))β©) | ||
Theorem | resfval2 17839* | Value of the functor restriction operator. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ (π β πΉ β π) & β’ (π β π» β π) & β’ (π β πΊ β π) & β’ (π β π» Fn (π Γ π)) β β’ (π β (β¨πΉ, πΊβ© βΎf π») = β¨(πΉ βΎ π), (π₯ β π, π¦ β π β¦ ((π₯πΊπ¦) βΎ (π₯π»π¦)))β©) | ||
Theorem | resf1st 17840 | Value of the functor restriction operator on objects. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ (π β πΉ β π) & β’ (π β π» β π) & β’ (π β π» Fn (π Γ π)) β β’ (π β (1st β(πΉ βΎf π»)) = ((1st βπΉ) βΎ π)) | ||
Theorem | resf2nd 17841 | Value of the functor restriction operator on morphisms. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ (π β πΉ β π) & β’ (π β π» β π) & β’ (π β π» Fn (π Γ π)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π(2nd β(πΉ βΎf π»))π) = ((π(2nd βπΉ)π) βΎ (ππ»π))) | ||
Theorem | funcres 17842 | A functor restricted to a subcategory is a functor. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ (π β πΉ β (πΆ Func π·)) & β’ (π β π» β (SubcatβπΆ)) β β’ (π β (πΉ βΎf π») β ((πΆ βΎcat π») Func π·)) | ||
Theorem | funcres2b 17843* | Condition for a functor to also be a functor into the restriction. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ π΄ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ (π β π β (Subcatβπ·)) & β’ (π β π Fn (π Γ π)) & β’ (π β πΉ:π΄βΆπ) & β’ ((π β§ (π₯ β π΄ β§ π¦ β π΄)) β (π₯πΊπ¦):πβΆ((πΉβπ₯)π (πΉβπ¦))) β β’ (π β (πΉ(πΆ Func π·)πΊ β πΉ(πΆ Func (π· βΎcat π ))πΊ)) | ||
Theorem | funcres2 17844 | A functor into a restricted category is also a functor into the whole category. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ (π β (Subcatβπ·) β (πΆ Func (π· βΎcat π )) β (πΆ Func π·)) | ||
Theorem | wunfunc 17845 | A weak universe is closed under the functor set operation. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 13-Oct-2024.) |
β’ (π β π β WUni) & β’ (π β πΆ β π) & β’ (π β π· β π) β β’ (π β (πΆ Func π·) β π) | ||
Theorem | wunfuncOLD 17846 | Obsolete proof of wunfunc 17845 as of 13-Oct-2024. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ (π β π β WUni) & β’ (π β πΆ β π) & β’ (π β π· β π) β β’ (π β (πΆ Func π·) β π) | ||
Theorem | funcpropd 17847 | If two categories have the same set of objects, morphisms, and compositions, then they have the same functors. (Contributed by Mario Carneiro, 17-Jan-2017.) |
β’ (π β (Homf βπ΄) = (Homf βπ΅)) & β’ (π β (compfβπ΄) = (compfβπ΅)) & β’ (π β (Homf βπΆ) = (Homf βπ·)) & β’ (π β (compfβπΆ) = (compfβπ·)) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) β β’ (π β (π΄ Func πΆ) = (π΅ Func π·)) | ||
Theorem | funcres2c 17848 | Condition for a functor to also be a functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017.) |
β’ π΄ = (BaseβπΆ) & β’ πΈ = (π· βΎs π) & β’ (π β π· β Cat) & β’ (π β π β π) & β’ (π β πΉ:π΄βΆπ) β β’ (π β (πΉ(πΆ Func π·)πΊ β πΉ(πΆ Func πΈ)πΊ)) | ||
Syntax | cful 17849 | Extend class notation with the class of all full functors. |
class Full | ||
Syntax | cfth 17850 | Extend class notation with the class of all faithful functors. |
class Faith | ||
Definition | df-full 17851* | Function returning all the full functors from a category πΆ to a category π·. A full functor is a functor in which all the morphism maps πΊ(π, π) between objects π, π β πΆ are surjections. Definition 3.27(3) in [Adamek] p. 34. (Contributed by Mario Carneiro, 26-Jan-2017.) |
β’ Full = (π β Cat, π β Cat β¦ {β¨π, πβ© β£ (π(π Func π)π β§ βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)ran (π₯ππ¦) = ((πβπ₯)(Hom βπ)(πβπ¦)))}) | ||
Definition | df-fth 17852* | Function returning all the faithful functors from a category πΆ to a category π·. A faithful functor is a functor in which all the morphism maps πΊ(π, π) between objects π, π β πΆ are injections. Definition 3.27(2) in [Adamek] p. 34. (Contributed by Mario Carneiro, 26-Jan-2017.) |
β’ Faith = (π β Cat, π β Cat β¦ {β¨π, πβ© β£ (π(π Func π)π β§ βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)Fun β‘(π₯ππ¦))}) | ||
Theorem | fullfunc 17853 | A full functor is a functor. (Contributed by Mario Carneiro, 26-Jan-2017.) |
β’ (πΆ Full π·) β (πΆ Func π·) | ||
Theorem | fthfunc 17854 | A faithful functor is a functor. (Contributed by Mario Carneiro, 26-Jan-2017.) |
β’ (πΆ Faith π·) β (πΆ Func π·) | ||
Theorem | relfull 17855 | The set of full functors is a relation. (Contributed by Mario Carneiro, 26-Jan-2017.) |
β’ Rel (πΆ Full π·) | ||
Theorem | relfth 17856 | The set of faithful functors is a relation. (Contributed by Mario Carneiro, 26-Jan-2017.) |
β’ Rel (πΆ Faith π·) | ||
Theorem | isfull 17857* | Value of the set of full functors between two categories. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π½ = (Hom βπ·) β β’ (πΉ(πΆ Full π·)πΊ β (πΉ(πΆ Func π·)πΊ β§ βπ₯ β π΅ βπ¦ β π΅ ran (π₯πΊπ¦) = ((πΉβπ₯)π½(πΉβπ¦)))) | ||
Theorem | isfull2 17858* | Equivalent condition for a full functor. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π½ = (Hom βπ·) & β’ π» = (Hom βπΆ) β β’ (πΉ(πΆ Full π·)πΊ β (πΉ(πΆ Func π·)πΊ β§ βπ₯ β π΅ βπ¦ β π΅ (π₯πΊπ¦):(π₯π»π¦)βontoβ((πΉβπ₯)π½(πΉβπ¦)))) | ||
Theorem | fullfo 17859 | The morphism map of a full functor is a surjection. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π½ = (Hom βπ·) & β’ π» = (Hom βπΆ) & β’ (π β πΉ(πΆ Full π·)πΊ) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (ππΊπ):(ππ»π)βontoβ((πΉβπ)π½(πΉβπ))) | ||
Theorem | fulli 17860* | The morphism map of a full functor is a surjection. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π½ = (Hom βπ·) & β’ π» = (Hom βπΆ) & β’ (π β πΉ(πΆ Full π·)πΊ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β ((πΉβπ)π½(πΉβπ))) β β’ (π β βπ β (ππ»π)π = ((ππΊπ)βπ)) | ||
Theorem | isfth 17861* | Value of the set of faithful functors between two categories. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π΅ = (BaseβπΆ) β β’ (πΉ(πΆ Faith π·)πΊ β (πΉ(πΆ Func π·)πΊ β§ βπ₯ β π΅ βπ¦ β π΅ Fun β‘(π₯πΊπ¦))) | ||
Theorem | isfth2 17862* | Equivalent condition for a faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ π½ = (Hom βπ·) β β’ (πΉ(πΆ Faith π·)πΊ β (πΉ(πΆ Func π·)πΊ β§ βπ₯ β π΅ βπ¦ β π΅ (π₯πΊπ¦):(π₯π»π¦)β1-1β((πΉβπ₯)π½(πΉβπ¦)))) | ||
Theorem | isffth2 17863* | A fully faithful functor is a functor which is bijective on hom-sets. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ π½ = (Hom βπ·) β β’ (πΉ((πΆ Full π·) β© (πΆ Faith π·))πΊ β (πΉ(πΆ Func π·)πΊ β§ βπ₯ β π΅ βπ¦ β π΅ (π₯πΊπ¦):(π₯π»π¦)β1-1-ontoβ((πΉβπ₯)π½(πΉβπ¦)))) | ||
Theorem | fthf1 17864 | The morphism map of a faithful functor is an injection. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ π½ = (Hom βπ·) & β’ (π β πΉ(πΆ Faith π·)πΊ) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (ππΊπ):(ππ»π)β1-1β((πΉβπ)π½(πΉβπ))) | ||
Theorem | fthi 17865 | The morphism map of a faithful functor is an injection. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ π½ = (Hom βπ·) & β’ (π β πΉ(πΆ Faith π·)πΊ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β (ππ»π)) & β’ (π β π β (ππ»π)) β β’ (π β (((ππΊπ)βπ ) = ((ππΊπ)βπ) β π = π)) | ||
Theorem | ffthf1o 17866 | The morphism map of a fully faithful functor is a bijection. (Contributed by Mario Carneiro, 29-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ π½ = (Hom βπ·) & β’ (π β πΉ((πΆ Full π·) β© (πΆ Faith π·))πΊ) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (ππΊπ):(ππ»π)β1-1-ontoβ((πΉβπ)π½(πΉβπ))) | ||
Theorem | fullpropd 17867 | If two categories have the same set of objects, morphisms, and compositions, then they have the same full functors. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ (π β (Homf βπ΄) = (Homf βπ΅)) & β’ (π β (compfβπ΄) = (compfβπ΅)) & β’ (π β (Homf βπΆ) = (Homf βπ·)) & β’ (π β (compfβπΆ) = (compfβπ·)) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) β β’ (π β (π΄ Full πΆ) = (π΅ Full π·)) | ||
Theorem | fthpropd 17868 | If two categories have the same set of objects, morphisms, and compositions, then they have the same faithful functors. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ (π β (Homf βπ΄) = (Homf βπ΅)) & β’ (π β (compfβπ΄) = (compfβπ΅)) & β’ (π β (Homf βπΆ) = (Homf βπ·)) & β’ (π β (compfβπΆ) = (compfβπ·)) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) β β’ (π β (π΄ Faith πΆ) = (π΅ Faith π·)) | ||
Theorem | fulloppc 17869 | The opposite functor of a full functor is also full. Proposition 3.43(d) in [Adamek] p. 39. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π = (oppCatβπΆ) & β’ π = (oppCatβπ·) & β’ (π β πΉ(πΆ Full π·)πΊ) β β’ (π β πΉ(π Full π)tpos πΊ) | ||
Theorem | fthoppc 17870 | The opposite functor of a faithful functor is also faithful. Proposition 3.43(c) in [Adamek] p. 39. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π = (oppCatβπΆ) & β’ π = (oppCatβπ·) & β’ (π β πΉ(πΆ Faith π·)πΊ) β β’ (π β πΉ(π Faith π)tpos πΊ) | ||
Theorem | ffthoppc 17871 | The opposite functor of a fully faithful functor is also full and faithful. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π = (oppCatβπΆ) & β’ π = (oppCatβπ·) & β’ (π β πΉ((πΆ Full π·) β© (πΆ Faith π·))πΊ) β β’ (π β πΉ((π Full π) β© (π Faith π))tpos πΊ) | ||
Theorem | fthsect 17872 | A faithful functor reflects sections. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ (π β πΉ(πΆ Faith π·)πΊ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β (ππ»π)) & β’ (π β π β (ππ»π)) & β’ π = (SectβπΆ) & β’ π = (Sectβπ·) β β’ (π β (π(πππ)π β ((ππΊπ)βπ)((πΉβπ)π(πΉβπ))((ππΊπ)βπ))) | ||
Theorem | fthinv 17873 | A faithful functor reflects inverses. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ (π β πΉ(πΆ Faith π·)πΊ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β (ππ»π)) & β’ (π β π β (ππ»π)) & β’ πΌ = (InvβπΆ) & β’ π½ = (Invβπ·) β β’ (π β (π(ππΌπ)π β ((ππΊπ)βπ)((πΉβπ)π½(πΉβπ))((ππΊπ)βπ))) | ||
Theorem | fthmon 17874 | A faithful functor reflects monomorphisms. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ (π β πΉ(πΆ Faith π·)πΊ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β (ππ»π)) & β’ π = (MonoβπΆ) & β’ π = (Monoβπ·) & β’ (π β ((ππΊπ)βπ ) β ((πΉβπ)π(πΉβπ))) β β’ (π β π β (πππ)) | ||
Theorem | fthepi 17875 | A faithful functor reflects epimorphisms. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ (π β πΉ(πΆ Faith π·)πΊ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β (ππ»π)) & β’ πΈ = (EpiβπΆ) & β’ π = (Epiβπ·) & β’ (π β ((ππΊπ)βπ ) β ((πΉβπ)π(πΉβπ))) β β’ (π β π β (ππΈπ)) | ||
Theorem | ffthiso 17876 | A fully faithful functor reflects isomorphisms. Corollary 3.32 of [Adamek] p. 35. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ (π β πΉ(πΆ Faith π·)πΊ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β (ππ»π)) & β’ (π β πΉ(πΆ Full π·)πΊ) & β’ πΌ = (IsoβπΆ) & β’ π½ = (Isoβπ·) β β’ (π β (π β (ππΌπ) β ((ππΊπ)βπ ) β ((πΉβπ)π½(πΉβπ)))) | ||
Theorem | fthres2b 17877* | Condition for a faithful functor to also be a faithful functor into the restriction. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π΄ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ (π β π β (Subcatβπ·)) & β’ (π β π Fn (π Γ π)) & β’ (π β πΉ:π΄βΆπ) & β’ ((π β§ (π₯ β π΄ β§ π¦ β π΄)) β (π₯πΊπ¦):πβΆ((πΉβπ₯)π (πΉβπ¦))) β β’ (π β (πΉ(πΆ Faith π·)πΊ β πΉ(πΆ Faith (π· βΎcat π ))πΊ)) | ||
Theorem | fthres2c 17878 | Condition for a faithful functor to also be a faithful functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017.) |
β’ π΄ = (BaseβπΆ) & β’ πΈ = (π· βΎs π) & β’ (π β π· β Cat) & β’ (π β π β π) & β’ (π β πΉ:π΄βΆπ) β β’ (π β (πΉ(πΆ Faith π·)πΊ β πΉ(πΆ Faith πΈ)πΊ)) | ||
Theorem | fthres2 17879 | A faithful functor into a restricted category is also a faithful functor into the whole category. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ (π β (Subcatβπ·) β (πΆ Faith (π· βΎcat π )) β (πΆ Faith π·)) | ||
Theorem | idffth 17880 | The identity functor is a fully faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ πΌ = (idfuncβπΆ) β β’ (πΆ β Cat β πΌ β ((πΆ Full πΆ) β© (πΆ Faith πΆ))) | ||
Theorem | cofull 17881 | The composition of two full functors is full. Proposition 3.30(d) in [Adamek] p. 35. (Contributed by Mario Carneiro, 28-Jan-2017.) |
β’ (π β πΉ β (πΆ Full π·)) & β’ (π β πΊ β (π· Full πΈ)) β β’ (π β (πΊ βfunc πΉ) β (πΆ Full πΈ)) | ||
Theorem | cofth 17882 | The composition of two faithful functors is faithful. Proposition 3.30(c) in [Adamek] p. 35. (Contributed by Mario Carneiro, 28-Jan-2017.) |
β’ (π β πΉ β (πΆ Faith π·)) & β’ (π β πΊ β (π· Faith πΈ)) β β’ (π β (πΊ βfunc πΉ) β (πΆ Faith πΈ)) | ||
Theorem | coffth 17883 | The composition of two fully faithful functors is fully faithful. (Contributed by Mario Carneiro, 28-Jan-2017.) |
β’ (π β πΉ β ((πΆ Full π·) β© (πΆ Faith π·))) & β’ (π β πΊ β ((π· Full πΈ) β© (π· Faith πΈ))) β β’ (π β (πΊ βfunc πΉ) β ((πΆ Full πΈ) β© (πΆ Faith πΈ))) | ||
Theorem | rescfth 17884 | The inclusion functor from a subcategory is a faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π· = (πΆ βΎcat π½) & β’ πΌ = (idfuncβπ·) β β’ (π½ β (SubcatβπΆ) β πΌ β (π· Faith πΆ)) | ||
Theorem | ressffth 17885 | The inclusion functor from a full subcategory is a full and faithful functor, see also remark 4.4(2) in [Adamek] p. 49. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π· = (πΆ βΎs π) & β’ πΌ = (idfuncβπ·) β β’ ((πΆ β Cat β§ π β π) β πΌ β ((π· Full πΆ) β© (π· Faith πΆ))) | ||
Theorem | fullres2c 17886 | Condition for a full functor to also be a full functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017.) |
β’ π΄ = (BaseβπΆ) & β’ πΈ = (π· βΎs π) & β’ (π β π· β Cat) & β’ (π β π β π) & β’ (π β πΉ:π΄βΆπ) β β’ (π β (πΉ(πΆ Full π·)πΊ β πΉ(πΆ Full πΈ)πΊ)) | ||
Theorem | ffthres2c 17887 | Condition for a fully faithful functor to also be a fully faithful functor into the restriction. (Contributed by Mario Carneiro, 27-Jan-2017.) |
β’ π΄ = (BaseβπΆ) & β’ πΈ = (π· βΎs π) & β’ (π β π· β Cat) & β’ (π β π β π) & β’ (π β πΉ:π΄βΆπ) β β’ (π β (πΉ((πΆ Full π·) β© (πΆ Faith π·))πΊ β πΉ((πΆ Full πΈ) β© (πΆ Faith πΈ))πΊ)) | ||
Syntax | cnat 17888 | Extend class notation to include the collection of natural transformations. |
class Nat | ||
Syntax | cfuc 17889 | Extend class notation to include the functor category. |
class FuncCat | ||
Definition | df-nat 17890* | Definition of a natural transformation between two functors. A natural transformation π΄:πΉβΆπΊ is a collection of arrows π΄(π₯):πΉ(π₯)βΆπΊ(π₯), such that π΄(π¦) β πΉ(β) = πΊ(β) β π΄(π₯) for each morphism β:π₯βΆπ¦. Definition 6.1 in [Adamek] p. 83, and definition in [Lang] p. 65. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ Nat = (π‘ β Cat, π’ β Cat β¦ (π β (π‘ Func π’), π β (π‘ Func π’) β¦ β¦(1st βπ) / πβ¦β¦(1st βπ) / π β¦{π β Xπ₯ β (Baseβπ‘)((πβπ₯)(Hom βπ’)(π βπ₯)) β£ βπ₯ β (Baseβπ‘)βπ¦ β (Baseβπ‘)ββ β (π₯(Hom βπ‘)π¦)((πβπ¦)(β¨(πβπ₯), (πβπ¦)β©(compβπ’)(π βπ¦))((π₯(2nd βπ)π¦)ββ)) = (((π₯(2nd βπ)π¦)ββ)(β¨(πβπ₯), (π βπ₯)β©(compβπ’)(π βπ¦))(πβπ₯))})) | ||
Definition | df-fuc 17891* | Definition of the category of functors between two fixed categories, with the objects being functors and the morphisms being natural transformations. Definition 6.15 in [Adamek] p. 87. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ FuncCat = (π‘ β Cat, π’ β Cat β¦ {β¨(Baseβndx), (π‘ Func π’)β©, β¨(Hom βndx), (π‘ Nat π’)β©, β¨(compβndx), (π£ β ((π‘ Func π’) Γ (π‘ Func π’)), β β (π‘ Func π’) β¦ β¦(1st βπ£) / πβ¦β¦(2nd βπ£) / πβ¦(π β (π(π‘ Nat π’)β), π β (π(π‘ Nat π’)π) β¦ (π₯ β (Baseβπ‘) β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β©(compβπ’)((1st ββ)βπ₯))(πβπ₯)))))β©}) | ||
Theorem | fnfuc 17892 | The FuncCat operation is a well-defined function on categories. (Contributed by Mario Carneiro, 12-Jan-2017.) |
β’ FuncCat Fn (Cat Γ Cat) | ||
Theorem | natfval 17893* | Value of the function giving natural transformations between two categories. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.) |
β’ π = (πΆ Nat π·) & β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ π½ = (Hom βπ·) & β’ Β· = (compβπ·) β β’ π = (π β (πΆ Func π·), π β (πΆ Func π·) β¦ β¦(1st βπ) / πβ¦β¦(1st βπ) / π β¦{π β Xπ₯ β π΅ ((πβπ₯)π½(π βπ₯)) β£ βπ₯ β π΅ βπ¦ β π΅ ββ β (π₯π»π¦)((πβπ¦)(β¨(πβπ₯), (πβπ¦)β© Β· (π βπ¦))((π₯(2nd βπ)π¦)ββ)) = (((π₯(2nd βπ)π¦)ββ)(β¨(πβπ₯), (π βπ₯)β© Β· (π βπ¦))(πβπ₯))}) | ||
Theorem | isnat 17894* | Property of being a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ π = (πΆ Nat π·) & β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ π½ = (Hom βπ·) & β’ Β· = (compβπ·) & β’ (π β πΉ(πΆ Func π·)πΊ) & β’ (π β πΎ(πΆ Func π·)πΏ) β β’ (π β (π΄ β (β¨πΉ, πΊβ©πβ¨πΎ, πΏβ©) β (π΄ β Xπ₯ β π΅ ((πΉβπ₯)π½(πΎβπ₯)) β§ βπ₯ β π΅ βπ¦ β π΅ ββ β (π₯π»π¦)((π΄βπ¦)(β¨(πΉβπ₯), (πΉβπ¦)β© Β· (πΎβπ¦))((π₯πΊπ¦)ββ)) = (((π₯πΏπ¦)ββ)(β¨(πΉβπ₯), (πΎβπ₯)β© Β· (πΎβπ¦))(π΄βπ₯))))) | ||
Theorem | isnat2 17895* | Property of being a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ π = (πΆ Nat π·) & β’ π΅ = (BaseβπΆ) & β’ π» = (Hom βπΆ) & β’ π½ = (Hom βπ·) & β’ Β· = (compβπ·) & β’ (π β πΉ β (πΆ Func π·)) & β’ (π β πΊ β (πΆ Func π·)) β β’ (π β (π΄ β (πΉππΊ) β (π΄ β Xπ₯ β π΅ (((1st βπΉ)βπ₯)π½((1st βπΊ)βπ₯)) β§ βπ₯ β π΅ βπ¦ β π΅ ββ β (π₯π»π¦)((π΄βπ¦)(β¨((1st βπΉ)βπ₯), ((1st βπΉ)βπ¦)β© Β· ((1st βπΊ)βπ¦))((π₯(2nd βπΉ)π¦)ββ)) = (((π₯(2nd βπΊ)π¦)ββ)(β¨((1st βπΉ)βπ₯), ((1st βπΊ)βπ₯)β© Β· ((1st βπΊ)βπ¦))(π΄βπ₯))))) | ||
Theorem | natffn 17896 | The natural transformation set operation is a well-defined function. (Contributed by Mario Carneiro, 12-Jan-2017.) |
β’ π = (πΆ Nat π·) β β’ π Fn ((πΆ Func π·) Γ (πΆ Func π·)) | ||
Theorem | natrcl 17897 | Reverse closure for a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ π = (πΆ Nat π·) β β’ (π΄ β (πΉππΊ) β (πΉ β (πΆ Func π·) β§ πΊ β (πΆ Func π·))) | ||
Theorem | nat1st2nd 17898 | Rewrite the natural transformation predicate with separated functor parts. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ π = (πΆ Nat π·) & β’ (π β π΄ β (πΉππΊ)) β β’ (π β π΄ β (β¨(1st βπΉ), (2nd βπΉ)β©πβ¨(1st βπΊ), (2nd βπΊ)β©)) | ||
Theorem | natixp 17899* | A natural transformation is a function from the objects of πΆ to homomorphisms from πΉ(π₯) to πΊ(π₯). (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ π = (πΆ Nat π·) & β’ (π β π΄ β (β¨πΉ, πΊβ©πβ¨πΎ, πΏβ©)) & β’ π΅ = (BaseβπΆ) & β’ π½ = (Hom βπ·) β β’ (π β π΄ β Xπ₯ β π΅ ((πΉβπ₯)π½(πΎβπ₯))) | ||
Theorem | natcl 17900 | A component of a natural transformation is a morphism. (Contributed by Mario Carneiro, 6-Jan-2017.) |
β’ π = (πΆ Nat π·) & β’ (π β π΄ β (β¨πΉ, πΊβ©πβ¨πΎ, πΏβ©)) & β’ π΅ = (BaseβπΆ) & β’ π½ = (Hom βπ·) & β’ (π β π β π΅) β β’ (π β (π΄βπ) β ((πΉβπ)π½(πΎβπ))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |