Detailed syntax breakdown of Definition df-func
Step | Hyp | Ref
| Expression |
1 | | cfunc 17360 |
. 2
class
Func |
2 | | vt |
. . 3
setvar 𝑡 |
3 | | vu |
. . 3
setvar 𝑢 |
4 | | ccat 17167 |
. . 3
class
Cat |
5 | | vb |
. . . . . . . 8
setvar 𝑏 |
6 | 5 | cv 1542 |
. . . . . . 7
class 𝑏 |
7 | 3 | cv 1542 |
. . . . . . . 8
class 𝑢 |
8 | | cbs 16760 |
. . . . . . . 8
class
Base |
9 | 7, 8 | cfv 6380 |
. . . . . . 7
class
(Base‘𝑢) |
10 | | vf |
. . . . . . . 8
setvar 𝑓 |
11 | 10 | cv 1542 |
. . . . . . 7
class 𝑓 |
12 | 6, 9, 11 | wf 6376 |
. . . . . 6
wff 𝑓:𝑏⟶(Base‘𝑢) |
13 | | vg |
. . . . . . . 8
setvar 𝑔 |
14 | 13 | cv 1542 |
. . . . . . 7
class 𝑔 |
15 | | vz |
. . . . . . . 8
setvar 𝑧 |
16 | 6, 6 | cxp 5549 |
. . . . . . . 8
class (𝑏 × 𝑏) |
17 | 15 | cv 1542 |
. . . . . . . . . . . 12
class 𝑧 |
18 | | c1st 7759 |
. . . . . . . . . . . 12
class
1st |
19 | 17, 18 | cfv 6380 |
. . . . . . . . . . 11
class
(1st ‘𝑧) |
20 | 19, 11 | cfv 6380 |
. . . . . . . . . 10
class (𝑓‘(1st
‘𝑧)) |
21 | | c2nd 7760 |
. . . . . . . . . . . 12
class
2nd |
22 | 17, 21 | cfv 6380 |
. . . . . . . . . . 11
class
(2nd ‘𝑧) |
23 | 22, 11 | cfv 6380 |
. . . . . . . . . 10
class (𝑓‘(2nd
‘𝑧)) |
24 | | chom 16813 |
. . . . . . . . . . 11
class
Hom |
25 | 7, 24 | cfv 6380 |
. . . . . . . . . 10
class (Hom
‘𝑢) |
26 | 20, 23, 25 | co 7213 |
. . . . . . . . 9
class ((𝑓‘(1st
‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) |
27 | 2 | cv 1542 |
. . . . . . . . . . 11
class 𝑡 |
28 | 27, 24 | cfv 6380 |
. . . . . . . . . 10
class (Hom
‘𝑡) |
29 | 17, 28 | cfv 6380 |
. . . . . . . . 9
class ((Hom
‘𝑡)‘𝑧) |
30 | | cmap 8508 |
. . . . . . . . 9
class
↑m |
31 | 26, 29, 30 | co 7213 |
. . . . . . . 8
class (((𝑓‘(1st
‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑡)‘𝑧)) |
32 | 15, 16, 31 | cixp 8578 |
. . . . . . 7
class X𝑧 ∈
(𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑡)‘𝑧)) |
33 | 14, 32 | wcel 2110 |
. . . . . 6
wff 𝑔 ∈ X𝑧 ∈
(𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑡)‘𝑧)) |
34 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
35 | 34 | cv 1542 |
. . . . . . . . . . 11
class 𝑥 |
36 | | ccid 17168 |
. . . . . . . . . . . 12
class
Id |
37 | 27, 36 | cfv 6380 |
. . . . . . . . . . 11
class
(Id‘𝑡) |
38 | 35, 37 | cfv 6380 |
. . . . . . . . . 10
class
((Id‘𝑡)‘𝑥) |
39 | 35, 35, 14 | co 7213 |
. . . . . . . . . 10
class (𝑥𝑔𝑥) |
40 | 38, 39 | cfv 6380 |
. . . . . . . . 9
class ((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) |
41 | 35, 11 | cfv 6380 |
. . . . . . . . . 10
class (𝑓‘𝑥) |
42 | 7, 36 | cfv 6380 |
. . . . . . . . . 10
class
(Id‘𝑢) |
43 | 41, 42 | cfv 6380 |
. . . . . . . . 9
class
((Id‘𝑢)‘(𝑓‘𝑥)) |
44 | 40, 43 | wceq 1543 |
. . . . . . . 8
wff ((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) |
45 | | vn |
. . . . . . . . . . . . . . . 16
setvar 𝑛 |
46 | 45 | cv 1542 |
. . . . . . . . . . . . . . 15
class 𝑛 |
47 | | vm |
. . . . . . . . . . . . . . . 16
setvar 𝑚 |
48 | 47 | cv 1542 |
. . . . . . . . . . . . . . 15
class 𝑚 |
49 | | vy |
. . . . . . . . . . . . . . . . . 18
setvar 𝑦 |
50 | 49 | cv 1542 |
. . . . . . . . . . . . . . . . 17
class 𝑦 |
51 | 35, 50 | cop 4547 |
. . . . . . . . . . . . . . . 16
class
〈𝑥, 𝑦〉 |
52 | | cco 16814 |
. . . . . . . . . . . . . . . . 17
class
comp |
53 | 27, 52 | cfv 6380 |
. . . . . . . . . . . . . . . 16
class
(comp‘𝑡) |
54 | 51, 17, 53 | co 7213 |
. . . . . . . . . . . . . . 15
class
(〈𝑥, 𝑦〉(comp‘𝑡)𝑧) |
55 | 46, 48, 54 | co 7213 |
. . . . . . . . . . . . . 14
class (𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚) |
56 | 35, 17, 14 | co 7213 |
. . . . . . . . . . . . . 14
class (𝑥𝑔𝑧) |
57 | 55, 56 | cfv 6380 |
. . . . . . . . . . . . 13
class ((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) |
58 | 50, 17, 14 | co 7213 |
. . . . . . . . . . . . . . 15
class (𝑦𝑔𝑧) |
59 | 46, 58 | cfv 6380 |
. . . . . . . . . . . . . 14
class ((𝑦𝑔𝑧)‘𝑛) |
60 | 35, 50, 14 | co 7213 |
. . . . . . . . . . . . . . 15
class (𝑥𝑔𝑦) |
61 | 48, 60 | cfv 6380 |
. . . . . . . . . . . . . 14
class ((𝑥𝑔𝑦)‘𝑚) |
62 | 50, 11 | cfv 6380 |
. . . . . . . . . . . . . . . 16
class (𝑓‘𝑦) |
63 | 41, 62 | cop 4547 |
. . . . . . . . . . . . . . 15
class
〈(𝑓‘𝑥), (𝑓‘𝑦)〉 |
64 | 17, 11 | cfv 6380 |
. . . . . . . . . . . . . . 15
class (𝑓‘𝑧) |
65 | 7, 52 | cfv 6380 |
. . . . . . . . . . . . . . 15
class
(comp‘𝑢) |
66 | 63, 64, 65 | co 7213 |
. . . . . . . . . . . . . 14
class
(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧)) |
67 | 59, 61, 66 | co 7213 |
. . . . . . . . . . . . 13
class (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) |
68 | 57, 67 | wceq 1543 |
. . . . . . . . . . . 12
wff ((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) |
69 | 50, 17, 28 | co 7213 |
. . . . . . . . . . . 12
class (𝑦(Hom ‘𝑡)𝑧) |
70 | 68, 45, 69 | wral 3061 |
. . . . . . . . . . 11
wff
∀𝑛 ∈
(𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) |
71 | 35, 50, 28 | co 7213 |
. . . . . . . . . . 11
class (𝑥(Hom ‘𝑡)𝑦) |
72 | 70, 47, 71 | wral 3061 |
. . . . . . . . . 10
wff
∀𝑚 ∈
(𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) |
73 | 72, 15, 6 | wral 3061 |
. . . . . . . . 9
wff
∀𝑧 ∈
𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) |
74 | 73, 49, 6 | wral 3061 |
. . . . . . . 8
wff
∀𝑦 ∈
𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)) |
75 | 44, 74 | wa 399 |
. . . . . . 7
wff (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))) |
76 | 75, 34, 6 | wral 3061 |
. . . . . 6
wff
∀𝑥 ∈
𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))) |
77 | 12, 33, 76 | w3a 1089 |
. . . . 5
wff (𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) |
78 | 27, 8 | cfv 6380 |
. . . . 5
class
(Base‘𝑡) |
79 | 77, 5, 78 | wsbc 3694 |
. . . 4
wff
[(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚)))) |
80 | 79, 10, 13 | copab 5115 |
. . 3
class
{〈𝑓, 𝑔〉 ∣
[(Base‘𝑡) /
𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))} |
81 | 2, 3, 4, 4, 80 | cmpo 7215 |
. 2
class (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) |
82 | 1, 81 | wceq 1543 |
1
wff Func =
(𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) |