Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ims | Structured version Visualization version GIF version |
Description: Define the induced metric on a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-ims | ⊢ IndMet = (𝑢 ∈ NrmCVec ↦ ((normCV‘𝑢) ∘ ( −𝑣 ‘𝑢))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cims 28962 | . 2 class IndMet | |
2 | vu | . . 3 setvar 𝑢 | |
3 | cnv 28955 | . . 3 class NrmCVec | |
4 | 2 | cv 1538 | . . . . 5 class 𝑢 |
5 | cnmcv 28961 | . . . . 5 class normCV | |
6 | 4, 5 | cfv 6437 | . . . 4 class (normCV‘𝑢) |
7 | cnsb 28960 | . . . . 5 class −𝑣 | |
8 | 4, 7 | cfv 6437 | . . . 4 class ( −𝑣 ‘𝑢) |
9 | 6, 8 | ccom 5594 | . . 3 class ((normCV‘𝑢) ∘ ( −𝑣 ‘𝑢)) |
10 | 2, 3, 9 | cmpt 5158 | . 2 class (𝑢 ∈ NrmCVec ↦ ((normCV‘𝑢) ∘ ( −𝑣 ‘𝑢))) |
11 | 1, 10 | wceq 1539 | 1 wff IndMet = (𝑢 ∈ NrmCVec ↦ ((normCV‘𝑢) ∘ ( −𝑣 ‘𝑢))) |
Colors of variables: wff setvar class |
This definition is referenced by: imsval 29056 |
Copyright terms: Public domain | W3C validator |