| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ims | Structured version Visualization version GIF version | ||
| Description: Define the induced metric on a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-ims | ⊢ IndMet = (𝑢 ∈ NrmCVec ↦ ((normCV‘𝑢) ∘ ( −𝑣 ‘𝑢))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cims 30610 | . 2 class IndMet | |
| 2 | vu | . . 3 setvar 𝑢 | |
| 3 | cnv 30603 | . . 3 class NrmCVec | |
| 4 | 2 | cv 1539 | . . . . 5 class 𝑢 |
| 5 | cnmcv 30609 | . . . . 5 class normCV | |
| 6 | 4, 5 | cfv 6561 | . . . 4 class (normCV‘𝑢) |
| 7 | cnsb 30608 | . . . . 5 class −𝑣 | |
| 8 | 4, 7 | cfv 6561 | . . . 4 class ( −𝑣 ‘𝑢) |
| 9 | 6, 8 | ccom 5689 | . . 3 class ((normCV‘𝑢) ∘ ( −𝑣 ‘𝑢)) |
| 10 | 2, 3, 9 | cmpt 5225 | . 2 class (𝑢 ∈ NrmCVec ↦ ((normCV‘𝑢) ∘ ( −𝑣 ‘𝑢))) |
| 11 | 1, 10 | wceq 1540 | 1 wff IndMet = (𝑢 ∈ NrmCVec ↦ ((normCV‘𝑢) ∘ ( −𝑣 ‘𝑢))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: imsval 30704 |
| Copyright terms: Public domain | W3C validator |