MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ims Structured version   Visualization version   GIF version

Definition df-ims 28972
Description: Define the induced metric on a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (New usage is discouraged.)
Assertion
Ref Expression
df-ims IndMet = (𝑢 ∈ NrmCVec ↦ ((normCV𝑢) ∘ ( −𝑣𝑢)))

Detailed syntax breakdown of Definition df-ims
StepHypRef Expression
1 cims 28962 . 2 class IndMet
2 vu . . 3 setvar 𝑢
3 cnv 28955 . . 3 class NrmCVec
42cv 1538 . . . . 5 class 𝑢
5 cnmcv 28961 . . . . 5 class normCV
64, 5cfv 6437 . . . 4 class (normCV𝑢)
7 cnsb 28960 . . . . 5 class 𝑣
84, 7cfv 6437 . . . 4 class ( −𝑣𝑢)
96, 8ccom 5594 . . 3 class ((normCV𝑢) ∘ ( −𝑣𝑢))
102, 3, 9cmpt 5158 . 2 class (𝑢 ∈ NrmCVec ↦ ((normCV𝑢) ∘ ( −𝑣𝑢)))
111, 10wceq 1539 1 wff IndMet = (𝑢 ∈ NrmCVec ↦ ((normCV𝑢) ∘ ( −𝑣𝑢)))
Colors of variables: wff setvar class
This definition is referenced by:  imsval  29056
  Copyright terms: Public domain W3C validator