Home | Metamath
Proof Explorer Theorem List (p. 303 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | hoeq1 30201* | A condition implying that two Hilbert space operators are equal. Lemma 3.2(S9) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑆‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦) ↔ 𝑆 = 𝑇)) | ||
Theorem | hoeq2 30202* | A condition implying that two Hilbert space operators are equal. Lemma 3.2(S11) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ 𝑆 = 𝑇)) | ||
Theorem | adjmo 30203* | Every Hilbert space operator has at most one adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ ∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) | ||
Theorem | adjsym 30204* | Symmetry property of an adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑆‘𝑥) ·ih 𝑦))) | ||
Theorem | eigrei 30205 | A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for an eigenvalue 𝐵 to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 21-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) | ||
Theorem | eigre 30206 | A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for an eigenvalue 𝐵 to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ)) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) | ||
Theorem | eigposi 30207 | A sufficient condition (first conjunct pair, that holds when 𝑇 is a positive operator) for an eigenvalue 𝐵 (second conjunct pair) to be nonnegative. Remark (ii) in [Hughes] p. 137. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((((𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇‘𝐴))) ∧ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | ||
Theorem | eigorthi 30208 | A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for two eigenvectors 𝐴 and 𝐵 to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ ⇒ ⊢ ((((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (𝐷 ·ℎ 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)) | ||
Theorem | eigorth 30209 | A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for two eigenvectors 𝐴 and 𝐵 to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.) |
⊢ ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) ∧ (((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (𝐷 ·ℎ 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷))) → ((𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)) | ||
Definition | df-nmop 30210* | Define the norm of a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ normop = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ sup({𝑥 ∣ ∃𝑧 ∈ ℋ ((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑧)))}, ℝ*, < )) | ||
Definition | df-cnop 30211* | Define the set of continuous operators on Hilbert space. For every "epsilon" (𝑦) there is a "delta" (𝑧) such that... (Contributed by NM, 28-Jan-2006.) (New usage is discouraged.) |
⊢ ContOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦)} | ||
Definition | df-lnop 30212* | Define the set of linear operators on Hilbert space. (See df-hosum 30101 for definition of operator.) (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ LinOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑡‘𝑦)) +ℎ (𝑡‘𝑧))} | ||
Definition | df-bdop 30213 | Define the set of bounded linear Hilbert space operators. (See df-hosum 30101 for definition of operator.) (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ BndLinOp = {𝑡 ∈ LinOp ∣ (normop‘𝑡) < +∞} | ||
Definition | df-unop 30214* | Define the set of unitary operators on Hilbert space. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ UniOp = {𝑡 ∣ (𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦))} | ||
Definition | df-hmop 30215* | Define the set of Hermitian operators on Hilbert space. Some books call these "symmetric operators" and others call them "self-adjoint operators", sometimes with slightly different technical meanings. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ HrmOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)} | ||
Definition | df-nmfn 30216* | Define the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ normfn = (𝑡 ∈ (ℂ ↑m ℋ) ↦ sup({𝑥 ∣ ∃𝑧 ∈ ℋ ((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑧)))}, ℝ*, < )) | ||
Definition | df-nlfn 30217 | Define the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ null = (𝑡 ∈ (ℂ ↑m ℋ) ↦ (◡𝑡 “ {0})) | ||
Definition | df-cnfn 30218* | Define the set of continuous functionals on Hilbert space. For every "epsilon" (𝑦) there is a "delta" (𝑧) such that... (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ ContFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦)} | ||
Definition | df-lnfn 30219* | Define the set of linear functionals on Hilbert space. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ LinFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧))} | ||
Definition | df-adjh 30220* | Define the adjoint of a Hilbert space operator (if it exists). The domain of adjℎ is the set of all adjoint operators. Definition of adjoint in [Kalmbach2] p. 8. Unlike Kalmbach (and most authors), we do not demand that the operator be linear, but instead show (in adjbdln 30454) that the adjoint exists for a bounded linear operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
⊢ adjℎ = {〈𝑡, 𝑢〉 ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑢‘𝑦)))} | ||
Definition | df-bra 30221* |
Define the bra of a vector used by Dirac notation. Based on definition
of bra in [Prugovecki] p. 186 (p.
180 in 1971 edition). In Dirac
bra-ket notation, 〈𝐴 ∣ 𝐵〉 is a complex number equal to
the inner
product (𝐵 ·ih 𝐴). But physicists like
to talk about the
individual components 〈𝐴 ∣ and ∣
𝐵〉, called bra
and ket
respectively. In order for their properties to make sense formally, we
define the ket ∣ 𝐵〉 as the vector 𝐵 itself,
and the bra
〈𝐴 ∣ as a functional from ℋ to ℂ. We represent the
Dirac notation 〈𝐴 ∣ 𝐵〉 by ((bra‘𝐴)‘𝐵); see
braval 30315. The reversal of the inner product
arguments not only makes
the bra-ket behavior consistent with physics literature (see comments
under ax-his3 29455) but is also required in order for the
associative law
kbass2 30488 to work.
Our definition of bra and the associated outer product df-kb 30222 differs from, but is equivalent to, a common approach in the literature that makes use of mappings to a dual space. Our approach eliminates the need to have a parallel development of this dual space and instead keeps everything in Hilbert space. For an extensive discussion about how our notation maps to the bra-ket notation in physics textbooks, see mmnotes.txt 30222, under the 17-May-2006 entry. (Contributed by NM, 15-May-2006.) (New usage is discouraged.) |
⊢ bra = (𝑥 ∈ ℋ ↦ (𝑦 ∈ ℋ ↦ (𝑦 ·ih 𝑥))) | ||
Definition | df-kb 30222* | Define a commuted bra and ket juxtaposition used by Dirac notation. In Dirac notation, ∣ 𝐴〉〈𝐵 ∣ is an operator known as the outer product of 𝐴 and 𝐵, which we represent by (𝐴 ketbra 𝐵). Based on Equation 8.1 of [Prugovecki] p. 376. This definition, combined with Definition df-bra 30221, allows any legal juxtaposition of bras and kets to make sense formally and also to obey the associative law when mapped back to Dirac notation. (Contributed by NM, 15-May-2006.) (New usage is discouraged.) |
⊢ ketbra = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) ·ℎ 𝑥))) | ||
Definition | df-leop 30223* | Define positive operator ordering. Definition VI.1 of [Retherford] p. 49. Note that ( ℋ × 0ℋ) ≤op 𝑇 means that 𝑇 is a positive operator. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
⊢ ≤op = {〈𝑡, 𝑢〉 ∣ ((𝑢 −op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥))} | ||
Definition | df-eigvec 30224* | Define the eigenvector function. Theorem eleigveccl 30330 shows that eigvec‘𝑇, the set of eigenvectors of Hilbert space operator 𝑇, are Hilbert space vectors. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
⊢ eigvec = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑧 ∈ ℂ (𝑡‘𝑥) = (𝑧 ·ℎ 𝑥)}) | ||
Definition | df-eigval 30225* | Define the eigenvalue function. The range of eigval‘𝑇 is the set of eigenvalues of Hilbert space operator 𝑇. Theorem eigvalcl 30332 shows that (eigval‘𝑇)‘𝐴, the eigenvalue associated with eigenvector 𝐴, is a complex number. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
⊢ eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) | ||
Definition | df-spec 30226* | Define the spectrum of an operator. Definition of spectrum in [Halmos] p. 50. (Contributed by NM, 11-Apr-2006.) (New usage is discouraged.) |
⊢ Lambda = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) | ||
Theorem | nmopval 30227* | Value of the norm of a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) | ||
Theorem | elcnop 30228* | Property defining a continuous Hilbert space operator. (Contributed by NM, 28-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇 ∈ ContOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦))) | ||
Theorem | ellnop 30229* | Property defining a linear Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) | ||
Theorem | lnopf 30230 | A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | ||
Theorem | elbdop 30231 | Property defining a bounded linear Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop‘𝑇) < +∞)) | ||
Theorem | bdopln 30232 | A bounded linear Hilbert space operator is a linear operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) | ||
Theorem | bdopf 30233 | A bounded linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) | ||
Theorem | nmopsetretALT 30234* | The set in the supremum of the operator norm definition df-nmop 30210 is a set of reals. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ) | ||
Theorem | nmopsetretHIL 30235* | The set in the supremum of the operator norm definition df-nmop 30210 is a set of reals. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ) | ||
Theorem | nmopsetn0 30236* | The set in the supremum of the operator norm definition df-nmop 30210 is nonempty. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
⊢ (normℎ‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} | ||
Theorem | nmopxr 30237 | The norm of a Hilbert space operator is an extended real. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) ∈ ℝ*) | ||
Theorem | nmoprepnf 30238 | The norm of a Hilbert space operator is either real or plus infinity. (Contributed by NM, 5-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → ((normop‘𝑇) ∈ ℝ ↔ (normop‘𝑇) ≠ +∞)) | ||
Theorem | nmopgtmnf 30239 | The norm of a Hilbert space operator is not minus infinity. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → -∞ < (normop‘𝑇)) | ||
Theorem | nmopreltpnf 30240 | The norm of a Hilbert space operator is real iff it is less than infinity. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → ((normop‘𝑇) ∈ ℝ ↔ (normop‘𝑇) < +∞)) | ||
Theorem | nmopre 30241 | The norm of a bounded operator is a real number. (Contributed by NM, 29-Jan-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ BndLinOp → (normop‘𝑇) ∈ ℝ) | ||
Theorem | elbdop2 30242 | Property defining a bounded linear Hilbert space operator. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop‘𝑇) ∈ ℝ)) | ||
Theorem | elunop 30243* | Property defining a unitary Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) | ||
Theorem | elhmop 30244* | Property defining a Hermitian Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) | ||
Theorem | hmopf 30245 | A Hermitian operator is a Hilbert space operator (mapping). (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) | ||
Theorem | hmopex 30246 | The class of Hermitian operators is a set. (Contributed by NM, 17-Aug-2006.) (New usage is discouraged.) |
⊢ HrmOp ∈ V | ||
Theorem | nmfnval 30247* | Value of the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ℂ → (normfn‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) | ||
Theorem | nmfnsetre 30248* | The set in the supremum of the functional norm definition df-nmfn 30216 is a set of reals. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ) | ||
Theorem | nmfnsetn0 30249* | The set in the supremum of the functional norm definition df-nmfn 30216 is nonempty. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (abs‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} | ||
Theorem | nmfnxr 30250 | The norm of any Hilbert space functional is an extended real. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ℂ → (normfn‘𝑇) ∈ ℝ*) | ||
Theorem | nmfnrepnf 30251 | The norm of a Hilbert space functional is either real or plus infinity. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ℂ → ((normfn‘𝑇) ∈ ℝ ↔ (normfn‘𝑇) ≠ +∞)) | ||
Theorem | nlfnval 30252 | Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) | ||
Theorem | elcnfn 30253* | Property defining a continuous functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇 ∈ ContFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦))) | ||
Theorem | ellnfn 30254* | Property defining a linear functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) | ||
Theorem | lnfnf 30255 | A linear Hilbert space functional is a functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinFn → 𝑇: ℋ⟶ℂ) | ||
Theorem | dfadj2 30256* | Alternate definition of the adjoint of a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
⊢ adjℎ = {〈𝑡, 𝑢〉 ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦))} | ||
Theorem | funadj 30257 | Functionality of the adjoint function. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
⊢ Fun adjℎ | ||
Theorem | dmadjss 30258 | The domain of the adjoint function is a subset of the maps from ℋ to ℋ. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
⊢ dom adjℎ ⊆ ( ℋ ↑m ℋ) | ||
Theorem | dmadjop 30259 | A member of the domain of the adjoint function is a Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ dom adjℎ → 𝑇: ℋ⟶ ℋ) | ||
Theorem | adjeu 30260* | Elementhood in the domain of the adjoint function. (Contributed by Mario Carneiro, 11-Sep-2015.) (Revised by Mario Carneiro, 24-Dec-2016.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (𝑇 ∈ dom adjℎ ↔ ∃!𝑢 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦))) | ||
Theorem | adjval 30261* | Value of the adjoint function for 𝑇 in the domain of adjℎ. (Contributed by NM, 19-Feb-2006.) (Revised by Mario Carneiro, 24-Dec-2016.) (New usage is discouraged.) |
⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘𝑇) = (℩𝑢 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦))) | ||
Theorem | adjval2 30262* | Value of the adjoint function. (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘𝑇) = (℩𝑢 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑢‘𝑦)))) | ||
Theorem | cnvadj 30263 | The adjoint function equals its converse. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
⊢ ◡adjℎ = adjℎ | ||
Theorem | funcnvadj 30264 | The converse of the adjoint function is a function. (Contributed by NM, 25-Jan-2006.) (New usage is discouraged.) |
⊢ Fun ◡adjℎ | ||
Theorem | adj1o 30265 | The adjoint function maps one-to-one onto its domain. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
⊢ adjℎ:dom adjℎ–1-1-onto→dom adjℎ | ||
Theorem | dmadjrn 30266 | The adjoint of an operator belongs to the adjoint function's domain. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘𝑇) ∈ dom adjℎ) | ||
Theorem | eigvecval 30267* | The set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥)}) | ||
Theorem | eigvalfval 30268* | The eigenvalues of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) | ||
Theorem | specval 30269* | The value of the spectrum of an operator. (Contributed by NM, 11-Apr-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) | ||
Theorem | speccl 30270 | The spectrum of an operator is a set of complex numbers. (Contributed by NM, 11-Apr-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) ⊆ ℂ) | ||
Theorem | hhlnoi 30271 | The linear operators of Hilbert space. (Contributed by NM, 19-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐿 = (𝑈 LnOp 𝑈) ⇒ ⊢ LinOp = 𝐿 | ||
Theorem | hhnmoi 30272 | The norm of an operator in Hilbert space. (Contributed by NM, 19-Nov-2007.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑁 = (𝑈 normOpOLD 𝑈) ⇒ ⊢ normop = 𝑁 | ||
Theorem | hhbloi 30273 | A bounded linear operator in Hilbert space. (Contributed by NM, 19-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐵 = (𝑈 BLnOp 𝑈) ⇒ ⊢ BndLinOp = 𝐵 | ||
Theorem | hh0oi 30274 | The zero operator in Hilbert space. (Contributed by NM, 7-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑍 = (𝑈 0op 𝑈) ⇒ ⊢ 0hop = 𝑍 | ||
Theorem | hhcno 30275 | The continuous operators of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ 𝐷 = (normℎ ∘ −ℎ ) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ContOp = (𝐽 Cn 𝐽) | ||
Theorem | hhcnf 30276 | The continuous functionals of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ 𝐷 = (normℎ ∘ −ℎ ) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ ContFn = (𝐽 Cn 𝐾) | ||
Theorem | dmadjrnb 30277 | The adjoint of an operator belongs to the adjoint function's domain. (Note: the converse is dependent on our definition of function value, since it uses ndmfv 6813.) (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ dom adjℎ ↔ (adjℎ‘𝑇) ∈ dom adjℎ) | ||
Theorem | nmoplb 30278 | A lower bound for an operator norm. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (normℎ‘(𝑇‘𝐴)) ≤ (normop‘𝑇)) | ||
Theorem | nmopub 30279* | An upper bound for an operator norm. (Contributed by NM, 7-Mar-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℝ*) → ((normop‘𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 → (normℎ‘(𝑇‘𝑥)) ≤ 𝐴))) | ||
Theorem | nmopub2tALT 30280* | An upper bound for an operator norm. (Contributed by NM, 12-Apr-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) ≤ (𝐴 · (normℎ‘𝑥))) → (normop‘𝑇) ≤ 𝐴) | ||
Theorem | nmopub2tHIL 30281* | An upper bound for an operator norm. (Contributed by NM, 13-Dec-2007.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) ≤ (𝐴 · (normℎ‘𝑥))) → (normop‘𝑇) ≤ 𝐴) | ||
Theorem | nmopge0 30282 | The norm of any Hilbert space operator is nonnegative. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → 0 ≤ (normop‘𝑇)) | ||
Theorem | nmopgt0 30283 | A linear Hilbert space operator that is not identically zero has a positive norm. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → ((normop‘𝑇) ≠ 0 ↔ 0 < (normop‘𝑇))) | ||
Theorem | cnopc 30284* | Basic continuity property of a continuous Hilbert space operator. (Contributed by NM, 2-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ ℋ ((normℎ‘(𝑦 −ℎ 𝐴)) < 𝑥 → (normℎ‘((𝑇‘𝑦) −ℎ (𝑇‘𝐴))) < 𝐵)) | ||
Theorem | lnopl 30285 | Basic linearity property of a linear Hilbert space operator. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
⊢ (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶))) | ||
Theorem | unop 30286 | Basic inner product property of a unitary operator. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵)) | ||
Theorem | unopf1o 30287 | A unitary operator in Hilbert space is one-to-one and onto. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ) | ||
Theorem | unopnorm 30288 | A unitary operator is idempotent in the norm. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) = (normℎ‘𝐴)) | ||
Theorem | cnvunop 30289 | The inverse (converse) of a unitary operator in Hilbert space is unitary. Theorem in [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ UniOp → ◡𝑇 ∈ UniOp) | ||
Theorem | unopadj 30290 | The inverse (converse) of a unitary operator is its adjoint. Equation 2 of [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih (◡𝑇‘𝐵))) | ||
Theorem | unoplin 30291 | A unitary operator is linear. Theorem in [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ UniOp → 𝑇 ∈ LinOp) | ||
Theorem | counop 30292 | The composition of two unitary operators is unitary. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆 ∘ 𝑇) ∈ UniOp) | ||
Theorem | hmop 30293 | Basic inner product property of a Hermitian operator. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵)) | ||
Theorem | hmopre 30294 | The inner product of the value and argument of a Hermitian operator is real. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐴) ∈ ℝ) | ||
Theorem | nmfnlb 30295 | A lower bound for a functional norm. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ≤ (normfn‘𝑇)) | ||
Theorem | nmfnleub 30296* | An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006.) (Revised by Mario Carneiro, 7-Sep-2014.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → ((normfn‘𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 → (abs‘(𝑇‘𝑥)) ≤ 𝐴))) | ||
Theorem | nmfnleub2 30297* | An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝐴 · (normℎ‘𝑥))) → (normfn‘𝑇) ≤ 𝐴) | ||
Theorem | nmfnge0 30298 | The norm of any Hilbert space functional is nonnegative. (Contributed by NM, 24-May-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ℂ → 0 ≤ (normfn‘𝑇)) | ||
Theorem | elnlfn 30299 | Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇‘𝐴) = 0))) | ||
Theorem | elnlfn2 30300 | Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ (null‘𝑇)) → (𝑇‘𝐴) = 0) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |