| Metamath
Proof Explorer Theorem List (p. 303 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | trlsegvdeglem7 30201 | Lemma for trlsegvdeg 30202. (Contributed by AV, 21-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) ⇒ ⊢ (𝜑 → dom (iEdg‘𝑌) ∈ Fin) | ||
| Theorem | trlsegvdeg 30202 | Formerly part of proof of eupth2lem3 30211: If a trail in a graph 𝐺 induces a subgraph 𝑍 with the vertices 𝑉 of 𝐺 and the edges being the edges of the walk, and a subgraph 𝑋 with the vertices 𝑉 of 𝐺 and the edges being the edges of the walk except the last one, and a subgraph 𝑌 with the vertices 𝑉 of 𝐺 and one edges being the last edge of the walk, then the vertex degree of any vertex 𝑈 of 𝐺 within 𝑍 is the sum of the vertex degree of 𝑈 within 𝑋 and the vertex degree of 𝑈 within 𝑌. Note that this theorem would not hold for arbitrary walks (if the last edge was identical with a previous edge, the degree of the vertices incident with this edge would not be increased because of this edge). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝑍)‘𝑈) = (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))) | ||
| Theorem | eupth2lem3lem1 30203 | Lemma for eupth2lem3 30211. (Contributed by AV, 21-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℕ0) | ||
| Theorem | eupth2lem3lem2 30204 | Lemma for eupth2lem3 30211. (Contributed by AV, 21-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) ⇒ ⊢ (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈ ℕ0) | ||
| Theorem | eupth2lem3lem3 30205* | Lemma for eupth2lem3 30211, formerly part of proof of eupth2lem3 30211: If a loop {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))} is added to a trail, the degree of the vertices with odd degree remains odd (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 21-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) & ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) & ⊢ (𝜑 → if-((𝑃‘𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁)}, {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹‘𝑁)))) ⇒ ⊢ ((𝜑 ∧ (𝑃‘𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) | ||
| Theorem | eupth2lem3lem4 30206* | Lemma for eupth2lem3 30211, formerly part of proof of eupth2lem3 30211: If an edge (not a loop) is added to a trail, the degree of the end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 25-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) & ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) & ⊢ (𝜑 → if-((𝑃‘𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁)}, {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹‘𝑁)))) & ⊢ (𝜑 → (𝐼‘(𝐹‘𝑁)) ∈ 𝒫 𝑉) ⇒ ⊢ ((𝜑 ∧ (𝑃‘𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃‘𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) | ||
| Theorem | eupth2lem3lem5 30207* | Lemma for eupth2 30214. (Contributed by AV, 25-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) & ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) & ⊢ (𝜑 → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) ⇒ ⊢ (𝜑 → (𝐼‘(𝐹‘𝑁)) ∈ 𝒫 𝑉) | ||
| Theorem | eupth2lem3lem6 30208* | Formerly part of proof of eupth2lem3 30211: If an edge (not a loop) is added to a trail, the degree of vertices not being end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). Remark: This seems to be not valid for hyperedges joining more vertices than (𝑃‘0) and (𝑃‘𝑁): if there is a third vertex in the edge, and this vertex is already contained in the trail, then the degree of this vertex could be affected by this edge! (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 25-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) & ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) & ⊢ (𝜑 → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) ⇒ ⊢ ((𝜑 ∧ (𝑃‘𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃‘𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) | ||
| Theorem | eupth2lem3lem7 30209* | Lemma for eupth2lem3 30211: Combining trlsegvdeg 30202, eupth2lem3lem3 30205, eupth2lem3lem4 30206 and eupth2lem3lem6 30208. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 27-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) & ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) & ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) & ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) & ⊢ (𝜑 → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) ⇒ ⊢ (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑍)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) | ||
| Theorem | eupthvdres 30210 | Formerly part of proof of eupth2 30214: The vertex degree remains the same for all vertices if the edges are restricted to the edges of an Eulerian path. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) & ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 ⇒ ⊢ (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺)) | ||
| Theorem | eupth2lem3 30211* | Lemma for eupth2 30214. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ UPGraph) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) & ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉 & ⊢ 𝑋 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉 & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → (𝑁 + 1) ≤ (♯‘𝐹)) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) ⇒ ⊢ (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) | ||
| Theorem | eupth2lemb 30212* | Lemma for eupth2 30214 (induction basis): There are no vertices of odd degree in an Eulerian path of length 0, having no edge and identical endpoints (the single vertex of the Eulerian path). Formerly part of proof for eupth2 30214. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ UPGraph) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))〉)‘𝑥)} = ∅) | ||
| Theorem | eupth2lems 30213* | Lemma for eupth2 30214 (induction step): The only vertices of odd degree in a graph with an Eulerian path are the endpoints, and then only if the endpoints are distinct, if the Eulerian path shortened by one edge has this property. Formerly part of proof for eupth2 30214. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ UPGraph) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) ⇒ ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)})) → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))) | ||
| Theorem | eupth2 30214* | The only vertices of odd degree in a graph with an Eulerian path are the endpoints, and then only if the endpoints are distinct. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ UPGraph) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) | ||
| Theorem | eulerpathpr 30215* | A graph with an Eulerian path has either zero or two vertices of odd degree. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) | ||
| Theorem | eulerpath 30216* | A pseudograph with an Eulerian path has either zero or two vertices of odd degree. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ (EulerPaths‘𝐺) ≠ ∅) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) | ||
| Theorem | eulercrct 30217* | A pseudograph with an Eulerian circuit 〈𝐹, 𝑃〉 (an "Eulerian pseudograph") has only vertices of even degree. (Contributed by AV, 12-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝐹(Circuits‘𝐺)𝑃) → ∀𝑥 ∈ 𝑉 2 ∥ ((VtxDeg‘𝐺)‘𝑥)) | ||
| Theorem | eucrctshift 30218* | Cyclically shifting the indices of an Eulerian circuit 〈𝐹, 𝑃〉 results in an Eulerian circuit 〈𝐻, 𝑄〉. (Contributed by AV, 15-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝑆 ∈ (0..^𝑁)) & ⊢ 𝐻 = (𝐹 cyclShift 𝑆) & ⊢ 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁)))) & ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) ⇒ ⊢ (𝜑 → (𝐻(EulerPaths‘𝐺)𝑄 ∧ 𝐻(Circuits‘𝐺)𝑄)) | ||
| Theorem | eucrct2eupth1 30219 | Removing one edge (𝐼‘(𝐹‘𝑁)) from a nonempty graph 𝐺 with an Eulerian circuit 〈𝐹, 𝑃〉 results in a graph 𝑆 with an Eulerian path 〈𝐻, 𝑄〉. This is the special case of eucrct2eupth 30220 (with 𝐽 = (𝑁 − 1)) where the last segment/edge of the circuit is removed. (Contributed by AV, 11-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) & ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) & ⊢ (Vtx‘𝑆) = 𝑉 & ⊢ (𝜑 → 0 < (♯‘𝐹)) & ⊢ (𝜑 → 𝑁 = ((♯‘𝐹) − 1)) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ 𝐻 = (𝐹 prefix 𝑁) & ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) ⇒ ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) | ||
| Theorem | eucrct2eupth 30220* | Removing one edge (𝐼‘(𝐹‘𝐽)) from a graph 𝐺 with an Eulerian circuit 〈𝐹, 𝑃〉 results in a graph 𝑆 with an Eulerian path 〈𝐻, 𝑄〉. (Contributed by AV, 17-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) & ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) & ⊢ (Vtx‘𝑆) = 𝑉 & ⊢ (𝜑 → 𝑁 = (♯‘𝐹)) & ⊢ (𝜑 → 𝐽 ∈ (0..^𝑁)) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽})))) & ⊢ 𝐾 = (𝐽 + 1) & ⊢ 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1)) & ⊢ 𝑄 = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁 − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ⇒ ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) | ||
According to Wikipedia ("Seven Bridges of Königsberg", 9-Mar-2021, https://en.wikipedia.org/wiki/Seven_Bridges_of_Koenigsberg): "The Seven Bridges of Königsberg is a historically notable problem in mathematics. Its negative resolution by Leonhard Euler in 1736 laid the foundations of graph theory and prefigured the idea of topology. The city of Königsberg in [East] Prussia (now Kaliningrad, Russia) was set on both sides of the Pregel River, and included two large islands - Kneiphof and Lomse - which were connected to each other, or to the two mainland portions of the city, by seven bridges. The problem was to devise a walk through the city that would cross each of those bridges once and only once.". Euler proved that the problem has no solution by applying Euler's theorem to the Königsberg graph, which is obtained by replacing each land mass with an abstract "vertex" or node, and each bridge with an abstract connection, an "edge", which connects two land masses/vertices. The Königsberg graph 𝐺 is a multigraph consisting of 4 vertices and 7 edges, represented by the following ordered pair: 𝐺 = 〈(0...3), 〈“{0, 1}{0, 2} {0, 3}{1, 2}{1, 2}{2, 3}{2, 3}”〉〉, see konigsbergumgr 30226. konigsberg 30232 shows that the Königsberg graph has no Eulerian path, thus the Königsberg Bridge problem has no solution. | ||
| Theorem | konigsbergvtx 30221 | The set of vertices of the Königsberg graph 𝐺. (Contributed by AV, 28-Feb-2021.) |
| ⊢ 𝑉 = (0...3) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Vtx‘𝐺) = (0...3) | ||
| Theorem | konigsbergiedg 30222 | The indexed edges of the Königsberg graph 𝐺. (Contributed by AV, 28-Feb-2021.) |
| ⊢ 𝑉 = (0...3) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (iEdg‘𝐺) = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | ||
| Theorem | konigsbergiedgw 30223* | The indexed edges of the Königsberg graph 𝐺 is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.) |
| ⊢ 𝑉 = (0...3) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | ||
| Theorem | konigsbergssiedgwpr 30224* | Each subset of the indexed edges of the Königsberg graph 𝐺 is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.) |
| ⊢ 𝑉 = (0...3) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ 𝐸 = (𝐴 ++ 𝐵)) → 𝐴 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | ||
| Theorem | konigsbergssiedgw 30225* | Each subset of the indexed edges of the Königsberg graph 𝐺 is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.) |
| ⊢ 𝑉 = (0...3) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ 𝐸 = (𝐴 ++ 𝐵)) → 𝐴 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | ||
| Theorem | konigsbergumgr 30226 | The Königsberg graph 𝐺 is a multigraph. (Contributed by AV, 28-Feb-2021.) (Revised by AV, 9-Mar-2021.) |
| ⊢ 𝑉 = (0...3) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ 𝐺 ∈ UMGraph | ||
| Theorem | konigsberglem1 30227 | Lemma 1 for konigsberg 30232: Vertex 0 has degree three. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 4-Mar-2021.) |
| ⊢ 𝑉 = (0...3) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ ((VtxDeg‘𝐺)‘0) = 3 | ||
| Theorem | konigsberglem2 30228 | Lemma 2 for konigsberg 30232: Vertex 1 has degree three. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 4-Mar-2021.) |
| ⊢ 𝑉 = (0...3) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ ((VtxDeg‘𝐺)‘1) = 3 | ||
| Theorem | konigsberglem3 30229 | Lemma 3 for konigsberg 30232: Vertex 3 has degree three. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 4-Mar-2021.) |
| ⊢ 𝑉 = (0...3) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ ((VtxDeg‘𝐺)‘3) = 3 | ||
| Theorem | konigsberglem4 30230* | Lemma 4 for konigsberg 30232: Vertices 0, 1, 3 are vertices of odd degree. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 28-Feb-2021.) |
| ⊢ 𝑉 = (0...3) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} | ||
| Theorem | konigsberglem5 30231* | Lemma 5 for konigsberg 30232: The set of vertices of odd degree is greater than 2. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 28-Feb-2021.) |
| ⊢ 𝑉 = (0...3) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) | ||
| Theorem | konigsberg 30232 | The Königsberg Bridge problem. If 𝐺 is the Königsberg graph, i.e. a graph on four vertices 0, 1, 2, 3, with edges {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 2}, {2, 3}, {2, 3}, then vertices 0, 1, 3 each have degree three, and 2 has degree five, so there are four vertices of odd degree and thus by eulerpath 30216 the graph cannot have an Eulerian path. It is sufficient to show that there are 3 vertices of odd degree, since a graph having an Eulerian path can only have 0 or 2 vertices of odd degree. This is Metamath 100 proof #54. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 9-Mar-2021.) |
| ⊢ 𝑉 = (0...3) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (EulerPaths‘𝐺) = ∅ | ||
| Syntax | cfrgr 30233 | Extend class notation with friendship graphs. |
| class FriendGraph | ||
| Definition | df-frgr 30234* | Define the class of all friendship graphs: a simple graph is called a friendship graph if every pair of its vertices has exactly one common neighbor. This condition is called the friendship condition , see definition in [MertziosUnger] p. 152. (Contributed by Alexander van der Vekens and Mario Carneiro, 2-Oct-2017.) (Revised by AV, 29-Mar-2021.) (Revised by AV, 3-Jan-2024.) |
| ⊢ FriendGraph = {𝑔 ∈ USGraph ∣ [(Vtx‘𝑔) / 𝑣][(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒} | ||
| Theorem | isfrgr 30235* | The property of being a friendship graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) (Revised by AV, 3-Jan-2024.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥 ∈ 𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)) | ||
| Theorem | frgrusgr 30236 | A friendship graph is a simple graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
| ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) | ||
| Theorem | frgr0v 30237 | Any null graph (set with no vertices) is a friendship graph iff its edge function is empty. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
| ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ FriendGraph ↔ (iEdg‘𝐺) = ∅)) | ||
| Theorem | frgr0vb 30238 | Any null graph (without vertices and edges) is a friendship graph. (Contributed by Alexander van der Vekens, 30-Sep-2017.) (Revised by AV, 29-Mar-2021.) |
| ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ FriendGraph ) | ||
| Theorem | frgruhgr0v 30239 | Any null graph (without vertices) represented as hypergraph is a friendship graph. (Contributed by AV, 29-Mar-2021.) |
| ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ FriendGraph ) | ||
| Theorem | frgr0 30240 | The null graph (graph without vertices) is a friendship graph. (Contributed by AV, 29-Mar-2021.) |
| ⊢ ∅ ∈ FriendGraph | ||
| Theorem | frcond1 30241* | The friendship condition: any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 29-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph → ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → ∃!𝑏 ∈ 𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸)) | ||
| Theorem | frcond2 30242* | The friendship condition: any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 29-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph → ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → ∃!𝑏 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) | ||
| Theorem | frgreu 30243* | Variant of frcond2 30242: Any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 12-May-2021.) (Proof shortened by AV, 4-Jan-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph → ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → ∃!𝑏({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))) | ||
| Theorem | frcond3 30244* | The friendship condition, expressed by neighborhoods: in a friendship graph, the neighborhood of a vertex and the neighborhood of a second, different vertex have exactly one vertex in common. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 30-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph → ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) → ∃𝑥 ∈ 𝑉 ((𝐺 NeighbVtx 𝐴) ∩ (𝐺 NeighbVtx 𝐶)) = {𝑥})) | ||
| Theorem | frcond4 30245* | The friendship condition, alternatively expressed by neighborhoods: in a friendship graph, the neighborhoods of two different vertices have exactly one vertex in common. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 29-Mar-2021.) (Proof shortened by AV, 30-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph → ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃𝑥 ∈ 𝑉 ((𝐺 NeighbVtx 𝑘) ∩ (𝐺 NeighbVtx 𝑙)) = {𝑥}) | ||
| Theorem | frgr1v 30246 | Any graph with (at most) one vertex is a friendship graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
| ⊢ ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ FriendGraph ) | ||
| Theorem | nfrgr2v 30247 | Any graph with two (different) vertices is not a friendship graph. (Contributed by Alexander van der Vekens, 30-Sep-2017.) (Proof shortened by Alexander van der Vekens, 13-Sep-2018.) (Revised by AV, 29-Mar-2021.) |
| ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph ) | ||
| Theorem | frgr3vlem1 30248* | Lemma 1 for frgr3v 30250. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ∀𝑥∀𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦)) | ||
| Theorem | frgr3vlem2 30249* | Lemma 2 for frgr3v 30250. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))) | ||
| Theorem | frgr3v 30250 | Any graph with three vertices which are completely connected with each other is a friendship graph. (Contributed by Alexander van der Vekens, 5-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (𝐺 ∈ FriendGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))) | ||
| Theorem | 1vwmgr 30251* | Every graph with one vertex (which may be connect with itself by (multiple) loops!) is a windmill graph. (Contributed by Alexander van der Vekens, 5-Oct-2017.) (Revised by AV, 31-Mar-2021.) |
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝑉 = {𝐴}) → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸)) | ||
| Theorem | 3vfriswmgrlem 30252* | Lemma for 3vfriswmgr 30253. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐴, 𝐵} ∈ 𝐸 → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸)) | ||
| Theorem | 3vfriswmgr 30253* | Every friendship graph with three (different) vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))) | ||
| Theorem | 1to2vfriswmgr 30254* | Every friendship graph with one or two vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))) | ||
| Theorem | 1to3vfriswmgr 30255* | Every friendship graph with one, two or three vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶})) → (𝐺 ∈ FriendGraph → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))) | ||
| Theorem | 1to3vfriendship 30256* | The friendship theorem for small graphs: In every friendship graph with one, two or three vertices, there is a vertex which is adjacent to all other vertices. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶})) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) | ||
| Theorem | 2pthfrgrrn 30257* | Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 15-Nov-2017.) (Revised by AV, 1-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸)) | ||
| Theorem | 2pthfrgrrn2 30258* | Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 16-Nov-2017.) (Revised by AV, 1-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝑉 ∀𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐))) | ||
| Theorem | 2pthfrgr 30259* | Between any two (different) vertices in a friendship graph, there is a 2-path (simple path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 1-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑓∃𝑝(𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑝 ∧ (♯‘𝑓) = 2)) | ||
| Theorem | 3cyclfrgrrn1 30260* | Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 16-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝐴 ≠ 𝐶) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸)) | ||
| Theorem | 3cyclfrgrrn 30261* | Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 16-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) | ||
| Theorem | 3cyclfrgrrn2 30262* | Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 2-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑏 ≠ 𝑐 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))) | ||
| Theorem | 3cyclfrgr 30263* | Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣 ∈ 𝑉 ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣)) | ||
| Theorem | 4cycl2v2nb 30264 | In a (maybe degenerate) 4-cycle, two vertice have two (maybe not different) common neighbors. (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
| ⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸)) | ||
| Theorem | 4cycl2vnunb 30265* | In a 4-cycle, two distinct vertices have not a unique common neighbor. (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
| ⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸) ∧ (𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷)) → ¬ ∃!𝑥 ∈ 𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸) | ||
| Theorem | n4cyclfrgr 30266 | There is no 4-cycle in a friendship graph, see Proposition 1(a) of [MertziosUnger] p. 153 : "A friendship graph G contains no C4 as a subgraph ...". (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
| ⊢ ((𝐺 ∈ FriendGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 4) | ||
| Theorem | 4cyclusnfrgr 30267 | A graph with a 4-cycle is not a friendhip graph. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 2-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷)) → ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → 𝐺 ∉ FriendGraph )) | ||
| Theorem | frgrnbnb 30268 | If two neighbors 𝑈 and 𝑊 of a vertex 𝑋 have a common neighbor 𝐴 in a friendship graph, then this common neighbor 𝐴 must be the vertex 𝑋. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 2-Apr-2021.) (Proof shortened by AV, 13-Feb-2022.) |
| ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑈 ∈ 𝐷 ∧ 𝑊 ∈ 𝐷) ∧ 𝑈 ≠ 𝑊) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋)) | ||
| Theorem | frgrconngr 30269 | A friendship graph is connected, see remark 1 in [MertziosUnger] p. 153 (after Proposition 1): "An arbitrary friendship graph has to be connected, ... ". (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 1-Apr-2021.) |
| ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ ConnGraph) | ||
| Theorem | vdgn0frgrv2 30270 | A vertex in a friendship graph with more than one vertex cannot have degree 0. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 4-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉) → (1 < (♯‘𝑉) → ((VtxDeg‘𝐺)‘𝑁) ≠ 0)) | ||
| Theorem | vdgn1frgrv2 30271 | Any vertex in a friendship graph does not have degree 1, see remark 2 in [MertziosUnger] p. 153 (after Proposition 1): "... no node v of it [a friendship graph] may have deg(v) = 1.". (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 4-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉) → (1 < (♯‘𝑉) → ((VtxDeg‘𝐺)‘𝑁) ≠ 1)) | ||
| Theorem | vdgn1frgrv3 30272* | Any vertex in a friendship graph does not have degree 1, see remark 2 in [MertziosUnger] p. 153 (after Proposition 1): "... no node v of it [a friendship graph] may have deg(v) = 1.". (Contributed by Alexander van der Vekens, 4-Sep-2018.) (Revised by AV, 4-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1) | ||
| Theorem | vdgfrgrgt2 30273 | Any vertex in a friendship graph (with more than one vertex - then, actually, the graph must have at least three vertices, because otherwise, it would not be a friendship graph) has at least degree 2, see remark 3 in [MertziosUnger] p. 153 (after Proposition 1): "It follows that deg(v) >= 2 for every node v of a friendship graph". (Contributed by Alexander van der Vekens, 21-Dec-2017.) (Revised by AV, 5-Apr-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑁 ∈ 𝑉) → (1 < (♯‘𝑉) → 2 ≤ ((VtxDeg‘𝐺)‘𝑁))) | ||
In this section, the friendship theorem friendship 30374 is proven by formalizing Huneke's proof, see [Huneke] pp. 1-2. The three claims (see frgrncvvdeq 30284, frgrregorufr 30300 and frrusgrord0 30315) and additional statements (numbered in the order of their occurrence in the paper) in Huneke's proof are cited in the corresponding theorems. | ||
| Theorem | frgrncvvdeqlem1 30274 | Lemma 1 for frgrncvvdeq 30284. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 8-May-2021.) (Proof shortened by AV, 12-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∉ 𝐷) & ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) & ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) ⇒ ⊢ (𝜑 → 𝑋 ∉ 𝑁) | ||
| Theorem | frgrncvvdeqlem2 30275* | Lemma 2 for frgrncvvdeq 30284. In a friendship graph, for each neighbor of a vertex there is exactly one neighbor of another vertex so that there is an edge between these two neighbors. (Contributed by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 12-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∉ 𝐷) & ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) & ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∃!𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸) | ||
| Theorem | frgrncvvdeqlem3 30276* | Lemma 3 for frgrncvvdeq 30284. The unique neighbor of a vertex (expressed by a restricted iota) is the intersection of the corresponding neighborhoods. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 12-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∉ 𝐷) & ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) & ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {(℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) | ||
| Theorem | frgrncvvdeqlem4 30277* | Lemma 4 for frgrncvvdeq 30284. The mapping of neighbors to neighbors is a function. (Contributed by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 10-May-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∉ 𝐷) & ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) & ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) ⇒ ⊢ (𝜑 → 𝐴:𝐷⟶𝑁) | ||
| Theorem | frgrncvvdeqlem5 30278* | Lemma 5 for frgrncvvdeq 30284. The mapping of neighbors to neighbors applied on a vertex is the intersection of the corresponding neighborhoods. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∉ 𝐷) & ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) & ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) | ||
| Theorem | frgrncvvdeqlem6 30279* | Lemma 6 for frgrncvvdeq 30284. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 30-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∉ 𝐷) & ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) & ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸) | ||
| Theorem | frgrncvvdeqlem7 30280* | Lemma 7 for frgrncvvdeq 30284. This corresponds to statement 1 in [Huneke] p. 1: "This common neighbor cannot be x, as x and y are not adjacent.". This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∉ 𝐷) & ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) & ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) ≠ 𝑋) | ||
| Theorem | frgrncvvdeqlem8 30281* | Lemma 8 for frgrncvvdeq 30284. This corresponds to statement 2 in [Huneke] p. 1: "The map is one-to-one since z in N(x) is uniquely determined as the common neighbor of x and a(x)". (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) (Revised by AV, 30-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∉ 𝐷) & ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) & ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) ⇒ ⊢ (𝜑 → 𝐴:𝐷–1-1→𝑁) | ||
| Theorem | frgrncvvdeqlem9 30282* | Lemma 9 for frgrncvvdeq 30284. This corresponds to statement 3 in [Huneke] p. 1: "By symmetry the map is onto". (Contributed by Alexander van der Vekens, 24-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 12-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∉ 𝐷) & ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) & ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) ⇒ ⊢ (𝜑 → 𝐴:𝐷–onto→𝑁) | ||
| Theorem | frgrncvvdeqlem10 30283* | Lemma 10 for frgrncvvdeq 30284. (Contributed by Alexander van der Vekens, 24-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 30-Dec-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∉ 𝐷) & ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) & ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) ⇒ ⊢ (𝜑 → 𝐴:𝐷–1-1-onto→𝑁) | ||
| Theorem | frgrncvvdeq 30284* | In a friendship graph, two vertices which are not connected by an edge have the same degree. This corresponds to claim 1 in [Huneke] p. 1: "If x,y are elements of (the friendship graph) G and are not adjacent, then they have the same degree (i.e., the same number of adjacent vertices).". (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 10-May-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph → ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷‘𝑥) = (𝐷‘𝑦))) | ||
| Theorem | frgrwopreglem4a 30285 | In a friendship graph any two vertices with different degrees are connected. Alternate version of frgrwopreglem4 30290 without a fixed degree and without using the sets 𝐴 and 𝐵. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 4-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → {𝑋, 𝑌} ∈ 𝐸) | ||
| Theorem | frgrwopreglem5a 30286 | If a friendship graph has two vertices with the same degree and two other vertices with different degrees, then there is a 4-cycle in the graph. Alternate version of frgrwopreglem5 30296 without a fixed degree and without using the sets 𝐴 and 𝐵. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 4-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝑋} ∈ 𝐸) ∧ ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸))) | ||
| Theorem | frgrwopreglem1 30287* | Lemma 1 for frgrwopreg 30298: the classes 𝐴 and 𝐵 are sets. The definition of 𝐴 and 𝐵 corresponds to definition 3 in [Huneke] p. 2: "Let A be the set of all vertices of degree k, let B be the set of all vertices of degree different from k, ..." (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) ⇒ ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) | ||
| Theorem | frgrwopreglem2 30288* | Lemma 2 for frgrwopreg 30298. If the set 𝐴 of vertices of degree 𝐾 is not empty in a friendship graph with at least two vertices, then 𝐾 must be greater than 1 . This is only an observation, which is not required for the proof the friendship theorem. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 2-Jan-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉) ∧ 𝐴 ≠ ∅) → 2 ≤ 𝐾) | ||
| Theorem | frgrwopreglem3 30289* | Lemma 3 for frgrwopreg 30298. The vertices in the sets 𝐴 and 𝐵 have different degrees. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 2-Jan-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐷‘𝑋) ≠ (𝐷‘𝑌)) | ||
| Theorem | frgrwopreglem4 30290* | Lemma 4 for frgrwopreg 30298. In a friendship graph each vertex with degree 𝐾 is connected with any vertex with degree other than 𝐾. This corresponds to statement 4 in [Huneke] p. 2: "By the first claim, every vertex in A is adjacent to every vertex in B.". (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 4-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 {𝑎, 𝑏} ∈ 𝐸) | ||
| Theorem | frgrwopregasn 30291* | According to statement 5 in [Huneke] p. 2: "If A ... is a singleton, then that singleton is a universal friend". This version of frgrwopreg1 30293 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 4-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸) | ||
| Theorem | frgrwopregbsn 30292* | According to statement 5 in [Huneke] p. 2: "If ... B is a singleton, then that singleton is a universal friend". This version of frgrwopreg2 30294 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by AV, 4-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝐵 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸) | ||
| Theorem | frgrwopreg1 30293* | According to statement 5 in [Huneke] p. 2: "If A ... is a singleton, then that singleton is a universal friend". (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Proof shortened by AV, 4-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ (♯‘𝐴) = 1) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) | ||
| Theorem | frgrwopreg2 30294* | According to statement 5 in [Huneke] p. 2: "If ... B is a singleton, then that singleton is a universal friend". (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Proof shortened by AV, 4-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ (♯‘𝐵) = 1) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) | ||
| Theorem | frgrwopreglem5lem 30295* | Lemma for frgrwopreglem5 30296. (Contributed by AV, 5-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (((𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐷‘𝑎) = (𝐷‘𝑥) ∧ (𝐷‘𝑎) ≠ (𝐷‘𝑏) ∧ (𝐷‘𝑥) ≠ (𝐷‘𝑦))) | ||
| Theorem | frgrwopreglem5 30296* | Lemma 5 for frgrwopreg 30298. If 𝐴 as well as 𝐵 contain at least two vertices, there is a 4-cycle in a friendship graph. This corresponds to statement 6 in [Huneke] p. 2: "... otherwise, there are two different vertices in A, and they have two common neighbors in B, ...". (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Proof shortened by AV, 5-Feb-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))) | ||
| Theorem | frgrwopreglem5ALT 30297* | Alternate direct proof of frgrwopreglem5 30296, not using frgrwopreglem5a 30286. This proof would be even a little bit shorter than the proof of frgrwopreglem5 30296 without using frgrwopreglem5lem 30295. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 3-Jan-2022.) (Proof shortened by AV, 5-Feb-2022.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎 ∈ 𝐴 ∃𝑥 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))) | ||
| Theorem | frgrwopreg 30298* | In a friendship graph there are either no vertices (𝐴 = ∅) or exactly one vertex ((♯‘𝐴) = 1) having degree 𝐾, or all (𝐵 = ∅) or all except one vertices ((♯‘𝐵) = 1) have degree 𝐾. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 3-Jan-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) & ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} & ⊢ 𝐵 = (𝑉 ∖ 𝐴) ⇒ ⊢ (𝐺 ∈ FriendGraph → (((♯‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((♯‘𝐵) = 1 ∨ 𝐵 = ∅))) | ||
| Theorem | frgrregorufr0 30299* | In a friendship graph there are either no vertices having degree 𝐾, or all vertices have degree 𝐾 for any (nonnegative integer) 𝐾, unless there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "... all vertices have degree k, unless there is a universal friend." (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 11-May-2021.) (Proof shortened by AV, 3-Jan-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) | ||
| Theorem | frgrregorufr 30300* | If there is a vertex having degree 𝐾 for each (nonnegative integer) 𝐾 in a friendship graph, then either all vertices have degree 𝐾 or there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". (Contributed by Alexander van der Vekens, 1-Jan-2018.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐷 = (VtxDeg‘𝐺) ⇒ ⊢ (𝐺 ∈ FriendGraph → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |