| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvrel | Structured version Visualization version GIF version | ||
| Description: The class of all normed complex vectors spaces is a relation. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvrel | ⊢ Rel NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvss 30556 | . 2 ⊢ NrmCVec ⊆ (CVecOLD × V) | |
| 2 | relxp 5641 | . 2 ⊢ Rel (CVecOLD × V) | |
| 3 | relss 5729 | . 2 ⊢ (NrmCVec ⊆ (CVecOLD × V) → (Rel (CVecOLD × V) → Rel NrmCVec)) | |
| 4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel NrmCVec |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3438 ⊆ wss 3905 × cxp 5621 Rel wrel 5628 CVecOLDcvc 30521 NrmCVeccnv 30547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-opab 5158 df-xp 5629 df-rel 5630 df-oprab 7357 df-nv 30555 |
| This theorem is referenced by: nvop2 30571 nvop 30639 phrel 30778 bnrel 30830 |
| Copyright terms: Public domain | W3C validator |