MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvrel Structured version   Visualization version   GIF version

Theorem nvrel 30588
Description: The class of all normed complex vectors spaces is a relation. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nvrel Rel NrmCVec

Proof of Theorem nvrel
StepHypRef Expression
1 nvss 30579 . 2 NrmCVec ⊆ (CVecOLD × V)
2 relxp 5677 . 2 Rel (CVecOLD × V)
3 relss 5765 . 2 (NrmCVec ⊆ (CVecOLD × V) → (Rel (CVecOLD × V) → Rel NrmCVec))
41, 2, 3mp2 9 1 Rel NrmCVec
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3464  wss 3931   × cxp 5657  Rel wrel 5664  CVecOLDcvc 30544  NrmCVeccnv 30570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-opab 5187  df-xp 5665  df-rel 5666  df-oprab 7414  df-nv 30578
This theorem is referenced by:  nvop2  30594  nvop  30662  phrel  30801  bnrel  30853
  Copyright terms: Public domain W3C validator