MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvrel Structured version   Visualization version   GIF version

Theorem nvrel 30634
Description: The class of all normed complex vectors spaces is a relation. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nvrel Rel NrmCVec

Proof of Theorem nvrel
StepHypRef Expression
1 nvss 30625 . 2 NrmCVec ⊆ (CVecOLD × V)
2 relxp 5718 . 2 Rel (CVecOLD × V)
3 relss 5805 . 2 (NrmCVec ⊆ (CVecOLD × V) → (Rel (CVecOLD × V) → Rel NrmCVec))
41, 2, 3mp2 9 1 Rel NrmCVec
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3488  wss 3976   × cxp 5698  Rel wrel 5705  CVecOLDcvc 30590  NrmCVeccnv 30616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229  df-xp 5706  df-rel 5707  df-oprab 7452  df-nv 30624
This theorem is referenced by:  nvop2  30640  nvop  30708  phrel  30847  bnrel  30899
  Copyright terms: Public domain W3C validator