MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvrel Structured version   Visualization version   GIF version

Theorem nvrel 29013
Description: The class of all normed complex vectors spaces is a relation. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nvrel Rel NrmCVec

Proof of Theorem nvrel
StepHypRef Expression
1 nvss 29004 . 2 NrmCVec ⊆ (CVecOLD × V)
2 relxp 5618 . 2 Rel (CVecOLD × V)
3 relss 5703 . 2 (NrmCVec ⊆ (CVecOLD × V) → (Rel (CVecOLD × V) → Rel NrmCVec))
41, 2, 3mp2 9 1 Rel NrmCVec
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3437  wss 3892   × cxp 5598  Rel wrel 5605  CVecOLDcvc 28969  NrmCVeccnv 28995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-11 2152  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-opab 5144  df-xp 5606  df-rel 5607  df-oprab 7311  df-nv 29003
This theorem is referenced by:  nvop2  29019  nvop  29087  phrel  29226  bnrel  29278
  Copyright terms: Public domain W3C validator