Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvrel | Structured version Visualization version GIF version |
Description: The class of all normed complex vectors spaces is a relation. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvrel | ⊢ Rel NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvss 29004 | . 2 ⊢ NrmCVec ⊆ (CVecOLD × V) | |
2 | relxp 5618 | . 2 ⊢ Rel (CVecOLD × V) | |
3 | relss 5703 | . 2 ⊢ (NrmCVec ⊆ (CVecOLD × V) → (Rel (CVecOLD × V) → Rel NrmCVec)) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3437 ⊆ wss 3892 × cxp 5598 Rel wrel 5605 CVecOLDcvc 28969 NrmCVeccnv 28995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-11 2152 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-opab 5144 df-xp 5606 df-rel 5607 df-oprab 7311 df-nv 29003 |
This theorem is referenced by: nvop2 29019 nvop 29087 phrel 29226 bnrel 29278 |
Copyright terms: Public domain | W3C validator |