MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsval Structured version   Visualization version   GIF version

Theorem imsval 30667
Description: Value of the induced metric of a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsval.3 𝑀 = ( −𝑣𝑈)
imsval.6 𝑁 = (normCV𝑈)
imsval.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
imsval (𝑈 ∈ NrmCVec → 𝐷 = (𝑁𝑀))

Proof of Theorem imsval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6828 . . . 4 (𝑢 = 𝑈 → (normCV𝑢) = (normCV𝑈))
2 fveq2 6828 . . . 4 (𝑢 = 𝑈 → ( −𝑣𝑢) = ( −𝑣𝑈))
31, 2coeq12d 5808 . . 3 (𝑢 = 𝑈 → ((normCV𝑢) ∘ ( −𝑣𝑢)) = ((normCV𝑈) ∘ ( −𝑣𝑈)))
4 df-ims 30583 . . 3 IndMet = (𝑢 ∈ NrmCVec ↦ ((normCV𝑢) ∘ ( −𝑣𝑢)))
5 fvex 6841 . . . 4 (normCV𝑈) ∈ V
6 fvex 6841 . . . 4 ( −𝑣𝑈) ∈ V
75, 6coex 7866 . . 3 ((normCV𝑈) ∘ ( −𝑣𝑈)) ∈ V
83, 4, 7fvmpt 6935 . 2 (𝑈 ∈ NrmCVec → (IndMet‘𝑈) = ((normCV𝑈) ∘ ( −𝑣𝑈)))
9 imsval.8 . 2 𝐷 = (IndMet‘𝑈)
10 imsval.6 . . 3 𝑁 = (normCV𝑈)
11 imsval.3 . . 3 𝑀 = ( −𝑣𝑈)
1210, 11coeq12i 5807 . 2 (𝑁𝑀) = ((normCV𝑈) ∘ ( −𝑣𝑈))
138, 9, 123eqtr4g 2793 1 (𝑈 ∈ NrmCVec → 𝐷 = (𝑁𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  ccom 5623  cfv 6486  NrmCVeccnv 30566  𝑣 cnsb 30571  normCVcnmcv 30572  IndMetcims 30573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fv 6494  df-ims 30583
This theorem is referenced by:  imsdval  30668  imsdf  30671  cnims  30675  hhims  31154  hhssims  31256
  Copyright terms: Public domain W3C validator