| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imsval | Structured version Visualization version GIF version | ||
| Description: Value of the induced metric of a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| imsval.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| imsval.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| imsval.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
| Ref | Expression |
|---|---|
| imsval | ⊢ (𝑈 ∈ NrmCVec → 𝐷 = (𝑁 ∘ 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . . 4 ⊢ (𝑢 = 𝑈 → (normCV‘𝑢) = (normCV‘𝑈)) | |
| 2 | fveq2 6858 | . . . 4 ⊢ (𝑢 = 𝑈 → ( −𝑣 ‘𝑢) = ( −𝑣 ‘𝑈)) | |
| 3 | 1, 2 | coeq12d 5828 | . . 3 ⊢ (𝑢 = 𝑈 → ((normCV‘𝑢) ∘ ( −𝑣 ‘𝑢)) = ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈))) |
| 4 | df-ims 30530 | . . 3 ⊢ IndMet = (𝑢 ∈ NrmCVec ↦ ((normCV‘𝑢) ∘ ( −𝑣 ‘𝑢))) | |
| 5 | fvex 6871 | . . . 4 ⊢ (normCV‘𝑈) ∈ V | |
| 6 | fvex 6871 | . . . 4 ⊢ ( −𝑣 ‘𝑈) ∈ V | |
| 7 | 5, 6 | coex 7906 | . . 3 ⊢ ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈)) ∈ V |
| 8 | 3, 4, 7 | fvmpt 6968 | . 2 ⊢ (𝑈 ∈ NrmCVec → (IndMet‘𝑈) = ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈))) |
| 9 | imsval.8 | . 2 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 10 | imsval.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
| 11 | imsval.3 | . . 3 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 12 | 10, 11 | coeq12i 5827 | . 2 ⊢ (𝑁 ∘ 𝑀) = ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈)) |
| 13 | 8, 9, 12 | 3eqtr4g 2789 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝐷 = (𝑁 ∘ 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∘ ccom 5642 ‘cfv 6511 NrmCVeccnv 30513 −𝑣 cnsb 30518 normCVcnmcv 30519 IndMetcims 30520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-ims 30530 |
| This theorem is referenced by: imsdval 30615 imsdf 30618 cnims 30622 hhims 31101 hhssims 31203 |
| Copyright terms: Public domain | W3C validator |