| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imsval | Structured version Visualization version GIF version | ||
| Description: Value of the induced metric of a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| imsval.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| imsval.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| imsval.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
| Ref | Expression |
|---|---|
| imsval | ⊢ (𝑈 ∈ NrmCVec → 𝐷 = (𝑁 ∘ 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . 4 ⊢ (𝑢 = 𝑈 → (normCV‘𝑢) = (normCV‘𝑈)) | |
| 2 | fveq2 6822 | . . . 4 ⊢ (𝑢 = 𝑈 → ( −𝑣 ‘𝑢) = ( −𝑣 ‘𝑈)) | |
| 3 | 1, 2 | coeq12d 5804 | . . 3 ⊢ (𝑢 = 𝑈 → ((normCV‘𝑢) ∘ ( −𝑣 ‘𝑢)) = ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈))) |
| 4 | df-ims 30579 | . . 3 ⊢ IndMet = (𝑢 ∈ NrmCVec ↦ ((normCV‘𝑢) ∘ ( −𝑣 ‘𝑢))) | |
| 5 | fvex 6835 | . . . 4 ⊢ (normCV‘𝑈) ∈ V | |
| 6 | fvex 6835 | . . . 4 ⊢ ( −𝑣 ‘𝑈) ∈ V | |
| 7 | 5, 6 | coex 7860 | . . 3 ⊢ ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈)) ∈ V |
| 8 | 3, 4, 7 | fvmpt 6929 | . 2 ⊢ (𝑈 ∈ NrmCVec → (IndMet‘𝑈) = ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈))) |
| 9 | imsval.8 | . 2 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 10 | imsval.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
| 11 | imsval.3 | . . 3 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 12 | 10, 11 | coeq12i 5803 | . 2 ⊢ (𝑁 ∘ 𝑀) = ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈)) |
| 13 | 8, 9, 12 | 3eqtr4g 2791 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝐷 = (𝑁 ∘ 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∘ ccom 5620 ‘cfv 6481 NrmCVeccnv 30562 −𝑣 cnsb 30567 normCVcnmcv 30568 IndMetcims 30569 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-ims 30579 |
| This theorem is referenced by: imsdval 30664 imsdf 30667 cnims 30671 hhims 31150 hhssims 31252 |
| Copyright terms: Public domain | W3C validator |