| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imsval | Structured version Visualization version GIF version | ||
| Description: Value of the induced metric of a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| imsval.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| imsval.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| imsval.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
| Ref | Expression |
|---|---|
| imsval | ⊢ (𝑈 ∈ NrmCVec → 𝐷 = (𝑁 ∘ 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6876 | . . . 4 ⊢ (𝑢 = 𝑈 → (normCV‘𝑢) = (normCV‘𝑈)) | |
| 2 | fveq2 6876 | . . . 4 ⊢ (𝑢 = 𝑈 → ( −𝑣 ‘𝑢) = ( −𝑣 ‘𝑈)) | |
| 3 | 1, 2 | coeq12d 5844 | . . 3 ⊢ (𝑢 = 𝑈 → ((normCV‘𝑢) ∘ ( −𝑣 ‘𝑢)) = ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈))) |
| 4 | df-ims 30582 | . . 3 ⊢ IndMet = (𝑢 ∈ NrmCVec ↦ ((normCV‘𝑢) ∘ ( −𝑣 ‘𝑢))) | |
| 5 | fvex 6889 | . . . 4 ⊢ (normCV‘𝑈) ∈ V | |
| 6 | fvex 6889 | . . . 4 ⊢ ( −𝑣 ‘𝑈) ∈ V | |
| 7 | 5, 6 | coex 7926 | . . 3 ⊢ ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈)) ∈ V |
| 8 | 3, 4, 7 | fvmpt 6986 | . 2 ⊢ (𝑈 ∈ NrmCVec → (IndMet‘𝑈) = ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈))) |
| 9 | imsval.8 | . 2 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 10 | imsval.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
| 11 | imsval.3 | . . 3 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 12 | 10, 11 | coeq12i 5843 | . 2 ⊢ (𝑁 ∘ 𝑀) = ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈)) |
| 13 | 8, 9, 12 | 3eqtr4g 2795 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝐷 = (𝑁 ∘ 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∘ ccom 5658 ‘cfv 6531 NrmCVeccnv 30565 −𝑣 cnsb 30570 normCVcnmcv 30571 IndMetcims 30572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fv 6539 df-ims 30582 |
| This theorem is referenced by: imsdval 30667 imsdf 30670 cnims 30674 hhims 31153 hhssims 31255 |
| Copyright terms: Public domain | W3C validator |