Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imsval | Structured version Visualization version GIF version |
Description: Value of the induced metric of a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
imsval.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
imsval.6 | ⊢ 𝑁 = (normCV‘𝑈) |
imsval.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
Ref | Expression |
---|---|
imsval | ⊢ (𝑈 ∈ NrmCVec → 𝐷 = (𝑁 ∘ 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . 4 ⊢ (𝑢 = 𝑈 → (normCV‘𝑢) = (normCV‘𝑈)) | |
2 | fveq2 6756 | . . . 4 ⊢ (𝑢 = 𝑈 → ( −𝑣 ‘𝑢) = ( −𝑣 ‘𝑈)) | |
3 | 1, 2 | coeq12d 5762 | . . 3 ⊢ (𝑢 = 𝑈 → ((normCV‘𝑢) ∘ ( −𝑣 ‘𝑢)) = ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈))) |
4 | df-ims 28864 | . . 3 ⊢ IndMet = (𝑢 ∈ NrmCVec ↦ ((normCV‘𝑢) ∘ ( −𝑣 ‘𝑢))) | |
5 | fvex 6769 | . . . 4 ⊢ (normCV‘𝑈) ∈ V | |
6 | fvex 6769 | . . . 4 ⊢ ( −𝑣 ‘𝑈) ∈ V | |
7 | 5, 6 | coex 7751 | . . 3 ⊢ ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈)) ∈ V |
8 | 3, 4, 7 | fvmpt 6857 | . 2 ⊢ (𝑈 ∈ NrmCVec → (IndMet‘𝑈) = ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈))) |
9 | imsval.8 | . 2 ⊢ 𝐷 = (IndMet‘𝑈) | |
10 | imsval.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
11 | imsval.3 | . . 3 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
12 | 10, 11 | coeq12i 5761 | . 2 ⊢ (𝑁 ∘ 𝑀) = ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈)) |
13 | 8, 9, 12 | 3eqtr4g 2804 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝐷 = (𝑁 ∘ 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∘ ccom 5584 ‘cfv 6418 NrmCVeccnv 28847 −𝑣 cnsb 28852 normCVcnmcv 28853 IndMetcims 28854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-ims 28864 |
This theorem is referenced by: imsdval 28949 imsdf 28952 cnims 28956 hhims 29435 hhssims 29537 |
Copyright terms: Public domain | W3C validator |