![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imsval | Structured version Visualization version GIF version |
Description: Value of the induced metric of a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
imsval.3 | β’ π = ( βπ£ βπ) |
imsval.6 | β’ π = (normCVβπ) |
imsval.8 | β’ π· = (IndMetβπ) |
Ref | Expression |
---|---|
imsval | β’ (π β NrmCVec β π· = (π β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . . . 4 β’ (π’ = π β (normCVβπ’) = (normCVβπ)) | |
2 | fveq2 6892 | . . . 4 β’ (π’ = π β ( βπ£ βπ’) = ( βπ£ βπ)) | |
3 | 1, 2 | coeq12d 5865 | . . 3 β’ (π’ = π β ((normCVβπ’) β ( βπ£ βπ’)) = ((normCVβπ) β ( βπ£ βπ))) |
4 | df-ims 29854 | . . 3 β’ IndMet = (π’ β NrmCVec β¦ ((normCVβπ’) β ( βπ£ βπ’))) | |
5 | fvex 6905 | . . . 4 β’ (normCVβπ) β V | |
6 | fvex 6905 | . . . 4 β’ ( βπ£ βπ) β V | |
7 | 5, 6 | coex 7921 | . . 3 β’ ((normCVβπ) β ( βπ£ βπ)) β V |
8 | 3, 4, 7 | fvmpt 6999 | . 2 β’ (π β NrmCVec β (IndMetβπ) = ((normCVβπ) β ( βπ£ βπ))) |
9 | imsval.8 | . 2 β’ π· = (IndMetβπ) | |
10 | imsval.6 | . . 3 β’ π = (normCVβπ) | |
11 | imsval.3 | . . 3 β’ π = ( βπ£ βπ) | |
12 | 10, 11 | coeq12i 5864 | . 2 β’ (π β π) = ((normCVβπ) β ( βπ£ βπ)) |
13 | 8, 9, 12 | 3eqtr4g 2798 | 1 β’ (π β NrmCVec β π· = (π β π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 β ccom 5681 βcfv 6544 NrmCVeccnv 29837 βπ£ cnsb 29842 normCVcnmcv 29843 IndMetcims 29844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fv 6552 df-ims 29854 |
This theorem is referenced by: imsdval 29939 imsdf 29942 cnims 29946 hhims 30425 hhssims 30527 |
Copyright terms: Public domain | W3C validator |