MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsval Structured version   Visualization version   GIF version

Theorem imsval 30621
Description: Value of the induced metric of a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsval.3 𝑀 = ( −𝑣𝑈)
imsval.6 𝑁 = (normCV𝑈)
imsval.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
imsval (𝑈 ∈ NrmCVec → 𝐷 = (𝑁𝑀))

Proof of Theorem imsval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . 4 (𝑢 = 𝑈 → (normCV𝑢) = (normCV𝑈))
2 fveq2 6861 . . . 4 (𝑢 = 𝑈 → ( −𝑣𝑢) = ( −𝑣𝑈))
31, 2coeq12d 5831 . . 3 (𝑢 = 𝑈 → ((normCV𝑢) ∘ ( −𝑣𝑢)) = ((normCV𝑈) ∘ ( −𝑣𝑈)))
4 df-ims 30537 . . 3 IndMet = (𝑢 ∈ NrmCVec ↦ ((normCV𝑢) ∘ ( −𝑣𝑢)))
5 fvex 6874 . . . 4 (normCV𝑈) ∈ V
6 fvex 6874 . . . 4 ( −𝑣𝑈) ∈ V
75, 6coex 7909 . . 3 ((normCV𝑈) ∘ ( −𝑣𝑈)) ∈ V
83, 4, 7fvmpt 6971 . 2 (𝑈 ∈ NrmCVec → (IndMet‘𝑈) = ((normCV𝑈) ∘ ( −𝑣𝑈)))
9 imsval.8 . 2 𝐷 = (IndMet‘𝑈)
10 imsval.6 . . 3 𝑁 = (normCV𝑈)
11 imsval.3 . . 3 𝑀 = ( −𝑣𝑈)
1210, 11coeq12i 5830 . 2 (𝑁𝑀) = ((normCV𝑈) ∘ ( −𝑣𝑈))
138, 9, 123eqtr4g 2790 1 (𝑈 ∈ NrmCVec → 𝐷 = (𝑁𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  ccom 5645  cfv 6514  NrmCVeccnv 30520  𝑣 cnsb 30525  normCVcnmcv 30526  IndMetcims 30527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fv 6522  df-ims 30537
This theorem is referenced by:  imsdval  30622  imsdf  30625  cnims  30629  hhims  31108  hhssims  31210
  Copyright terms: Public domain W3C validator