MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsval Structured version   Visualization version   GIF version

Theorem imsval 30704
Description: Value of the induced metric of a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsval.3 𝑀 = ( −𝑣𝑈)
imsval.6 𝑁 = (normCV𝑈)
imsval.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
imsval (𝑈 ∈ NrmCVec → 𝐷 = (𝑁𝑀))

Proof of Theorem imsval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . 4 (𝑢 = 𝑈 → (normCV𝑢) = (normCV𝑈))
2 fveq2 6906 . . . 4 (𝑢 = 𝑈 → ( −𝑣𝑢) = ( −𝑣𝑈))
31, 2coeq12d 5875 . . 3 (𝑢 = 𝑈 → ((normCV𝑢) ∘ ( −𝑣𝑢)) = ((normCV𝑈) ∘ ( −𝑣𝑈)))
4 df-ims 30620 . . 3 IndMet = (𝑢 ∈ NrmCVec ↦ ((normCV𝑢) ∘ ( −𝑣𝑢)))
5 fvex 6919 . . . 4 (normCV𝑈) ∈ V
6 fvex 6919 . . . 4 ( −𝑣𝑈) ∈ V
75, 6coex 7952 . . 3 ((normCV𝑈) ∘ ( −𝑣𝑈)) ∈ V
83, 4, 7fvmpt 7016 . 2 (𝑈 ∈ NrmCVec → (IndMet‘𝑈) = ((normCV𝑈) ∘ ( −𝑣𝑈)))
9 imsval.8 . 2 𝐷 = (IndMet‘𝑈)
10 imsval.6 . . 3 𝑁 = (normCV𝑈)
11 imsval.3 . . 3 𝑀 = ( −𝑣𝑈)
1210, 11coeq12i 5874 . 2 (𝑁𝑀) = ((normCV𝑈) ∘ ( −𝑣𝑈))
138, 9, 123eqtr4g 2802 1 (𝑈 ∈ NrmCVec → 𝐷 = (𝑁𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  ccom 5689  cfv 6561  NrmCVeccnv 30603  𝑣 cnsb 30608  normCVcnmcv 30609  IndMetcims 30610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fv 6569  df-ims 30620
This theorem is referenced by:  imsdval  30705  imsdf  30708  cnims  30712  hhims  31191  hhssims  31293
  Copyright terms: Public domain W3C validator