Detailed syntax breakdown of Definition df-inag
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cinag 28843 | . 2
class
inA | 
| 2 |  | vg | . . 3
setvar 𝑔 | 
| 3 |  | cvv 3480 | . . 3
class
V | 
| 4 |  | vp | . . . . . . . 8
setvar 𝑝 | 
| 5 | 4 | cv 1539 | . . . . . . 7
class 𝑝 | 
| 6 | 2 | cv 1539 | . . . . . . . 8
class 𝑔 | 
| 7 |  | cbs 17247 | . . . . . . . 8
class
Base | 
| 8 | 6, 7 | cfv 6561 | . . . . . . 7
class
(Base‘𝑔) | 
| 9 | 5, 8 | wcel 2108 | . . . . . 6
wff 𝑝 ∈ (Base‘𝑔) | 
| 10 |  | vt | . . . . . . . 8
setvar 𝑡 | 
| 11 | 10 | cv 1539 | . . . . . . 7
class 𝑡 | 
| 12 |  | cc0 11155 | . . . . . . . . 9
class
0 | 
| 13 |  | c3 12322 | . . . . . . . . 9
class
3 | 
| 14 |  | cfzo 13694 | . . . . . . . . 9
class
..^ | 
| 15 | 12, 13, 14 | co 7431 | . . . . . . . 8
class
(0..^3) | 
| 16 |  | cmap 8866 | . . . . . . . 8
class 
↑m | 
| 17 | 8, 15, 16 | co 7431 | . . . . . . 7
class
((Base‘𝑔)
↑m (0..^3)) | 
| 18 | 11, 17 | wcel 2108 | . . . . . 6
wff 𝑡 ∈ ((Base‘𝑔) ↑m
(0..^3)) | 
| 19 | 9, 18 | wa 395 | . . . . 5
wff (𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m
(0..^3))) | 
| 20 | 12, 11 | cfv 6561 | . . . . . . . 8
class (𝑡‘0) | 
| 21 |  | c1 11156 | . . . . . . . . 9
class
1 | 
| 22 | 21, 11 | cfv 6561 | . . . . . . . 8
class (𝑡‘1) | 
| 23 | 20, 22 | wne 2940 | . . . . . . 7
wff (𝑡‘0) ≠ (𝑡‘1) | 
| 24 |  | c2 12321 | . . . . . . . . 9
class
2 | 
| 25 | 24, 11 | cfv 6561 | . . . . . . . 8
class (𝑡‘2) | 
| 26 | 25, 22 | wne 2940 | . . . . . . 7
wff (𝑡‘2) ≠ (𝑡‘1) | 
| 27 | 5, 22 | wne 2940 | . . . . . . 7
wff 𝑝 ≠ (𝑡‘1) | 
| 28 | 23, 26, 27 | w3a 1087 | . . . . . 6
wff ((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) | 
| 29 |  | vx | . . . . . . . . . 10
setvar 𝑥 | 
| 30 | 29 | cv 1539 | . . . . . . . . 9
class 𝑥 | 
| 31 |  | citv 28441 | . . . . . . . . . . 11
class
Itv | 
| 32 | 6, 31 | cfv 6561 | . . . . . . . . . 10
class
(Itv‘𝑔) | 
| 33 | 20, 25, 32 | co 7431 | . . . . . . . . 9
class ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) | 
| 34 | 30, 33 | wcel 2108 | . . . . . . . 8
wff 𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) | 
| 35 | 30, 22 | wceq 1540 | . . . . . . . . 9
wff 𝑥 = (𝑡‘1) | 
| 36 |  | chlg 28608 | . . . . . . . . . . . 12
class
hlG | 
| 37 | 6, 36 | cfv 6561 | . . . . . . . . . . 11
class
(hlG‘𝑔) | 
| 38 | 22, 37 | cfv 6561 | . . . . . . . . . 10
class
((hlG‘𝑔)‘(𝑡‘1)) | 
| 39 | 30, 5, 38 | wbr 5143 | . . . . . . . . 9
wff 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝 | 
| 40 | 35, 39 | wo 848 | . . . . . . . 8
wff (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝) | 
| 41 | 34, 40 | wa 395 | . . . . . . 7
wff (𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)) | 
| 42 | 41, 29, 8 | wrex 3070 | . . . . . 6
wff
∃𝑥 ∈
(Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)) | 
| 43 | 28, 42 | wa 395 | . . . . 5
wff (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))) | 
| 44 | 19, 43 | wa 395 | . . . 4
wff ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)))) | 
| 45 | 44, 4, 10 | copab 5205 | . . 3
class
{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))} | 
| 46 | 2, 3, 45 | cmpt 5225 | . 2
class (𝑔 ∈ V ↦ {〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))}) | 
| 47 | 1, 46 | wceq 1540 | 1
wff inA =
(𝑔 ∈ V ↦
{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))}) |