Detailed syntax breakdown of Definition df-inag
| Step | Hyp | Ref
| Expression |
| 1 | | cinag 28814 |
. 2
class
inA |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | cvv 3459 |
. . 3
class
V |
| 4 | | vp |
. . . . . . . 8
setvar 𝑝 |
| 5 | 4 | cv 1539 |
. . . . . . 7
class 𝑝 |
| 6 | 2 | cv 1539 |
. . . . . . . 8
class 𝑔 |
| 7 | | cbs 17228 |
. . . . . . . 8
class
Base |
| 8 | 6, 7 | cfv 6531 |
. . . . . . 7
class
(Base‘𝑔) |
| 9 | 5, 8 | wcel 2108 |
. . . . . 6
wff 𝑝 ∈ (Base‘𝑔) |
| 10 | | vt |
. . . . . . . 8
setvar 𝑡 |
| 11 | 10 | cv 1539 |
. . . . . . 7
class 𝑡 |
| 12 | | cc0 11129 |
. . . . . . . . 9
class
0 |
| 13 | | c3 12296 |
. . . . . . . . 9
class
3 |
| 14 | | cfzo 13671 |
. . . . . . . . 9
class
..^ |
| 15 | 12, 13, 14 | co 7405 |
. . . . . . . 8
class
(0..^3) |
| 16 | | cmap 8840 |
. . . . . . . 8
class
↑m |
| 17 | 8, 15, 16 | co 7405 |
. . . . . . 7
class
((Base‘𝑔)
↑m (0..^3)) |
| 18 | 11, 17 | wcel 2108 |
. . . . . 6
wff 𝑡 ∈ ((Base‘𝑔) ↑m
(0..^3)) |
| 19 | 9, 18 | wa 395 |
. . . . 5
wff (𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m
(0..^3))) |
| 20 | 12, 11 | cfv 6531 |
. . . . . . . 8
class (𝑡‘0) |
| 21 | | c1 11130 |
. . . . . . . . 9
class
1 |
| 22 | 21, 11 | cfv 6531 |
. . . . . . . 8
class (𝑡‘1) |
| 23 | 20, 22 | wne 2932 |
. . . . . . 7
wff (𝑡‘0) ≠ (𝑡‘1) |
| 24 | | c2 12295 |
. . . . . . . . 9
class
2 |
| 25 | 24, 11 | cfv 6531 |
. . . . . . . 8
class (𝑡‘2) |
| 26 | 25, 22 | wne 2932 |
. . . . . . 7
wff (𝑡‘2) ≠ (𝑡‘1) |
| 27 | 5, 22 | wne 2932 |
. . . . . . 7
wff 𝑝 ≠ (𝑡‘1) |
| 28 | 23, 26, 27 | w3a 1086 |
. . . . . 6
wff ((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) |
| 29 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 30 | 29 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 31 | | citv 28412 |
. . . . . . . . . . 11
class
Itv |
| 32 | 6, 31 | cfv 6531 |
. . . . . . . . . 10
class
(Itv‘𝑔) |
| 33 | 20, 25, 32 | co 7405 |
. . . . . . . . 9
class ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) |
| 34 | 30, 33 | wcel 2108 |
. . . . . . . 8
wff 𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) |
| 35 | 30, 22 | wceq 1540 |
. . . . . . . . 9
wff 𝑥 = (𝑡‘1) |
| 36 | | chlg 28579 |
. . . . . . . . . . . 12
class
hlG |
| 37 | 6, 36 | cfv 6531 |
. . . . . . . . . . 11
class
(hlG‘𝑔) |
| 38 | 22, 37 | cfv 6531 |
. . . . . . . . . 10
class
((hlG‘𝑔)‘(𝑡‘1)) |
| 39 | 30, 5, 38 | wbr 5119 |
. . . . . . . . 9
wff 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝 |
| 40 | 35, 39 | wo 847 |
. . . . . . . 8
wff (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝) |
| 41 | 34, 40 | wa 395 |
. . . . . . 7
wff (𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)) |
| 42 | 41, 29, 8 | wrex 3060 |
. . . . . 6
wff
∃𝑥 ∈
(Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)) |
| 43 | 28, 42 | wa 395 |
. . . . 5
wff (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))) |
| 44 | 19, 43 | wa 395 |
. . . 4
wff ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)))) |
| 45 | 44, 4, 10 | copab 5181 |
. . 3
class
{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))} |
| 46 | 2, 3, 45 | cmpt 5201 |
. 2
class (𝑔 ∈ V ↦ {〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))}) |
| 47 | 1, 46 | wceq 1540 |
1
wff inA =
(𝑔 ∈ V ↦
{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))}) |