MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinag Structured version   Visualization version   GIF version

Theorem isinag 28783
Description: Property for point 𝑋 to lie in the angle ⟨“𝐴𝐵𝐶”⟩. Definition 11.23 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 15-Aug-2020.)
Hypotheses
Ref Expression
isinag.p 𝑃 = (Base‘𝐺)
isinag.i 𝐼 = (Itv‘𝐺)
isinag.k 𝐾 = (hlG‘𝐺)
isinag.x (𝜑𝑋𝑃)
isinag.a (𝜑𝐴𝑃)
isinag.b (𝜑𝐵𝑃)
isinag.c (𝜑𝐶𝑃)
isinag.g (𝜑𝐺𝑉)
Assertion
Ref Expression
isinag (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐺   𝑥,𝑃   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐼(𝑥)   𝐾(𝑥)   𝑉(𝑥)

Proof of Theorem isinag
Dummy variables 𝑝 𝑡 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → 𝑡 = ⟨“𝐴𝐵𝐶”⟩)
21fveq1d 6824 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑡‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
31fveq1d 6824 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑡‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
42, 3neeq12d 2986 . . . . . 6 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑡‘0) ≠ (𝑡‘1) ↔ (⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1)))
51fveq1d 6824 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑡‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
65, 3neeq12d 2986 . . . . . 6 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑡‘2) ≠ (𝑡‘1) ↔ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1)))
7 simpl 482 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → 𝑝 = 𝑋)
87, 3neeq12d 2986 . . . . . 6 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑝 ≠ (𝑡‘1) ↔ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)))
94, 6, 83anbi123d 1438 . . . . 5 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1))))
102, 5oveq12d 7367 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑡‘0)𝐼(𝑡‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)))
1110eleq2d 2814 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ↔ 𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2))))
123eqeq2d 2740 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑥 = (𝑡‘1) ↔ 𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1)))
13 eqidd 2730 . . . . . . . . 9 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → 𝑥 = 𝑥)
143fveq2d 6826 . . . . . . . . 9 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝐾‘(𝑡‘1)) = (𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1)))
1513, 14, 7breq123d 5106 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑥(𝐾‘(𝑡‘1))𝑝𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))
1612, 15orbi12d 918 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝) ↔ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)))
1711, 16anbi12d 632 . . . . . 6 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)) ↔ (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))))
1817rexbidv 3153 . . . . 5 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)) ↔ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))))
199, 18anbi12d 632 . . . 4 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))) ↔ (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)))))
20 eqid 2729 . . . 4 {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} = {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}
2119, 20brab2a 5712 . . 3 (𝑋{⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}⟨“𝐴𝐵𝐶”⟩ ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))) ∧ (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)))))
22 isinag.a . . . . . . . 8 (𝜑𝐴𝑃)
23 s3fv0 14798 . . . . . . . 8 (𝐴𝑃 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
2422, 23syl 17 . . . . . . 7 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
25 isinag.b . . . . . . . 8 (𝜑𝐵𝑃)
26 s3fv1 14799 . . . . . . . 8 (𝐵𝑃 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
2725, 26syl 17 . . . . . . 7 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
2824, 27neeq12d 2986 . . . . . 6 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ↔ 𝐴𝐵))
29 isinag.c . . . . . . . 8 (𝜑𝐶𝑃)
30 s3fv2 14800 . . . . . . . 8 (𝐶𝑃 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
3129, 30syl 17 . . . . . . 7 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
3231, 27neeq12d 2986 . . . . . 6 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ↔ 𝐶𝐵))
3327neeq2d 2985 . . . . . 6 (𝜑 → (𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ↔ 𝑋𝐵))
3428, 32, 333anbi123d 1438 . . . . 5 (𝜑 → (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ↔ (𝐴𝐵𝐶𝐵𝑋𝐵)))
3524, 31oveq12d 7367 . . . . . . . 8 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) = (𝐴𝐼𝐶))
3635eleq2d 2814 . . . . . . 7 (𝜑 → (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ↔ 𝑥 ∈ (𝐴𝐼𝐶)))
3727eqeq2d 2740 . . . . . . . 8 (𝜑 → (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ↔ 𝑥 = 𝐵))
3827fveq2d 6826 . . . . . . . . 9 (𝜑 → (𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1)) = (𝐾𝐵))
3938breqd 5103 . . . . . . . 8 (𝜑 → (𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋𝑥(𝐾𝐵)𝑋))
4037, 39orbi12d 918 . . . . . . 7 (𝜑 → ((𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋) ↔ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))
4136, 40anbi12d 632 . . . . . 6 (𝜑 → ((𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)) ↔ (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))
4241rexbidv 3153 . . . . 5 (𝜑 → (∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)) ↔ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))
4334, 42anbi12d 632 . . . 4 (𝜑 → ((((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))) ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
4443anbi2d 630 . . 3 (𝜑 → (((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))) ∧ (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)))) ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))) ∧ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))))
4521, 44bitrid 283 . 2 (𝜑 → (𝑋{⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}⟨“𝐴𝐵𝐶”⟩ ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))) ∧ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))))
46 isinag.g . . . 4 (𝜑𝐺𝑉)
47 elex 3457 . . . 4 (𝐺𝑉𝐺 ∈ V)
48 fveq2 6822 . . . . . . . . . 10 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
49 isinag.p . . . . . . . . . 10 𝑃 = (Base‘𝐺)
5048, 49eqtr4di 2782 . . . . . . . . 9 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
5150eleq2d 2814 . . . . . . . 8 (𝑔 = 𝐺 → (𝑝 ∈ (Base‘𝑔) ↔ 𝑝𝑃))
5250oveq1d 7364 . . . . . . . . 9 (𝑔 = 𝐺 → ((Base‘𝑔) ↑m (0..^3)) = (𝑃m (0..^3)))
5352eleq2d 2814 . . . . . . . 8 (𝑔 = 𝐺 → (𝑡 ∈ ((Base‘𝑔) ↑m (0..^3)) ↔ 𝑡 ∈ (𝑃m (0..^3))))
5451, 53anbi12d 632 . . . . . . 7 (𝑔 = 𝐺 → ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ↔ (𝑝𝑃𝑡 ∈ (𝑃m (0..^3)))))
55 fveq2 6822 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (Itv‘𝑔) = (Itv‘𝐺))
56 isinag.i . . . . . . . . . . . . 13 𝐼 = (Itv‘𝐺)
5755, 56eqtr4di 2782 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (Itv‘𝑔) = 𝐼)
5857oveqd 7366 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) = ((𝑡‘0)𝐼(𝑡‘2)))
5958eleq2d 2814 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ↔ 𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2))))
60 fveq2 6822 . . . . . . . . . . . . . 14 (𝑔 = 𝐺 → (hlG‘𝑔) = (hlG‘𝐺))
61 isinag.k . . . . . . . . . . . . . 14 𝐾 = (hlG‘𝐺)
6260, 61eqtr4di 2782 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (hlG‘𝑔) = 𝐾)
6362fveq1d 6824 . . . . . . . . . . . 12 (𝑔 = 𝐺 → ((hlG‘𝑔)‘(𝑡‘1)) = (𝐾‘(𝑡‘1)))
6463breqd 5103 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝𝑥(𝐾‘(𝑡‘1))𝑝))
6564orbi2d 915 . . . . . . . . . 10 (𝑔 = 𝐺 → ((𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝) ↔ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)))
6659, 65anbi12d 632 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)) ↔ (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))
6750, 66rexeqbidv 3310 . . . . . . . 8 (𝑔 = 𝐺 → (∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)) ↔ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))
6867anbi2d 630 . . . . . . 7 (𝑔 = 𝐺 → ((((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))) ↔ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)))))
6954, 68anbi12d 632 . . . . . 6 (𝑔 = 𝐺 → (((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)))) ↔ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))))
7069opabbidv 5158 . . . . 5 (𝑔 = 𝐺 → {⟨𝑝, 𝑡⟩ ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))} = {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))})
71 df-inag 28782 . . . . 5 inA = (𝑔 ∈ V ↦ {⟨𝑝, 𝑡⟩ ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))})
7249fvexi 6836 . . . . . . 7 𝑃 ∈ V
73 ovex 7382 . . . . . . 7 (𝑃m (0..^3)) ∈ V
7472, 73xpex 7689 . . . . . 6 (𝑃 × (𝑃m (0..^3))) ∈ V
75 opabssxp 5711 . . . . . 6 {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} ⊆ (𝑃 × (𝑃m (0..^3)))
7674, 75ssexi 5261 . . . . 5 {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} ∈ V
7770, 71, 76fvmpt 6930 . . . 4 (𝐺 ∈ V → (inA‘𝐺) = {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))})
7846, 47, 773syl 18 . . 3 (𝜑 → (inA‘𝐺) = {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))})
7978breqd 5103 . 2 (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ 𝑋{⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}⟨“𝐴𝐵𝐶”⟩))
80 isinag.x . . . 4 (𝜑𝑋𝑃)
8122, 25, 29s3cld 14779 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
82 s3len 14801 . . . . 5 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
83 3nn0 12402 . . . . . 6 3 ∈ ℕ0
84 wrdmap 14453 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))))
8572, 83, 84mp2an 692 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
8681, 82, 85sylanblc 589 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
8780, 86jca 511 . . 3 (𝜑 → (𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))))
8887biantrurd 532 . 2 (𝜑 → (((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))) ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))) ∧ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))))
8945, 79, 883bitr4d 311 1 (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3436   class class class wbr 5092  {copab 5154   × cxp 5617  cfv 6482  (class class class)co 7349  m cmap 8753  0cc0 11009  1c1 11010  2c2 12183  3c3 12184  0cn0 12384  ..^cfzo 13557  chash 14237  Word cword 14420  ⟨“cs3 14749  Basecbs 17120  Itvcitv 28378  hlGchlg 28545  inAcinag 28780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-s2 14755  df-s3 14756  df-inag 28782
This theorem is referenced by:  isinagd  28784  inagswap  28786  inagne1  28787  inagne2  28788  inagne3  28789  inaghl  28790
  Copyright terms: Public domain W3C validator