Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → 𝑡 = 〈“𝐴𝐵𝐶”〉) |
2 | 1 | fveq1d 6758 |
. . . . . . 7
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → (𝑡‘0) = (〈“𝐴𝐵𝐶”〉‘0)) |
3 | 1 | fveq1d 6758 |
. . . . . . 7
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → (𝑡‘1) = (〈“𝐴𝐵𝐶”〉‘1)) |
4 | 2, 3 | neeq12d 3004 |
. . . . . 6
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → ((𝑡‘0) ≠ (𝑡‘1) ↔ (〈“𝐴𝐵𝐶”〉‘0) ≠
(〈“𝐴𝐵𝐶”〉‘1))) |
5 | 1 | fveq1d 6758 |
. . . . . . 7
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → (𝑡‘2) = (〈“𝐴𝐵𝐶”〉‘2)) |
6 | 5, 3 | neeq12d 3004 |
. . . . . 6
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → ((𝑡‘2) ≠ (𝑡‘1) ↔ (〈“𝐴𝐵𝐶”〉‘2) ≠
(〈“𝐴𝐵𝐶”〉‘1))) |
7 | | simpl 482 |
. . . . . . 7
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → 𝑝 = 𝑋) |
8 | 7, 3 | neeq12d 3004 |
. . . . . 6
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → (𝑝 ≠ (𝑡‘1) ↔ 𝑋 ≠ (〈“𝐴𝐵𝐶”〉‘1))) |
9 | 4, 6, 8 | 3anbi123d 1434 |
. . . . 5
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ↔ ((〈“𝐴𝐵𝐶”〉‘0) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧
(〈“𝐴𝐵𝐶”〉‘2) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧ 𝑋 ≠ (〈“𝐴𝐵𝐶”〉‘1)))) |
10 | 2, 5 | oveq12d 7273 |
. . . . . . . 8
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → ((𝑡‘0)𝐼(𝑡‘2)) = ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2))) |
11 | 10 | eleq2d 2824 |
. . . . . . 7
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ↔ 𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)))) |
12 | 3 | eqeq2d 2749 |
. . . . . . . 8
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → (𝑥 = (𝑡‘1) ↔ 𝑥 = (〈“𝐴𝐵𝐶”〉‘1))) |
13 | | eqidd 2739 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → 𝑥 = 𝑥) |
14 | 3 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → (𝐾‘(𝑡‘1)) = (𝐾‘(〈“𝐴𝐵𝐶”〉‘1))) |
15 | 13, 14, 7 | breq123d 5084 |
. . . . . . . 8
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → (𝑥(𝐾‘(𝑡‘1))𝑝 ↔ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋)) |
16 | 12, 15 | orbi12d 915 |
. . . . . . 7
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → ((𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝) ↔ (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋))) |
17 | 11, 16 | anbi12d 630 |
. . . . . 6
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → ((𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)) ↔ (𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) ∧ (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋)))) |
18 | 17 | rexbidv 3225 |
. . . . 5
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → (∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)) ↔ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) ∧ (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋)))) |
19 | 9, 18 | anbi12d 630 |
. . . 4
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → ((((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))) ↔ (((〈“𝐴𝐵𝐶”〉‘0) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧
(〈“𝐴𝐵𝐶”〉‘2) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧ 𝑋 ≠ (〈“𝐴𝐵𝐶”〉‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) ∧ (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋))))) |
20 | | eqid 2738 |
. . . 4
⊢
{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} = {〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} |
21 | 19, 20 | brab2a 5670 |
. . 3
⊢ (𝑋{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}〈“𝐴𝐵𝐶”〉 ↔ ((𝑋 ∈ 𝑃 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑m (0..^3))) ∧
(((〈“𝐴𝐵𝐶”〉‘0) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧
(〈“𝐴𝐵𝐶”〉‘2) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧ 𝑋 ≠ (〈“𝐴𝐵𝐶”〉‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) ∧ (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋))))) |
22 | | isinag.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
23 | | s3fv0 14532 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑃 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) |
24 | 22, 23 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) |
25 | | isinag.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
26 | | s3fv1 14533 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝑃 → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) |
27 | 25, 26 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) |
28 | 24, 27 | neeq12d 3004 |
. . . . . 6
⊢ (𝜑 → ((〈“𝐴𝐵𝐶”〉‘0) ≠
(〈“𝐴𝐵𝐶”〉‘1) ↔ 𝐴 ≠ 𝐵)) |
29 | | isinag.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
30 | | s3fv2 14534 |
. . . . . . . 8
⊢ (𝐶 ∈ 𝑃 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) |
31 | 29, 30 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) |
32 | 31, 27 | neeq12d 3004 |
. . . . . 6
⊢ (𝜑 → ((〈“𝐴𝐵𝐶”〉‘2) ≠
(〈“𝐴𝐵𝐶”〉‘1) ↔ 𝐶 ≠ 𝐵)) |
33 | 27 | neeq2d 3003 |
. . . . . 6
⊢ (𝜑 → (𝑋 ≠ (〈“𝐴𝐵𝐶”〉‘1) ↔ 𝑋 ≠ 𝐵)) |
34 | 28, 32, 33 | 3anbi123d 1434 |
. . . . 5
⊢ (𝜑 → (((〈“𝐴𝐵𝐶”〉‘0) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧
(〈“𝐴𝐵𝐶”〉‘2) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧ 𝑋 ≠ (〈“𝐴𝐵𝐶”〉‘1)) ↔ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵))) |
35 | 24, 31 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝜑 → ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) = (𝐴𝐼𝐶)) |
36 | 35 | eleq2d 2824 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) ↔ 𝑥 ∈ (𝐴𝐼𝐶))) |
37 | 27 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ↔ 𝑥 = 𝐵)) |
38 | 27 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾‘(〈“𝐴𝐵𝐶”〉‘1)) = (𝐾‘𝐵)) |
39 | 38 | breqd 5081 |
. . . . . . . 8
⊢ (𝜑 → (𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋 ↔ 𝑥(𝐾‘𝐵)𝑋)) |
40 | 37, 39 | orbi12d 915 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋) ↔ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))) |
41 | 36, 40 | anbi12d 630 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) ∧ (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋)) ↔ (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))) |
42 | 41 | rexbidv 3225 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝑃 (𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) ∧ (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋)) ↔ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))) |
43 | 34, 42 | anbi12d 630 |
. . . 4
⊢ (𝜑 → ((((〈“𝐴𝐵𝐶”〉‘0) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧
(〈“𝐴𝐵𝐶”〉‘2) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧ 𝑋 ≠ (〈“𝐴𝐵𝐶”〉‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) ∧ (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋))) ↔ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))))) |
44 | 43 | anbi2d 628 |
. . 3
⊢ (𝜑 → (((𝑋 ∈ 𝑃 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑m (0..^3))) ∧
(((〈“𝐴𝐵𝐶”〉‘0) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧
(〈“𝐴𝐵𝐶”〉‘2) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧ 𝑋 ≠ (〈“𝐴𝐵𝐶”〉‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) ∧ (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋)))) ↔ ((𝑋 ∈ 𝑃 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑m (0..^3))) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))))) |
45 | 21, 44 | syl5bb 282 |
. 2
⊢ (𝜑 → (𝑋{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}〈“𝐴𝐵𝐶”〉 ↔ ((𝑋 ∈ 𝑃 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑m (0..^3))) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))))) |
46 | | isinag.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ 𝑉) |
47 | | elex 3440 |
. . . 4
⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) |
48 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) |
49 | | isinag.p |
. . . . . . . . . 10
⊢ 𝑃 = (Base‘𝐺) |
50 | 48, 49 | eqtr4di 2797 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃) |
51 | 50 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑝 ∈ (Base‘𝑔) ↔ 𝑝 ∈ 𝑃)) |
52 | 50 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → ((Base‘𝑔) ↑m (0..^3)) = (𝑃 ↑m
(0..^3))) |
53 | 52 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑡 ∈ ((Base‘𝑔) ↑m (0..^3)) ↔ 𝑡 ∈ (𝑃 ↑m
(0..^3)))) |
54 | 51, 53 | anbi12d 630 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ↔ (𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑m
(0..^3))))) |
55 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝐺 → (Itv‘𝑔) = (Itv‘𝐺)) |
56 | | isinag.i |
. . . . . . . . . . . . 13
⊢ 𝐼 = (Itv‘𝐺) |
57 | 55, 56 | eqtr4di 2797 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝐺 → (Itv‘𝑔) = 𝐼) |
58 | 57 | oveqd 7272 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) = ((𝑡‘0)𝐼(𝑡‘2))) |
59 | 58 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ↔ 𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)))) |
60 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝐺 → (hlG‘𝑔) = (hlG‘𝐺)) |
61 | | isinag.k |
. . . . . . . . . . . . . 14
⊢ 𝐾 = (hlG‘𝐺) |
62 | 60, 61 | eqtr4di 2797 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝐺 → (hlG‘𝑔) = 𝐾) |
63 | 62 | fveq1d 6758 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝐺 → ((hlG‘𝑔)‘(𝑡‘1)) = (𝐾‘(𝑡‘1))) |
64 | 63 | breqd 5081 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝 ↔ 𝑥(𝐾‘(𝑡‘1))𝑝)) |
65 | 64 | orbi2d 912 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → ((𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝) ↔ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))) |
66 | 59, 65 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → ((𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)) ↔ (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)))) |
67 | 50, 66 | rexeqbidv 3328 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)) ↔ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)))) |
68 | 67 | anbi2d 628 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))) ↔ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))) |
69 | 54, 68 | anbi12d 630 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)))) ↔ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)))))) |
70 | 69 | opabbidv 5136 |
. . . . 5
⊢ (𝑔 = 𝐺 → {〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))} = {〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}) |
71 | | df-inag 27102 |
. . . . 5
⊢ inA =
(𝑔 ∈ V ↦
{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))}) |
72 | 49 | fvexi 6770 |
. . . . . . 7
⊢ 𝑃 ∈ V |
73 | | ovex 7288 |
. . . . . . 7
⊢ (𝑃 ↑m (0..^3))
∈ V |
74 | 72, 73 | xpex 7581 |
. . . . . 6
⊢ (𝑃 × (𝑃 ↑m (0..^3))) ∈
V |
75 | | opabssxp 5669 |
. . . . . 6
⊢
{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} ⊆ (𝑃 × (𝑃 ↑m
(0..^3))) |
76 | 74, 75 | ssexi 5241 |
. . . . 5
⊢
{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} ∈ V |
77 | 70, 71, 76 | fvmpt 6857 |
. . . 4
⊢ (𝐺 ∈ V →
(inA‘𝐺) =
{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}) |
78 | 46, 47, 77 | 3syl 18 |
. . 3
⊢ (𝜑 → (inA‘𝐺) = {〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}) |
79 | 78 | breqd 5081 |
. 2
⊢ (𝜑 → (𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉 ↔ 𝑋{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}〈“𝐴𝐵𝐶”〉)) |
80 | | isinag.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
81 | 22, 25, 29 | s3cld 14513 |
. . . . 5
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃) |
82 | | s3len 14535 |
. . . . 5
⊢
(♯‘〈“𝐴𝐵𝐶”〉) = 3 |
83 | | 3nn0 12181 |
. . . . . 6
⊢ 3 ∈
ℕ0 |
84 | | wrdmap 14177 |
. . . . . 6
⊢ ((𝑃 ∈ V ∧ 3 ∈
ℕ0) → ((〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃 ∧ (♯‘〈“𝐴𝐵𝐶”〉) = 3) ↔
〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑m
(0..^3)))) |
85 | 72, 83, 84 | mp2an 688 |
. . . . 5
⊢
((〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃 ∧ (♯‘〈“𝐴𝐵𝐶”〉) = 3) ↔
〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑m
(0..^3))) |
86 | 81, 82, 85 | sylanblc 588 |
. . . 4
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑m
(0..^3))) |
87 | 80, 86 | jca 511 |
. . 3
⊢ (𝜑 → (𝑋 ∈ 𝑃 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑m
(0..^3)))) |
88 | 87 | biantrurd 532 |
. 2
⊢ (𝜑 → (((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))) ↔ ((𝑋 ∈ 𝑃 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑m (0..^3))) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))))) |
89 | 45, 79, 88 | 3bitr4d 310 |
1
⊢ (𝜑 → (𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉 ↔ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))))) |