Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinag Structured version   Visualization version   GIF version

Theorem isinag 26731
 Description: Property for point 𝑋 to lie in the angle ⟨“𝐴𝐵𝐶”⟩. Definition 11.23 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 15-Aug-2020.)
Hypotheses
Ref Expression
isinag.p 𝑃 = (Base‘𝐺)
isinag.i 𝐼 = (Itv‘𝐺)
isinag.k 𝐾 = (hlG‘𝐺)
isinag.x (𝜑𝑋𝑃)
isinag.a (𝜑𝐴𝑃)
isinag.b (𝜑𝐵𝑃)
isinag.c (𝜑𝐶𝑃)
isinag.g (𝜑𝐺𝑉)
Assertion
Ref Expression
isinag (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐺   𝑥,𝑃   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐼(𝑥)   𝐾(𝑥)   𝑉(𝑥)

Proof of Theorem isinag
Dummy variables 𝑝 𝑡 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → 𝑡 = ⟨“𝐴𝐵𝐶”⟩)
21fveq1d 6660 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑡‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
31fveq1d 6660 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑡‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
42, 3neeq12d 3012 . . . . . 6 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑡‘0) ≠ (𝑡‘1) ↔ (⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1)))
51fveq1d 6660 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑡‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
65, 3neeq12d 3012 . . . . . 6 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑡‘2) ≠ (𝑡‘1) ↔ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1)))
7 simpl 486 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → 𝑝 = 𝑋)
87, 3neeq12d 3012 . . . . . 6 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑝 ≠ (𝑡‘1) ↔ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)))
94, 6, 83anbi123d 1433 . . . . 5 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1))))
102, 5oveq12d 7168 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑡‘0)𝐼(𝑡‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)))
1110eleq2d 2837 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ↔ 𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2))))
123eqeq2d 2769 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑥 = (𝑡‘1) ↔ 𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1)))
13 eqidd 2759 . . . . . . . . 9 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → 𝑥 = 𝑥)
143fveq2d 6662 . . . . . . . . 9 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝐾‘(𝑡‘1)) = (𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1)))
1513, 14, 7breq123d 5046 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑥(𝐾‘(𝑡‘1))𝑝𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))
1612, 15orbi12d 916 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝) ↔ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)))
1711, 16anbi12d 633 . . . . . 6 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)) ↔ (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))))
1817rexbidv 3221 . . . . 5 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)) ↔ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))))
199, 18anbi12d 633 . . . 4 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))) ↔ (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)))))
20 eqid 2758 . . . 4 {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} = {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}
2119, 20brab2a 5613 . . 3 (𝑋{⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}⟨“𝐴𝐵𝐶”⟩ ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))) ∧ (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)))))
22 isinag.a . . . . . . . 8 (𝜑𝐴𝑃)
23 s3fv0 14300 . . . . . . . 8 (𝐴𝑃 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
2422, 23syl 17 . . . . . . 7 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
25 isinag.b . . . . . . . 8 (𝜑𝐵𝑃)
26 s3fv1 14301 . . . . . . . 8 (𝐵𝑃 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
2725, 26syl 17 . . . . . . 7 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
2824, 27neeq12d 3012 . . . . . 6 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ↔ 𝐴𝐵))
29 isinag.c . . . . . . . 8 (𝜑𝐶𝑃)
30 s3fv2 14302 . . . . . . . 8 (𝐶𝑃 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
3129, 30syl 17 . . . . . . 7 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
3231, 27neeq12d 3012 . . . . . 6 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ↔ 𝐶𝐵))
3327neeq2d 3011 . . . . . 6 (𝜑 → (𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ↔ 𝑋𝐵))
3428, 32, 333anbi123d 1433 . . . . 5 (𝜑 → (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ↔ (𝐴𝐵𝐶𝐵𝑋𝐵)))
3524, 31oveq12d 7168 . . . . . . . 8 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) = (𝐴𝐼𝐶))
3635eleq2d 2837 . . . . . . 7 (𝜑 → (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ↔ 𝑥 ∈ (𝐴𝐼𝐶)))
3727eqeq2d 2769 . . . . . . . 8 (𝜑 → (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ↔ 𝑥 = 𝐵))
3827fveq2d 6662 . . . . . . . . 9 (𝜑 → (𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1)) = (𝐾𝐵))
3938breqd 5043 . . . . . . . 8 (𝜑 → (𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋𝑥(𝐾𝐵)𝑋))
4037, 39orbi12d 916 . . . . . . 7 (𝜑 → ((𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋) ↔ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))
4136, 40anbi12d 633 . . . . . 6 (𝜑 → ((𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)) ↔ (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))
4241rexbidv 3221 . . . . 5 (𝜑 → (∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)) ↔ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))
4334, 42anbi12d 633 . . . 4 (𝜑 → ((((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))) ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
4443anbi2d 631 . . 3 (𝜑 → (((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))) ∧ (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)))) ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))) ∧ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))))
4521, 44syl5bb 286 . 2 (𝜑 → (𝑋{⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}⟨“𝐴𝐵𝐶”⟩ ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))) ∧ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))))
46 isinag.g . . . 4 (𝜑𝐺𝑉)
47 elex 3428 . . . 4 (𝐺𝑉𝐺 ∈ V)
48 fveq2 6658 . . . . . . . . . 10 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
49 isinag.p . . . . . . . . . 10 𝑃 = (Base‘𝐺)
5048, 49eqtr4di 2811 . . . . . . . . 9 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
5150eleq2d 2837 . . . . . . . 8 (𝑔 = 𝐺 → (𝑝 ∈ (Base‘𝑔) ↔ 𝑝𝑃))
5250oveq1d 7165 . . . . . . . . 9 (𝑔 = 𝐺 → ((Base‘𝑔) ↑m (0..^3)) = (𝑃m (0..^3)))
5352eleq2d 2837 . . . . . . . 8 (𝑔 = 𝐺 → (𝑡 ∈ ((Base‘𝑔) ↑m (0..^3)) ↔ 𝑡 ∈ (𝑃m (0..^3))))
5451, 53anbi12d 633 . . . . . . 7 (𝑔 = 𝐺 → ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ↔ (𝑝𝑃𝑡 ∈ (𝑃m (0..^3)))))
55 fveq2 6658 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (Itv‘𝑔) = (Itv‘𝐺))
56 isinag.i . . . . . . . . . . . . 13 𝐼 = (Itv‘𝐺)
5755, 56eqtr4di 2811 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (Itv‘𝑔) = 𝐼)
5857oveqd 7167 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) = ((𝑡‘0)𝐼(𝑡‘2)))
5958eleq2d 2837 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ↔ 𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2))))
60 fveq2 6658 . . . . . . . . . . . . . 14 (𝑔 = 𝐺 → (hlG‘𝑔) = (hlG‘𝐺))
61 isinag.k . . . . . . . . . . . . . 14 𝐾 = (hlG‘𝐺)
6260, 61eqtr4di 2811 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (hlG‘𝑔) = 𝐾)
6362fveq1d 6660 . . . . . . . . . . . 12 (𝑔 = 𝐺 → ((hlG‘𝑔)‘(𝑡‘1)) = (𝐾‘(𝑡‘1)))
6463breqd 5043 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝𝑥(𝐾‘(𝑡‘1))𝑝))
6564orbi2d 913 . . . . . . . . . 10 (𝑔 = 𝐺 → ((𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝) ↔ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)))
6659, 65anbi12d 633 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)) ↔ (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))
6750, 66rexeqbidv 3320 . . . . . . . 8 (𝑔 = 𝐺 → (∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)) ↔ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))
6867anbi2d 631 . . . . . . 7 (𝑔 = 𝐺 → ((((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))) ↔ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)))))
6954, 68anbi12d 633 . . . . . 6 (𝑔 = 𝐺 → (((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)))) ↔ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))))
7069opabbidv 5098 . . . . 5 (𝑔 = 𝐺 → {⟨𝑝, 𝑡⟩ ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))} = {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))})
71 df-inag 26730 . . . . 5 inA = (𝑔 ∈ V ↦ {⟨𝑝, 𝑡⟩ ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))})
7249fvexi 6672 . . . . . . 7 𝑃 ∈ V
73 ovex 7183 . . . . . . 7 (𝑃m (0..^3)) ∈ V
7472, 73xpex 7474 . . . . . 6 (𝑃 × (𝑃m (0..^3))) ∈ V
75 opabssxp 5612 . . . . . 6 {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} ⊆ (𝑃 × (𝑃m (0..^3)))
7674, 75ssexi 5192 . . . . 5 {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} ∈ V
7770, 71, 76fvmpt 6759 . . . 4 (𝐺 ∈ V → (inA‘𝐺) = {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))})
7846, 47, 773syl 18 . . 3 (𝜑 → (inA‘𝐺) = {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))})
7978breqd 5043 . 2 (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ 𝑋{⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}⟨“𝐴𝐵𝐶”⟩))
80 isinag.x . . . 4 (𝜑𝑋𝑃)
8122, 25, 29s3cld 14281 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
82 s3len 14303 . . . . 5 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
83 3nn0 11952 . . . . . 6 3 ∈ ℕ0
84 wrdmap 13945 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))))
8572, 83, 84mp2an 691 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
8681, 82, 85sylanblc 592 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
8780, 86jca 515 . . 3 (𝜑 → (𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))))
8887biantrurd 536 . 2 (𝜑 → (((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))) ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))) ∧ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))))
8945, 79, 883bitr4d 314 1 (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∃wrex 3071  Vcvv 3409   class class class wbr 5032  {copab 5094   × cxp 5522  ‘cfv 6335  (class class class)co 7150   ↑m cmap 8416  0cc0 10575  1c1 10576  2c2 11729  3c3 11730  ℕ0cn0 11934  ..^cfzo 13082  ♯chash 13740  Word cword 13913  ⟨“cs3 14251  Basecbs 16541  Itvcitv 26329  hlGchlg 26493  inAcinag 26728 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940  df-fzo 13083  df-hash 13741  df-word 13914  df-concat 13970  df-s1 13997  df-s2 14257  df-s3 14258  df-inag 26730 This theorem is referenced by:  isinagd  26732  inagswap  26734  inagne1  26735  inagne2  26736  inagne3  26737  inaghl  26738
 Copyright terms: Public domain W3C validator