MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinag Structured version   Visualization version   GIF version

Theorem isinag 28772
Description: Property for point 𝑋 to lie in the angle ⟨“𝐴𝐵𝐶”⟩. Definition 11.23 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 15-Aug-2020.)
Hypotheses
Ref Expression
isinag.p 𝑃 = (Base‘𝐺)
isinag.i 𝐼 = (Itv‘𝐺)
isinag.k 𝐾 = (hlG‘𝐺)
isinag.x (𝜑𝑋𝑃)
isinag.a (𝜑𝐴𝑃)
isinag.b (𝜑𝐵𝑃)
isinag.c (𝜑𝐶𝑃)
isinag.g (𝜑𝐺𝑉)
Assertion
Ref Expression
isinag (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐺   𝑥,𝑃   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐼(𝑥)   𝐾(𝑥)   𝑉(𝑥)

Proof of Theorem isinag
Dummy variables 𝑝 𝑡 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → 𝑡 = ⟨“𝐴𝐵𝐶”⟩)
21fveq1d 6863 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑡‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
31fveq1d 6863 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑡‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
42, 3neeq12d 2987 . . . . . 6 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑡‘0) ≠ (𝑡‘1) ↔ (⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1)))
51fveq1d 6863 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑡‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
65, 3neeq12d 2987 . . . . . 6 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑡‘2) ≠ (𝑡‘1) ↔ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1)))
7 simpl 482 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → 𝑝 = 𝑋)
87, 3neeq12d 2987 . . . . . 6 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑝 ≠ (𝑡‘1) ↔ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)))
94, 6, 83anbi123d 1438 . . . . 5 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1))))
102, 5oveq12d 7408 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑡‘0)𝐼(𝑡‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)))
1110eleq2d 2815 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ↔ 𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2))))
123eqeq2d 2741 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑥 = (𝑡‘1) ↔ 𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1)))
13 eqidd 2731 . . . . . . . . 9 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → 𝑥 = 𝑥)
143fveq2d 6865 . . . . . . . . 9 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝐾‘(𝑡‘1)) = (𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1)))
1513, 14, 7breq123d 5124 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑥(𝐾‘(𝑡‘1))𝑝𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))
1612, 15orbi12d 918 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝) ↔ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)))
1711, 16anbi12d 632 . . . . . 6 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)) ↔ (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))))
1817rexbidv 3158 . . . . 5 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)) ↔ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))))
199, 18anbi12d 632 . . . 4 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))) ↔ (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)))))
20 eqid 2730 . . . 4 {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} = {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}
2119, 20brab2a 5735 . . 3 (𝑋{⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}⟨“𝐴𝐵𝐶”⟩ ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))) ∧ (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)))))
22 isinag.a . . . . . . . 8 (𝜑𝐴𝑃)
23 s3fv0 14864 . . . . . . . 8 (𝐴𝑃 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
2422, 23syl 17 . . . . . . 7 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
25 isinag.b . . . . . . . 8 (𝜑𝐵𝑃)
26 s3fv1 14865 . . . . . . . 8 (𝐵𝑃 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
2725, 26syl 17 . . . . . . 7 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
2824, 27neeq12d 2987 . . . . . 6 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ↔ 𝐴𝐵))
29 isinag.c . . . . . . . 8 (𝜑𝐶𝑃)
30 s3fv2 14866 . . . . . . . 8 (𝐶𝑃 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
3129, 30syl 17 . . . . . . 7 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
3231, 27neeq12d 2987 . . . . . 6 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ↔ 𝐶𝐵))
3327neeq2d 2986 . . . . . 6 (𝜑 → (𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ↔ 𝑋𝐵))
3428, 32, 333anbi123d 1438 . . . . 5 (𝜑 → (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ↔ (𝐴𝐵𝐶𝐵𝑋𝐵)))
3524, 31oveq12d 7408 . . . . . . . 8 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) = (𝐴𝐼𝐶))
3635eleq2d 2815 . . . . . . 7 (𝜑 → (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ↔ 𝑥 ∈ (𝐴𝐼𝐶)))
3727eqeq2d 2741 . . . . . . . 8 (𝜑 → (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ↔ 𝑥 = 𝐵))
3827fveq2d 6865 . . . . . . . . 9 (𝜑 → (𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1)) = (𝐾𝐵))
3938breqd 5121 . . . . . . . 8 (𝜑 → (𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋𝑥(𝐾𝐵)𝑋))
4037, 39orbi12d 918 . . . . . . 7 (𝜑 → ((𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋) ↔ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))
4136, 40anbi12d 632 . . . . . 6 (𝜑 → ((𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)) ↔ (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))
4241rexbidv 3158 . . . . 5 (𝜑 → (∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)) ↔ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))
4334, 42anbi12d 632 . . . 4 (𝜑 → ((((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))) ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
4443anbi2d 630 . . 3 (𝜑 → (((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))) ∧ (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)))) ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))) ∧ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))))
4521, 44bitrid 283 . 2 (𝜑 → (𝑋{⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}⟨“𝐴𝐵𝐶”⟩ ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))) ∧ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))))
46 isinag.g . . . 4 (𝜑𝐺𝑉)
47 elex 3471 . . . 4 (𝐺𝑉𝐺 ∈ V)
48 fveq2 6861 . . . . . . . . . 10 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
49 isinag.p . . . . . . . . . 10 𝑃 = (Base‘𝐺)
5048, 49eqtr4di 2783 . . . . . . . . 9 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
5150eleq2d 2815 . . . . . . . 8 (𝑔 = 𝐺 → (𝑝 ∈ (Base‘𝑔) ↔ 𝑝𝑃))
5250oveq1d 7405 . . . . . . . . 9 (𝑔 = 𝐺 → ((Base‘𝑔) ↑m (0..^3)) = (𝑃m (0..^3)))
5352eleq2d 2815 . . . . . . . 8 (𝑔 = 𝐺 → (𝑡 ∈ ((Base‘𝑔) ↑m (0..^3)) ↔ 𝑡 ∈ (𝑃m (0..^3))))
5451, 53anbi12d 632 . . . . . . 7 (𝑔 = 𝐺 → ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ↔ (𝑝𝑃𝑡 ∈ (𝑃m (0..^3)))))
55 fveq2 6861 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (Itv‘𝑔) = (Itv‘𝐺))
56 isinag.i . . . . . . . . . . . . 13 𝐼 = (Itv‘𝐺)
5755, 56eqtr4di 2783 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (Itv‘𝑔) = 𝐼)
5857oveqd 7407 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) = ((𝑡‘0)𝐼(𝑡‘2)))
5958eleq2d 2815 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ↔ 𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2))))
60 fveq2 6861 . . . . . . . . . . . . . 14 (𝑔 = 𝐺 → (hlG‘𝑔) = (hlG‘𝐺))
61 isinag.k . . . . . . . . . . . . . 14 𝐾 = (hlG‘𝐺)
6260, 61eqtr4di 2783 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (hlG‘𝑔) = 𝐾)
6362fveq1d 6863 . . . . . . . . . . . 12 (𝑔 = 𝐺 → ((hlG‘𝑔)‘(𝑡‘1)) = (𝐾‘(𝑡‘1)))
6463breqd 5121 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝𝑥(𝐾‘(𝑡‘1))𝑝))
6564orbi2d 915 . . . . . . . . . 10 (𝑔 = 𝐺 → ((𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝) ↔ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)))
6659, 65anbi12d 632 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)) ↔ (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))
6750, 66rexeqbidv 3322 . . . . . . . 8 (𝑔 = 𝐺 → (∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)) ↔ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))
6867anbi2d 630 . . . . . . 7 (𝑔 = 𝐺 → ((((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))) ↔ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)))))
6954, 68anbi12d 632 . . . . . 6 (𝑔 = 𝐺 → (((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)))) ↔ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))))
7069opabbidv 5176 . . . . 5 (𝑔 = 𝐺 → {⟨𝑝, 𝑡⟩ ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))} = {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))})
71 df-inag 28771 . . . . 5 inA = (𝑔 ∈ V ↦ {⟨𝑝, 𝑡⟩ ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))})
7249fvexi 6875 . . . . . . 7 𝑃 ∈ V
73 ovex 7423 . . . . . . 7 (𝑃m (0..^3)) ∈ V
7472, 73xpex 7732 . . . . . 6 (𝑃 × (𝑃m (0..^3))) ∈ V
75 opabssxp 5734 . . . . . 6 {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} ⊆ (𝑃 × (𝑃m (0..^3)))
7674, 75ssexi 5280 . . . . 5 {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} ∈ V
7770, 71, 76fvmpt 6971 . . . 4 (𝐺 ∈ V → (inA‘𝐺) = {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))})
7846, 47, 773syl 18 . . 3 (𝜑 → (inA‘𝐺) = {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))})
7978breqd 5121 . 2 (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ 𝑋{⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}⟨“𝐴𝐵𝐶”⟩))
80 isinag.x . . . 4 (𝜑𝑋𝑃)
8122, 25, 29s3cld 14845 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
82 s3len 14867 . . . . 5 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
83 3nn0 12467 . . . . . 6 3 ∈ ℕ0
84 wrdmap 14518 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))))
8572, 83, 84mp2an 692 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
8681, 82, 85sylanblc 589 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3)))
8780, 86jca 511 . . 3 (𝜑 → (𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))))
8887biantrurd 532 . 2 (𝜑 → (((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))) ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃m (0..^3))) ∧ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))))
8945, 79, 883bitr4d 311 1 (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  Vcvv 3450   class class class wbr 5110  {copab 5172   × cxp 5639  cfv 6514  (class class class)co 7390  m cmap 8802  0cc0 11075  1c1 11076  2c2 12248  3c3 12249  0cn0 12449  ..^cfzo 13622  chash 14302  Word cword 14485  ⟨“cs3 14815  Basecbs 17186  Itvcitv 28367  hlGchlg 28534  inAcinag 28769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-s3 14822  df-inag 28771
This theorem is referenced by:  isinagd  28773  inagswap  28775  inagne1  28776  inagne2  28777  inagne3  28778  inaghl  28779
  Copyright terms: Public domain W3C validator