MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinag Structured version   Visualization version   GIF version

Theorem isinag 26020
Description: Property for point 𝑋 to lie in the angle ⟨“𝐴𝐵𝐶”⟩ Defnition 11.23 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 15-Aug-2020.)
Hypotheses
Ref Expression
isinag.p 𝑃 = (Base‘𝐺)
isinag.i 𝐼 = (Itv‘𝐺)
isinag.k 𝐾 = (hlG‘𝐺)
isinag.x (𝜑𝑋𝑃)
isinag.a (𝜑𝐴𝑃)
isinag.b (𝜑𝐵𝑃)
isinag.c (𝜑𝐶𝑃)
isinag.g (𝜑𝐺𝑉)
Assertion
Ref Expression
isinag (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐺   𝑥,𝑃   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐼(𝑥)   𝐾(𝑥)   𝑉(𝑥)

Proof of Theorem isinag
Dummy variables 𝑝 𝑡 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . . . 9 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → 𝑡 = ⟨“𝐴𝐵𝐶”⟩)
21fveq1d 6377 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑡‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
31fveq1d 6377 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑡‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
42, 3neeq12d 2998 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑡‘0) ≠ (𝑡‘1) ↔ (⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1)))
51fveq1d 6377 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑡‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
65, 3neeq12d 2998 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑡‘2) ≠ (𝑡‘1) ↔ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1)))
7 simpl 474 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → 𝑝 = 𝑋)
87, 3neeq12d 2998 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑝 ≠ (𝑡‘1) ↔ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)))
94, 6, 83anbi123d 1560 . . . . . 6 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1))))
10 eqidd 2766 . . . . . . . . 9 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → 𝑥 = 𝑥)
112, 5oveq12d 6860 . . . . . . . . 9 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑡‘0)𝐼(𝑡‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)))
1210, 11eleq12d 2838 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ↔ 𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2))))
1310, 3eqeq12d 2780 . . . . . . . . 9 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑥 = (𝑡‘1) ↔ 𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1)))
143fveq2d 6379 . . . . . . . . . 10 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝐾‘(𝑡‘1)) = (𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1)))
1510, 14, 7breq123d 4823 . . . . . . . . 9 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑥(𝐾‘(𝑡‘1))𝑝𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))
1613, 15orbi12d 942 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝) ↔ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)))
1712, 16anbi12d 624 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)) ↔ (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))))
1817rexbidv 3199 . . . . . 6 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)) ↔ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))))
199, 18anbi12d 624 . . . . 5 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))) ↔ (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)))))
20 eqid 2765 . . . . 5 {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} = {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}
2119, 20brab2a 5364 . . . 4 (𝑋{⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}⟨“𝐴𝐵𝐶”⟩ ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)))))
2221a1i 11 . . 3 (𝜑 → (𝑋{⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}⟨“𝐴𝐵𝐶”⟩ ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))))))
23 biidd 253 . . . 4 (𝜑 → ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))) ↔ (𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)))))
24 isinag.a . . . . . . . 8 (𝜑𝐴𝑃)
25 s3fv0 13922 . . . . . . . 8 (𝐴𝑃 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
2624, 25syl 17 . . . . . . 7 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
27 isinag.b . . . . . . . 8 (𝜑𝐵𝑃)
28 s3fv1 13923 . . . . . . . 8 (𝐵𝑃 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
2927, 28syl 17 . . . . . . 7 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
3026, 29neeq12d 2998 . . . . . 6 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ↔ 𝐴𝐵))
31 isinag.c . . . . . . . 8 (𝜑𝐶𝑃)
32 s3fv2 13924 . . . . . . . 8 (𝐶𝑃 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
3331, 32syl 17 . . . . . . 7 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
3433, 29neeq12d 2998 . . . . . 6 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ↔ 𝐶𝐵))
3529neeq2d 2997 . . . . . 6 (𝜑 → (𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ↔ 𝑋𝐵))
3630, 34, 353anbi123d 1560 . . . . 5 (𝜑 → (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ↔ (𝐴𝐵𝐶𝐵𝑋𝐵)))
3726, 33oveq12d 6860 . . . . . . . 8 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) = (𝐴𝐼𝐶))
3837eleq2d 2830 . . . . . . 7 (𝜑 → (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ↔ 𝑥 ∈ (𝐴𝐼𝐶)))
3929eqeq2d 2775 . . . . . . . 8 (𝜑 → (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ↔ 𝑥 = 𝐵))
4029fveq2d 6379 . . . . . . . . 9 (𝜑 → (𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1)) = (𝐾𝐵))
4140breqd 4820 . . . . . . . 8 (𝜑 → (𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋𝑥(𝐾𝐵)𝑋))
4239, 41orbi12d 942 . . . . . . 7 (𝜑 → ((𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋) ↔ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))
4338, 42anbi12d 624 . . . . . 6 (𝜑 → ((𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)) ↔ (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))
4443rexbidv 3199 . . . . 5 (𝜑 → (∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)) ↔ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))
4536, 44anbi12d 624 . . . 4 (𝜑 → ((((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))) ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
4623, 45anbi12d 624 . . 3 (𝜑 → (((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)))) ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))))
4722, 46bitrd 270 . 2 (𝜑 → (𝑋{⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}⟨“𝐴𝐵𝐶”⟩ ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))))
48 isinag.g . . . 4 (𝜑𝐺𝑉)
49 elex 3365 . . . 4 (𝐺𝑉𝐺 ∈ V)
50 fveq2 6375 . . . . . . . . . 10 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
51 isinag.p . . . . . . . . . 10 𝑃 = (Base‘𝐺)
5250, 51syl6eqr 2817 . . . . . . . . 9 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
5352eleq2d 2830 . . . . . . . 8 (𝑔 = 𝐺 → (𝑝 ∈ (Base‘𝑔) ↔ 𝑝𝑃))
5452oveq1d 6857 . . . . . . . . 9 (𝑔 = 𝐺 → ((Base‘𝑔) ↑𝑚 (0..^3)) = (𝑃𝑚 (0..^3)))
5554eleq2d 2830 . . . . . . . 8 (𝑔 = 𝐺 → (𝑡 ∈ ((Base‘𝑔) ↑𝑚 (0..^3)) ↔ 𝑡 ∈ (𝑃𝑚 (0..^3))))
5653, 55anbi12d 624 . . . . . . 7 (𝑔 = 𝐺 → ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑𝑚 (0..^3))) ↔ (𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3)))))
57 fveq2 6375 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (Itv‘𝑔) = (Itv‘𝐺))
58 isinag.i . . . . . . . . . . . . 13 𝐼 = (Itv‘𝐺)
5957, 58syl6eqr 2817 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (Itv‘𝑔) = 𝐼)
6059oveqd 6859 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) = ((𝑡‘0)𝐼(𝑡‘2)))
6160eleq2d 2830 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ↔ 𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2))))
62 fveq2 6375 . . . . . . . . . . . . . 14 (𝑔 = 𝐺 → (hlG‘𝑔) = (hlG‘𝐺))
63 isinag.k . . . . . . . . . . . . . 14 𝐾 = (hlG‘𝐺)
6462, 63syl6eqr 2817 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (hlG‘𝑔) = 𝐾)
6564fveq1d 6377 . . . . . . . . . . . 12 (𝑔 = 𝐺 → ((hlG‘𝑔)‘(𝑡‘1)) = (𝐾‘(𝑡‘1)))
6665breqd 4820 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝𝑥(𝐾‘(𝑡‘1))𝑝))
6766orbi2d 939 . . . . . . . . . 10 (𝑔 = 𝐺 → ((𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝) ↔ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)))
6861, 67anbi12d 624 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)) ↔ (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))
6952, 68rexeqbidv 3301 . . . . . . . 8 (𝑔 = 𝐺 → (∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)) ↔ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))
7069anbi2d 622 . . . . . . 7 (𝑔 = 𝐺 → ((((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))) ↔ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)))))
7156, 70anbi12d 624 . . . . . 6 (𝑔 = 𝐺 → (((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)))) ↔ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))))
7271opabbidv 4875 . . . . 5 (𝑔 = 𝐺 → {⟨𝑝, 𝑡⟩ ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))} = {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))})
73 df-inag 26019 . . . . 5 inA = (𝑔 ∈ V ↦ {⟨𝑝, 𝑡⟩ ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))})
7451fvexi 6389 . . . . . . 7 𝑃 ∈ V
75 ovex 6874 . . . . . . 7 (𝑃𝑚 (0..^3)) ∈ V
7674, 75xpex 7160 . . . . . 6 (𝑃 × (𝑃𝑚 (0..^3))) ∈ V
77 opabssxp 5363 . . . . . 6 {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} ⊆ (𝑃 × (𝑃𝑚 (0..^3)))
7876, 77ssexi 4964 . . . . 5 {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} ∈ V
7972, 73, 78fvmpt 6471 . . . 4 (𝐺 ∈ V → (inA‘𝐺) = {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))})
8048, 49, 793syl 18 . . 3 (𝜑 → (inA‘𝐺) = {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))})
8180breqd 4820 . 2 (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ 𝑋{⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}⟨“𝐴𝐵𝐶”⟩))
82 isinag.x . . . 4 (𝜑𝑋𝑃)
8324, 27, 31s3cld 13903 . . . . . 6 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
84 s3len 13925 . . . . . . 7 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
8584a1i 11 . . . . . 6 (𝜑 → (♯‘⟨“𝐴𝐵𝐶”⟩) = 3)
8683, 85jca 507 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3))
87 3nn0 11558 . . . . . 6 3 ∈ ℕ0
88 wrdmap 13517 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))))
8974, 87, 88mp2an 683 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)))
9086, 89sylib 209 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)))
9182, 90jca 507 . . 3 (𝜑 → (𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))))
9291biantrurd 528 . 2 (𝜑 → (((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))) ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))))
9347, 81, 923bitr4d 302 1 (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 873  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wrex 3056  Vcvv 3350   class class class wbr 4809  {copab 4871   × cxp 5275  cfv 6068  (class class class)co 6842  𝑚 cmap 8060  0cc0 10189  1c1 10190  2c2 11327  3c3 11328  0cn0 11538  ..^cfzo 12673  chash 13321  Word cword 13486  ⟨“cs3 13873  Basecbs 16132  Itvcitv 25626  hlGchlg 25786  inAcinag 26017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13487  df-concat 13542  df-s1 13567  df-s2 13879  df-s3 13880  df-inag 26019
This theorem is referenced by:  inagswap  26021  inaghl  26022
  Copyright terms: Public domain W3C validator