Detailed syntax breakdown of Definition df-ismt
| Step | Hyp | Ref
| Expression |
| 1 | | cismt 28516 |
. 2
class
Ismt |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | vh |
. . 3
setvar ℎ |
| 4 | | cvv 3464 |
. . 3
class
V |
| 5 | 2 | cv 1539 |
. . . . . . 7
class 𝑔 |
| 6 | | cbs 17233 |
. . . . . . 7
class
Base |
| 7 | 5, 6 | cfv 6536 |
. . . . . 6
class
(Base‘𝑔) |
| 8 | 3 | cv 1539 |
. . . . . . 7
class ℎ |
| 9 | 8, 6 | cfv 6536 |
. . . . . 6
class
(Base‘ℎ) |
| 10 | | vf |
. . . . . . 7
setvar 𝑓 |
| 11 | 10 | cv 1539 |
. . . . . 6
class 𝑓 |
| 12 | 7, 9, 11 | wf1o 6535 |
. . . . 5
wff 𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) |
| 13 | | va |
. . . . . . . . . . 11
setvar 𝑎 |
| 14 | 13 | cv 1539 |
. . . . . . . . . 10
class 𝑎 |
| 15 | 14, 11 | cfv 6536 |
. . . . . . . . 9
class (𝑓‘𝑎) |
| 16 | | vb |
. . . . . . . . . . 11
setvar 𝑏 |
| 17 | 16 | cv 1539 |
. . . . . . . . . 10
class 𝑏 |
| 18 | 17, 11 | cfv 6536 |
. . . . . . . . 9
class (𝑓‘𝑏) |
| 19 | | cds 17285 |
. . . . . . . . . 10
class
dist |
| 20 | 8, 19 | cfv 6536 |
. . . . . . . . 9
class
(dist‘ℎ) |
| 21 | 15, 18, 20 | co 7410 |
. . . . . . . 8
class ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) |
| 22 | 5, 19 | cfv 6536 |
. . . . . . . . 9
class
(dist‘𝑔) |
| 23 | 14, 17, 22 | co 7410 |
. . . . . . . 8
class (𝑎(dist‘𝑔)𝑏) |
| 24 | 21, 23 | wceq 1540 |
. . . . . . 7
wff ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏) |
| 25 | 24, 16, 7 | wral 3052 |
. . . . . 6
wff
∀𝑏 ∈
(Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏) |
| 26 | 25, 13, 7 | wral 3052 |
. . . . 5
wff
∀𝑎 ∈
(Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏) |
| 27 | 12, 26 | wa 395 |
. . . 4
wff (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏)) |
| 28 | 27, 10 | cab 2714 |
. . 3
class {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏))} |
| 29 | 2, 3, 4, 4, 28 | cmpo 7412 |
. 2
class (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏))}) |
| 30 | 1, 29 | wceq 1540 |
1
wff Ismt =
(𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏))}) |