Detailed syntax breakdown of Definition df-ismt
Step | Hyp | Ref
| Expression |
1 | | cismt 26893 |
. 2
class
Ismt |
2 | | vg |
. . 3
setvar 𝑔 |
3 | | vh |
. . 3
setvar ℎ |
4 | | cvv 3432 |
. . 3
class
V |
5 | 2 | cv 1538 |
. . . . . . 7
class 𝑔 |
6 | | cbs 16912 |
. . . . . . 7
class
Base |
7 | 5, 6 | cfv 6433 |
. . . . . 6
class
(Base‘𝑔) |
8 | 3 | cv 1538 |
. . . . . . 7
class ℎ |
9 | 8, 6 | cfv 6433 |
. . . . . 6
class
(Base‘ℎ) |
10 | | vf |
. . . . . . 7
setvar 𝑓 |
11 | 10 | cv 1538 |
. . . . . 6
class 𝑓 |
12 | 7, 9, 11 | wf1o 6432 |
. . . . 5
wff 𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) |
13 | | va |
. . . . . . . . . . 11
setvar 𝑎 |
14 | 13 | cv 1538 |
. . . . . . . . . 10
class 𝑎 |
15 | 14, 11 | cfv 6433 |
. . . . . . . . 9
class (𝑓‘𝑎) |
16 | | vb |
. . . . . . . . . . 11
setvar 𝑏 |
17 | 16 | cv 1538 |
. . . . . . . . . 10
class 𝑏 |
18 | 17, 11 | cfv 6433 |
. . . . . . . . 9
class (𝑓‘𝑏) |
19 | | cds 16971 |
. . . . . . . . . 10
class
dist |
20 | 8, 19 | cfv 6433 |
. . . . . . . . 9
class
(dist‘ℎ) |
21 | 15, 18, 20 | co 7275 |
. . . . . . . 8
class ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) |
22 | 5, 19 | cfv 6433 |
. . . . . . . . 9
class
(dist‘𝑔) |
23 | 14, 17, 22 | co 7275 |
. . . . . . . 8
class (𝑎(dist‘𝑔)𝑏) |
24 | 21, 23 | wceq 1539 |
. . . . . . 7
wff ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏) |
25 | 24, 16, 7 | wral 3064 |
. . . . . 6
wff
∀𝑏 ∈
(Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏) |
26 | 25, 13, 7 | wral 3064 |
. . . . 5
wff
∀𝑎 ∈
(Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏) |
27 | 12, 26 | wa 396 |
. . . 4
wff (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏)) |
28 | 27, 10 | cab 2715 |
. . 3
class {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏))} |
29 | 2, 3, 4, 4, 28 | cmpo 7277 |
. 2
class (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏))}) |
30 | 1, 29 | wceq 1539 |
1
wff Ismt =
(𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏))}) |