Detailed syntax breakdown of Definition df-ismt
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cismt 28541 | . 2
class
Ismt | 
| 2 |  | vg | . . 3
setvar 𝑔 | 
| 3 |  | vh | . . 3
setvar ℎ | 
| 4 |  | cvv 3479 | . . 3
class
V | 
| 5 | 2 | cv 1538 | . . . . . . 7
class 𝑔 | 
| 6 |  | cbs 17248 | . . . . . . 7
class
Base | 
| 7 | 5, 6 | cfv 6560 | . . . . . 6
class
(Base‘𝑔) | 
| 8 | 3 | cv 1538 | . . . . . . 7
class ℎ | 
| 9 | 8, 6 | cfv 6560 | . . . . . 6
class
(Base‘ℎ) | 
| 10 |  | vf | . . . . . . 7
setvar 𝑓 | 
| 11 | 10 | cv 1538 | . . . . . 6
class 𝑓 | 
| 12 | 7, 9, 11 | wf1o 6559 | . . . . 5
wff 𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) | 
| 13 |  | va | . . . . . . . . . . 11
setvar 𝑎 | 
| 14 | 13 | cv 1538 | . . . . . . . . . 10
class 𝑎 | 
| 15 | 14, 11 | cfv 6560 | . . . . . . . . 9
class (𝑓‘𝑎) | 
| 16 |  | vb | . . . . . . . . . . 11
setvar 𝑏 | 
| 17 | 16 | cv 1538 | . . . . . . . . . 10
class 𝑏 | 
| 18 | 17, 11 | cfv 6560 | . . . . . . . . 9
class (𝑓‘𝑏) | 
| 19 |  | cds 17307 | . . . . . . . . . 10
class
dist | 
| 20 | 8, 19 | cfv 6560 | . . . . . . . . 9
class
(dist‘ℎ) | 
| 21 | 15, 18, 20 | co 7432 | . . . . . . . 8
class ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) | 
| 22 | 5, 19 | cfv 6560 | . . . . . . . . 9
class
(dist‘𝑔) | 
| 23 | 14, 17, 22 | co 7432 | . . . . . . . 8
class (𝑎(dist‘𝑔)𝑏) | 
| 24 | 21, 23 | wceq 1539 | . . . . . . 7
wff ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏) | 
| 25 | 24, 16, 7 | wral 3060 | . . . . . 6
wff
∀𝑏 ∈
(Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏) | 
| 26 | 25, 13, 7 | wral 3060 | . . . . 5
wff
∀𝑎 ∈
(Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏) | 
| 27 | 12, 26 | wa 395 | . . . 4
wff (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏)) | 
| 28 | 27, 10 | cab 2713 | . . 3
class {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏))} | 
| 29 | 2, 3, 4, 4, 28 | cmpo 7434 | . 2
class (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏))}) | 
| 30 | 1, 29 | wceq 1539 | 1
wff Ismt =
(𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏))}) |