Step | Hyp | Ref
| Expression |
1 | | cismt 27814 |
. 2
class
Ismt |
2 | | vg |
. . 3
setvar π |
3 | | vh |
. . 3
setvar β |
4 | | cvv 3475 |
. . 3
class
V |
5 | 2 | cv 1541 |
. . . . . . 7
class π |
6 | | cbs 17144 |
. . . . . . 7
class
Base |
7 | 5, 6 | cfv 6544 |
. . . . . 6
class
(Baseβπ) |
8 | 3 | cv 1541 |
. . . . . . 7
class β |
9 | 8, 6 | cfv 6544 |
. . . . . 6
class
(Baseββ) |
10 | | vf |
. . . . . . 7
setvar π |
11 | 10 | cv 1541 |
. . . . . 6
class π |
12 | 7, 9, 11 | wf1o 6543 |
. . . . 5
wff π:(Baseβπ)β1-1-ontoβ(Baseββ) |
13 | | va |
. . . . . . . . . . 11
setvar π |
14 | 13 | cv 1541 |
. . . . . . . . . 10
class π |
15 | 14, 11 | cfv 6544 |
. . . . . . . . 9
class (πβπ) |
16 | | vb |
. . . . . . . . . . 11
setvar π |
17 | 16 | cv 1541 |
. . . . . . . . . 10
class π |
18 | 17, 11 | cfv 6544 |
. . . . . . . . 9
class (πβπ) |
19 | | cds 17206 |
. . . . . . . . . 10
class
dist |
20 | 8, 19 | cfv 6544 |
. . . . . . . . 9
class
(distββ) |
21 | 15, 18, 20 | co 7409 |
. . . . . . . 8
class ((πβπ)(distββ)(πβπ)) |
22 | 5, 19 | cfv 6544 |
. . . . . . . . 9
class
(distβπ) |
23 | 14, 17, 22 | co 7409 |
. . . . . . . 8
class (π(distβπ)π) |
24 | 21, 23 | wceq 1542 |
. . . . . . 7
wff ((πβπ)(distββ)(πβπ)) = (π(distβπ)π) |
25 | 24, 16, 7 | wral 3062 |
. . . . . 6
wff
βπ β
(Baseβπ)((πβπ)(distββ)(πβπ)) = (π(distβπ)π) |
26 | 25, 13, 7 | wral 3062 |
. . . . 5
wff
βπ β
(Baseβπ)βπ β (Baseβπ)((πβπ)(distββ)(πβπ)) = (π(distβπ)π) |
27 | 12, 26 | wa 397 |
. . . 4
wff (π:(Baseβπ)β1-1-ontoβ(Baseββ) β§ βπ β (Baseβπ)βπ β (Baseβπ)((πβπ)(distββ)(πβπ)) = (π(distβπ)π)) |
28 | 27, 10 | cab 2710 |
. . 3
class {π β£ (π:(Baseβπ)β1-1-ontoβ(Baseββ) β§ βπ β (Baseβπ)βπ β (Baseβπ)((πβπ)(distββ)(πβπ)) = (π(distβπ)π))} |
29 | 2, 3, 4, 4, 28 | cmpo 7411 |
. 2
class (π β V, β β V β¦ {π β£ (π:(Baseβπ)β1-1-ontoβ(Baseββ) β§ βπ β (Baseβπ)βπ β (Baseβπ)((πβπ)(distββ)(πβπ)) = (π(distβπ)π))}) |
30 | 1, 29 | wceq 1542 |
1
wff Ismt =
(π β V, β β V β¦ {π β£ (π:(Baseβπ)β1-1-ontoβ(Baseββ) β§ βπ β (Baseβπ)βπ β (Baseβπ)((πβπ)(distββ)(πβπ)) = (π(distβπ)π))}) |