MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isismt Structured version   Visualization version   GIF version

Theorem isismt 25889
Description: Property of being an isometry. Compare with isismty 34229. (Contributed by Thierry Arnoux, 13-Dec-2019.)
Hypotheses
Ref Expression
isismt.b 𝐵 = (Base‘𝐺)
isismt.p 𝑃 = (Base‘𝐻)
isismt.d 𝐷 = (dist‘𝐺)
isismt.m = (dist‘𝐻)
Assertion
Ref Expression
isismt ((𝐺𝑉𝐻𝑊) → (𝐹 ∈ (𝐺Ismt𝐻) ↔ (𝐹:𝐵1-1-onto𝑃 ∧ ∀𝑎𝐵𝑏𝐵 ((𝐹𝑎) (𝐹𝑏)) = (𝑎𝐷𝑏))))
Distinct variable groups:   𝐵,𝑎,𝑏   𝐹,𝑎,𝑏   𝐺,𝑎,𝑏   𝐻,𝑎,𝑏
Allowed substitution hints:   𝐷(𝑎,𝑏)   𝑃(𝑎,𝑏)   (𝑎,𝑏)   𝑉(𝑎,𝑏)   𝑊(𝑎,𝑏)

Proof of Theorem isismt
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3414 . . . 4 (𝐺𝑉𝐺 ∈ V)
2 elex 3414 . . . 4 (𝐻𝑊𝐻 ∈ V)
3 fveq2 6448 . . . . . . . . 9 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 isismt.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
53, 4syl6eqr 2832 . . . . . . . 8 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
65f1oeq2d 6389 . . . . . . 7 (𝑔 = 𝐺 → (𝑓:(Base‘𝑔)–1-1-onto→(Base‘) ↔ 𝑓:𝐵1-1-onto→(Base‘)))
7 fveq2 6448 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (dist‘𝑔) = (dist‘𝐺))
8 isismt.d . . . . . . . . . . . 12 𝐷 = (dist‘𝐺)
97, 8syl6eqr 2832 . . . . . . . . . . 11 (𝑔 = 𝐺 → (dist‘𝑔) = 𝐷)
109oveqd 6941 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑎(dist‘𝑔)𝑏) = (𝑎𝐷𝑏))
1110eqeq2d 2788 . . . . . . . . 9 (𝑔 = 𝐺 → (((𝑓𝑎)(dist‘)(𝑓𝑏)) = (𝑎(dist‘𝑔)𝑏) ↔ ((𝑓𝑎)(dist‘)(𝑓𝑏)) = (𝑎𝐷𝑏)))
125, 11raleqbidv 3326 . . . . . . . 8 (𝑔 = 𝐺 → (∀𝑏 ∈ (Base‘𝑔)((𝑓𝑎)(dist‘)(𝑓𝑏)) = (𝑎(dist‘𝑔)𝑏) ↔ ∀𝑏𝐵 ((𝑓𝑎)(dist‘)(𝑓𝑏)) = (𝑎𝐷𝑏)))
135, 12raleqbidv 3326 . . . . . . 7 (𝑔 = 𝐺 → (∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓𝑎)(dist‘)(𝑓𝑏)) = (𝑎(dist‘𝑔)𝑏) ↔ ∀𝑎𝐵𝑏𝐵 ((𝑓𝑎)(dist‘)(𝑓𝑏)) = (𝑎𝐷𝑏)))
146, 13anbi12d 624 . . . . . 6 (𝑔 = 𝐺 → ((𝑓:(Base‘𝑔)–1-1-onto→(Base‘) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓𝑎)(dist‘)(𝑓𝑏)) = (𝑎(dist‘𝑔)𝑏)) ↔ (𝑓:𝐵1-1-onto→(Base‘) ∧ ∀𝑎𝐵𝑏𝐵 ((𝑓𝑎)(dist‘)(𝑓𝑏)) = (𝑎𝐷𝑏))))
1514abbidv 2906 . . . . 5 (𝑔 = 𝐺 → {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓𝑎)(dist‘)(𝑓𝑏)) = (𝑎(dist‘𝑔)𝑏))} = {𝑓 ∣ (𝑓:𝐵1-1-onto→(Base‘) ∧ ∀𝑎𝐵𝑏𝐵 ((𝑓𝑎)(dist‘)(𝑓𝑏)) = (𝑎𝐷𝑏))})
16 eqidd 2779 . . . . . . . 8 ( = 𝐻𝑓 = 𝑓)
17 eqidd 2779 . . . . . . . 8 ( = 𝐻𝐵 = 𝐵)
18 fveq2 6448 . . . . . . . . 9 ( = 𝐻 → (Base‘) = (Base‘𝐻))
19 isismt.p . . . . . . . . 9 𝑃 = (Base‘𝐻)
2018, 19syl6eqr 2832 . . . . . . . 8 ( = 𝐻 → (Base‘) = 𝑃)
2116, 17, 20f1oeq123d 6388 . . . . . . 7 ( = 𝐻 → (𝑓:𝐵1-1-onto→(Base‘) ↔ 𝑓:𝐵1-1-onto𝑃))
22 fveq2 6448 . . . . . . . . . . 11 ( = 𝐻 → (dist‘) = (dist‘𝐻))
23 isismt.m . . . . . . . . . . 11 = (dist‘𝐻)
2422, 23syl6eqr 2832 . . . . . . . . . 10 ( = 𝐻 → (dist‘) = )
2524oveqd 6941 . . . . . . . . 9 ( = 𝐻 → ((𝑓𝑎)(dist‘)(𝑓𝑏)) = ((𝑓𝑎) (𝑓𝑏)))
2625eqeq1d 2780 . . . . . . . 8 ( = 𝐻 → (((𝑓𝑎)(dist‘)(𝑓𝑏)) = (𝑎𝐷𝑏) ↔ ((𝑓𝑎) (𝑓𝑏)) = (𝑎𝐷𝑏)))
27262ralbidv 3171 . . . . . . 7 ( = 𝐻 → (∀𝑎𝐵𝑏𝐵 ((𝑓𝑎)(dist‘)(𝑓𝑏)) = (𝑎𝐷𝑏) ↔ ∀𝑎𝐵𝑏𝐵 ((𝑓𝑎) (𝑓𝑏)) = (𝑎𝐷𝑏)))
2821, 27anbi12d 624 . . . . . 6 ( = 𝐻 → ((𝑓:𝐵1-1-onto→(Base‘) ∧ ∀𝑎𝐵𝑏𝐵 ((𝑓𝑎)(dist‘)(𝑓𝑏)) = (𝑎𝐷𝑏)) ↔ (𝑓:𝐵1-1-onto𝑃 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑓𝑎) (𝑓𝑏)) = (𝑎𝐷𝑏))))
2928abbidv 2906 . . . . 5 ( = 𝐻 → {𝑓 ∣ (𝑓:𝐵1-1-onto→(Base‘) ∧ ∀𝑎𝐵𝑏𝐵 ((𝑓𝑎)(dist‘)(𝑓𝑏)) = (𝑎𝐷𝑏))} = {𝑓 ∣ (𝑓:𝐵1-1-onto𝑃 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑓𝑎) (𝑓𝑏)) = (𝑎𝐷𝑏))})
30 df-ismt 25888 . . . . 5 Ismt = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓𝑎)(dist‘)(𝑓𝑏)) = (𝑎(dist‘𝑔)𝑏))})
31 ovex 6956 . . . . . 6 (𝑃𝑚 𝐵) ∈ V
32 f1of 6393 . . . . . . . . 9 (𝑓:𝐵1-1-onto𝑃𝑓:𝐵𝑃)
3319fvexi 6462 . . . . . . . . . 10 𝑃 ∈ V
344fvexi 6462 . . . . . . . . . 10 𝐵 ∈ V
3533, 34elmap 8171 . . . . . . . . 9 (𝑓 ∈ (𝑃𝑚 𝐵) ↔ 𝑓:𝐵𝑃)
3632, 35sylibr 226 . . . . . . . 8 (𝑓:𝐵1-1-onto𝑃𝑓 ∈ (𝑃𝑚 𝐵))
3736adantr 474 . . . . . . 7 ((𝑓:𝐵1-1-onto𝑃 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑓𝑎) (𝑓𝑏)) = (𝑎𝐷𝑏)) → 𝑓 ∈ (𝑃𝑚 𝐵))
3837abssi 3898 . . . . . 6 {𝑓 ∣ (𝑓:𝐵1-1-onto𝑃 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑓𝑎) (𝑓𝑏)) = (𝑎𝐷𝑏))} ⊆ (𝑃𝑚 𝐵)
3931, 38ssexi 5042 . . . . 5 {𝑓 ∣ (𝑓:𝐵1-1-onto𝑃 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑓𝑎) (𝑓𝑏)) = (𝑎𝐷𝑏))} ∈ V
4015, 29, 30, 39ovmpt2 7075 . . . 4 ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (𝐺Ismt𝐻) = {𝑓 ∣ (𝑓:𝐵1-1-onto𝑃 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑓𝑎) (𝑓𝑏)) = (𝑎𝐷𝑏))})
411, 2, 40syl2an 589 . . 3 ((𝐺𝑉𝐻𝑊) → (𝐺Ismt𝐻) = {𝑓 ∣ (𝑓:𝐵1-1-onto𝑃 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑓𝑎) (𝑓𝑏)) = (𝑎𝐷𝑏))})
4241eleq2d 2845 . 2 ((𝐺𝑉𝐻𝑊) → (𝐹 ∈ (𝐺Ismt𝐻) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝐵1-1-onto𝑃 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑓𝑎) (𝑓𝑏)) = (𝑎𝐷𝑏))}))
43 f1of 6393 . . . . 5 (𝐹:𝐵1-1-onto𝑃𝐹:𝐵𝑃)
44 fex 6763 . . . . 5 ((𝐹:𝐵𝑃𝐵 ∈ V) → 𝐹 ∈ V)
4543, 34, 44sylancl 580 . . . 4 (𝐹:𝐵1-1-onto𝑃𝐹 ∈ V)
4645adantr 474 . . 3 ((𝐹:𝐵1-1-onto𝑃 ∧ ∀𝑎𝐵𝑏𝐵 ((𝐹𝑎) (𝐹𝑏)) = (𝑎𝐷𝑏)) → 𝐹 ∈ V)
47 f1oeq1 6382 . . . 4 (𝑓 = 𝐹 → (𝑓:𝐵1-1-onto𝑃𝐹:𝐵1-1-onto𝑃))
48 fveq1 6447 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑎) = (𝐹𝑎))
49 fveq1 6447 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑏) = (𝐹𝑏))
5048, 49oveq12d 6942 . . . . . 6 (𝑓 = 𝐹 → ((𝑓𝑎) (𝑓𝑏)) = ((𝐹𝑎) (𝐹𝑏)))
5150eqeq1d 2780 . . . . 5 (𝑓 = 𝐹 → (((𝑓𝑎) (𝑓𝑏)) = (𝑎𝐷𝑏) ↔ ((𝐹𝑎) (𝐹𝑏)) = (𝑎𝐷𝑏)))
52512ralbidv 3171 . . . 4 (𝑓 = 𝐹 → (∀𝑎𝐵𝑏𝐵 ((𝑓𝑎) (𝑓𝑏)) = (𝑎𝐷𝑏) ↔ ∀𝑎𝐵𝑏𝐵 ((𝐹𝑎) (𝐹𝑏)) = (𝑎𝐷𝑏)))
5347, 52anbi12d 624 . . 3 (𝑓 = 𝐹 → ((𝑓:𝐵1-1-onto𝑃 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑓𝑎) (𝑓𝑏)) = (𝑎𝐷𝑏)) ↔ (𝐹:𝐵1-1-onto𝑃 ∧ ∀𝑎𝐵𝑏𝐵 ((𝐹𝑎) (𝐹𝑏)) = (𝑎𝐷𝑏))))
5446, 53elab3 3566 . 2 (𝐹 ∈ {𝑓 ∣ (𝑓:𝐵1-1-onto𝑃 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑓𝑎) (𝑓𝑏)) = (𝑎𝐷𝑏))} ↔ (𝐹:𝐵1-1-onto𝑃 ∧ ∀𝑎𝐵𝑏𝐵 ((𝐹𝑎) (𝐹𝑏)) = (𝑎𝐷𝑏)))
5542, 54syl6bb 279 1 ((𝐺𝑉𝐻𝑊) → (𝐹 ∈ (𝐺Ismt𝐻) ↔ (𝐹:𝐵1-1-onto𝑃 ∧ ∀𝑎𝐵𝑏𝐵 ((𝐹𝑎) (𝐹𝑏)) = (𝑎𝐷𝑏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  {cab 2763  wral 3090  Vcvv 3398  wf 6133  1-1-ontowf1o 6136  cfv 6137  (class class class)co 6924  𝑚 cmap 8142  Basecbs 16259  distcds 16351  Ismtcismt 25887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-map 8144  df-ismt 25888
This theorem is referenced by:  ismot  25890
  Copyright terms: Public domain W3C validator