| Step | Hyp | Ref
| Expression |
| 1 | | elex 3485 |
. . . 4
⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) |
| 2 | | elex 3485 |
. . . 4
⊢ (𝐻 ∈ 𝑊 → 𝐻 ∈ V) |
| 3 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) |
| 4 | | isismt.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) |
| 5 | 3, 4 | eqtr4di 2789 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
| 6 | 5 | f1oeq2d 6819 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ↔ 𝑓:𝐵–1-1-onto→(Base‘ℎ))) |
| 7 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝐺 → (dist‘𝑔) = (dist‘𝐺)) |
| 8 | | isismt.d |
. . . . . . . . . . . 12
⊢ 𝐷 = (dist‘𝐺) |
| 9 | 7, 8 | eqtr4di 2789 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (dist‘𝑔) = 𝐷) |
| 10 | 9 | oveqd 7427 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑎(dist‘𝑔)𝑏) = (𝑎𝐷𝑏)) |
| 11 | 10 | eqeq2d 2747 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏) ↔ ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎𝐷𝑏))) |
| 12 | 5, 11 | raleqbidv 3329 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏) ↔ ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎𝐷𝑏))) |
| 13 | 5, 12 | raleqbidv 3329 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎𝐷𝑏))) |
| 14 | 6, 13 | anbi12d 632 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ((𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏)) ↔ (𝑓:𝐵–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎𝐷𝑏)))) |
| 15 | 14 | abbidv 2802 |
. . . . 5
⊢ (𝑔 = 𝐺 → {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏))} = {𝑓 ∣ (𝑓:𝐵–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎𝐷𝑏))}) |
| 16 | | fveq2 6881 |
. . . . . . . . 9
⊢ (ℎ = 𝐻 → (Base‘ℎ) = (Base‘𝐻)) |
| 17 | | isismt.p |
. . . . . . . . 9
⊢ 𝑃 = (Base‘𝐻) |
| 18 | 16, 17 | eqtr4di 2789 |
. . . . . . . 8
⊢ (ℎ = 𝐻 → (Base‘ℎ) = 𝑃) |
| 19 | 18 | f1oeq3d 6820 |
. . . . . . 7
⊢ (ℎ = 𝐻 → (𝑓:𝐵–1-1-onto→(Base‘ℎ) ↔ 𝑓:𝐵–1-1-onto→𝑃)) |
| 20 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (ℎ = 𝐻 → (dist‘ℎ) = (dist‘𝐻)) |
| 21 | | isismt.m |
. . . . . . . . . . 11
⊢ − =
(dist‘𝐻) |
| 22 | 20, 21 | eqtr4di 2789 |
. . . . . . . . . 10
⊢ (ℎ = 𝐻 → (dist‘ℎ) = − ) |
| 23 | 22 | oveqd 7427 |
. . . . . . . . 9
⊢ (ℎ = 𝐻 → ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = ((𝑓‘𝑎) − (𝑓‘𝑏))) |
| 24 | 23 | eqeq1d 2738 |
. . . . . . . 8
⊢ (ℎ = 𝐻 → (((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎𝐷𝑏) ↔ ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏))) |
| 25 | 24 | 2ralbidv 3209 |
. . . . . . 7
⊢ (ℎ = 𝐻 → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎𝐷𝑏) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏))) |
| 26 | 19, 25 | anbi12d 632 |
. . . . . 6
⊢ (ℎ = 𝐻 → ((𝑓:𝐵–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎𝐷𝑏)) ↔ (𝑓:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏)))) |
| 27 | 26 | abbidv 2802 |
. . . . 5
⊢ (ℎ = 𝐻 → {𝑓 ∣ (𝑓:𝐵–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎𝐷𝑏))} = {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏))}) |
| 28 | | df-ismt 28517 |
. . . . 5
⊢ Ismt =
(𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏))}) |
| 29 | | ovex 7443 |
. . . . . 6
⊢ (𝑃 ↑m 𝐵) ∈ V |
| 30 | | f1of 6823 |
. . . . . . . . 9
⊢ (𝑓:𝐵–1-1-onto→𝑃 → 𝑓:𝐵⟶𝑃) |
| 31 | 17 | fvexi 6895 |
. . . . . . . . . 10
⊢ 𝑃 ∈ V |
| 32 | 4 | fvexi 6895 |
. . . . . . . . . 10
⊢ 𝐵 ∈ V |
| 33 | 31, 32 | elmap 8890 |
. . . . . . . . 9
⊢ (𝑓 ∈ (𝑃 ↑m 𝐵) ↔ 𝑓:𝐵⟶𝑃) |
| 34 | 30, 33 | sylibr 234 |
. . . . . . . 8
⊢ (𝑓:𝐵–1-1-onto→𝑃 → 𝑓 ∈ (𝑃 ↑m 𝐵)) |
| 35 | 34 | adantr 480 |
. . . . . . 7
⊢ ((𝑓:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏)) → 𝑓 ∈ (𝑃 ↑m 𝐵)) |
| 36 | 35 | abssi 4050 |
. . . . . 6
⊢ {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏))} ⊆ (𝑃 ↑m 𝐵) |
| 37 | 29, 36 | ssexi 5297 |
. . . . 5
⊢ {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏))} ∈ V |
| 38 | 15, 27, 28, 37 | ovmpo 7572 |
. . . 4
⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (𝐺Ismt𝐻) = {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏))}) |
| 39 | 1, 2, 38 | syl2an 596 |
. . 3
⊢ ((𝐺 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊) → (𝐺Ismt𝐻) = {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏))}) |
| 40 | 39 | eleq2d 2821 |
. 2
⊢ ((𝐺 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊) → (𝐹 ∈ (𝐺Ismt𝐻) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏))})) |
| 41 | | f1of 6823 |
. . . . 5
⊢ (𝐹:𝐵–1-1-onto→𝑃 → 𝐹:𝐵⟶𝑃) |
| 42 | | fex 7223 |
. . . . 5
⊢ ((𝐹:𝐵⟶𝑃 ∧ 𝐵 ∈ V) → 𝐹 ∈ V) |
| 43 | 41, 32, 42 | sylancl 586 |
. . . 4
⊢ (𝐹:𝐵–1-1-onto→𝑃 → 𝐹 ∈ V) |
| 44 | 43 | adantr 480 |
. . 3
⊢ ((𝐹:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎𝐷𝑏)) → 𝐹 ∈ V) |
| 45 | | f1oeq1 6811 |
. . . 4
⊢ (𝑓 = 𝐹 → (𝑓:𝐵–1-1-onto→𝑃 ↔ 𝐹:𝐵–1-1-onto→𝑃)) |
| 46 | | fveq1 6880 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑓‘𝑎) = (𝐹‘𝑎)) |
| 47 | | fveq1 6880 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑓‘𝑏) = (𝐹‘𝑏)) |
| 48 | 46, 47 | oveq12d 7428 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑎) − (𝑓‘𝑏)) = ((𝐹‘𝑎) − (𝐹‘𝑏))) |
| 49 | 48 | eqeq1d 2738 |
. . . . 5
⊢ (𝑓 = 𝐹 → (((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏) ↔ ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎𝐷𝑏))) |
| 50 | 49 | 2ralbidv 3209 |
. . . 4
⊢ (𝑓 = 𝐹 → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎𝐷𝑏))) |
| 51 | 45, 50 | anbi12d 632 |
. . 3
⊢ (𝑓 = 𝐹 → ((𝑓:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏)) ↔ (𝐹:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎𝐷𝑏)))) |
| 52 | 44, 51 | elab3 3670 |
. 2
⊢ (𝐹 ∈ {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏))} ↔ (𝐹:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎𝐷𝑏))) |
| 53 | 40, 52 | bitrdi 287 |
1
⊢ ((𝐺 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊) → (𝐹 ∈ (𝐺Ismt𝐻) ↔ (𝐹:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎𝐷𝑏)))) |