HomeHome Metamath Proof Explorer
Theorem List (p. 279 of 479)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30158)
  Hilbert Space Explorer  Hilbert Space Explorer
(30159-31681)
  Users' Mathboxes  Users' Mathboxes
(31682-47805)
 

Theorem List for Metamath Proof Explorer - 27801-27900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremncolcom 27801 Swapping non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ π‘Œ ∈ 𝑃)    &   (πœ‘ β†’ 𝑍 ∈ 𝑃)    &   (πœ‘ β†’ Β¬ (𝑍 ∈ (π‘‹πΏπ‘Œ) ∨ 𝑋 = π‘Œ))    β‡’   (πœ‘ β†’ Β¬ (𝑍 ∈ (π‘ŒπΏπ‘‹) ∨ π‘Œ = 𝑋))
 
Theoremncolrot1 27802 Rotating non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ π‘Œ ∈ 𝑃)    &   (πœ‘ β†’ 𝑍 ∈ 𝑃)    &   (πœ‘ β†’ Β¬ (𝑍 ∈ (π‘‹πΏπ‘Œ) ∨ 𝑋 = π‘Œ))    β‡’   (πœ‘ β†’ Β¬ (𝑋 ∈ (π‘ŒπΏπ‘) ∨ π‘Œ = 𝑍))
 
Theoremncolrot2 27803 Rotating non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ π‘Œ ∈ 𝑃)    &   (πœ‘ β†’ 𝑍 ∈ 𝑃)    &   (πœ‘ β†’ Β¬ (𝑍 ∈ (π‘‹πΏπ‘Œ) ∨ 𝑋 = π‘Œ))    β‡’   (πœ‘ β†’ Β¬ (π‘Œ ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋))
 
Theoremtgdim01ln 27804 In geometries of dimension less than two, then any three points are colinear. (Contributed by Thierry Arnoux, 27-Aug-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ π‘Œ ∈ 𝑃)    &   (πœ‘ β†’ 𝑍 ∈ 𝑃)    &   (πœ‘ β†’ Β¬ 𝐺DimTarskiGβ‰₯2)    β‡’   (πœ‘ β†’ (𝑍 ∈ (π‘‹πΏπ‘Œ) ∨ 𝑋 = π‘Œ))
 
Theoremncoltgdim2 27805 If there are three non-colinear points, then the dimension is at least two. Converse of tglowdim2l 27890. (Contributed by Thierry Arnoux, 23-Feb-2020.)
𝑃 = (Baseβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ π‘Œ ∈ 𝑃)    &   (πœ‘ β†’ 𝑍 ∈ 𝑃)    &   (πœ‘ β†’ Β¬ (𝑍 ∈ (π‘‹πΏπ‘Œ) ∨ 𝑋 = π‘Œ))    β‡’   (πœ‘ β†’ 𝐺DimTarskiGβ‰₯2)
 
Theoremlnxfr 27806 Transfer law for colinearity. Theorem 4.13 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ π‘Œ ∈ 𝑃)    &   (πœ‘ β†’ 𝑍 ∈ 𝑃)    &    ∼ = (cgrGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ (π‘Œ ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))    &   (πœ‘ β†’ βŸ¨β€œπ‘‹π‘Œπ‘β€βŸ© ∼ βŸ¨β€œπ΄π΅πΆβ€βŸ©)    β‡’   (πœ‘ β†’ (𝐡 ∈ (𝐴𝐿𝐢) ∨ 𝐴 = 𝐢))
 
Theoremlnext 27807* Extend a line with a missing point. Theorem 4.14 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ π‘Œ ∈ 𝑃)    &   (πœ‘ β†’ 𝑍 ∈ 𝑃)    &    ∼ = (cgrGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &    βˆ’ = (distβ€˜πΊ)    &   (πœ‘ β†’ (π‘Œ ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))    &   (πœ‘ β†’ (𝑋 βˆ’ π‘Œ) = (𝐴 βˆ’ 𝐡))    β‡’   (πœ‘ β†’ βˆƒπ‘ ∈ 𝑃 βŸ¨β€œπ‘‹π‘Œπ‘β€βŸ© ∼ βŸ¨β€œπ΄π΅π‘β€βŸ©)
 
Theoremtgfscgr 27808 Congruence law for the general five segment configuration. Theorem 4.16 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ π‘Œ ∈ 𝑃)    &   (πœ‘ β†’ 𝑍 ∈ 𝑃)    &    ∼ = (cgrGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &    βˆ’ = (distβ€˜πΊ)    &   (πœ‘ β†’ 𝑇 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ (π‘Œ ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))    &   (πœ‘ β†’ βŸ¨β€œπ‘‹π‘Œπ‘β€βŸ© ∼ βŸ¨β€œπ΄π΅πΆβ€βŸ©)    &   (πœ‘ β†’ (𝑋 βˆ’ 𝑇) = (𝐴 βˆ’ 𝐷))    &   (πœ‘ β†’ (π‘Œ βˆ’ 𝑇) = (𝐡 βˆ’ 𝐷))    &   (πœ‘ β†’ 𝑋 β‰  π‘Œ)    β‡’   (πœ‘ β†’ (𝑍 βˆ’ 𝑇) = (𝐢 βˆ’ 𝐷))
 
Theoremlncgr 27809 Congruence rule for lines. Theorem 4.17 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 28-Apr-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ π‘Œ ∈ 𝑃)    &   (πœ‘ β†’ 𝑍 ∈ 𝑃)    &    ∼ = (cgrGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &    βˆ’ = (distβ€˜πΊ)    &   (πœ‘ β†’ 𝑋 β‰  π‘Œ)    &   (πœ‘ β†’ (π‘Œ ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))    &   (πœ‘ β†’ (𝑋 βˆ’ 𝐴) = (𝑋 βˆ’ 𝐡))    &   (πœ‘ β†’ (π‘Œ βˆ’ 𝐴) = (π‘Œ βˆ’ 𝐡))    β‡’   (πœ‘ β†’ (𝑍 βˆ’ 𝐴) = (𝑍 βˆ’ 𝐡))
 
Theoremlnid 27810 Identity law for points on lines. Theorem 4.18 of [Schwabhauser] p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ π‘Œ ∈ 𝑃)    &   (πœ‘ β†’ 𝑍 ∈ 𝑃)    &    ∼ = (cgrGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &    βˆ’ = (distβ€˜πΊ)    &   (πœ‘ β†’ 𝑋 β‰  π‘Œ)    &   (πœ‘ β†’ (π‘Œ ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))    &   (πœ‘ β†’ (𝑋 βˆ’ 𝑍) = (𝑋 βˆ’ 𝐴))    &   (πœ‘ β†’ (π‘Œ βˆ’ 𝑍) = (π‘Œ βˆ’ 𝐴))    β‡’   (πœ‘ β†’ 𝑍 = 𝐴)
 
Theoremtgidinside 27811 Law for finding a point inside a segment. Theorem 4.19 of [Schwabhauser] p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ π‘Œ ∈ 𝑃)    &   (πœ‘ β†’ 𝑍 ∈ 𝑃)    &    ∼ = (cgrGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &    βˆ’ = (distβ€˜πΊ)    &   (πœ‘ β†’ 𝑍 ∈ (π‘‹πΌπ‘Œ))    &   (πœ‘ β†’ (𝑋 βˆ’ 𝑍) = (𝑋 βˆ’ 𝐴))    &   (πœ‘ β†’ (π‘Œ βˆ’ 𝑍) = (π‘Œ βˆ’ 𝐴))    β‡’   (πœ‘ β†’ 𝑍 = 𝐴)
 
16.2.8  Connectivity of betweenness
 
Theoremtgbtwnconn1lem1 27812 Lemma for tgbtwnconn1 27815. (Contributed by Thierry Arnoux, 30-Apr-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ 𝐴 β‰  𝐡)    &   (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))    &   (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐷))    &    βˆ’ = (distβ€˜πΊ)    &   (πœ‘ β†’ 𝐸 ∈ 𝑃)    &   (πœ‘ β†’ 𝐹 ∈ 𝑃)    &   (πœ‘ β†’ 𝐻 ∈ 𝑃)    &   (πœ‘ β†’ 𝐽 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ (𝐴𝐼𝐸))    &   (πœ‘ β†’ 𝐢 ∈ (𝐴𝐼𝐹))    &   (πœ‘ β†’ 𝐸 ∈ (𝐴𝐼𝐻))    &   (πœ‘ β†’ 𝐹 ∈ (𝐴𝐼𝐽))    &   (πœ‘ β†’ (𝐸 βˆ’ 𝐷) = (𝐢 βˆ’ 𝐷))    &   (πœ‘ β†’ (𝐢 βˆ’ 𝐹) = (𝐢 βˆ’ 𝐷))    &   (πœ‘ β†’ (𝐸 βˆ’ 𝐻) = (𝐡 βˆ’ 𝐢))    &   (πœ‘ β†’ (𝐹 βˆ’ 𝐽) = (𝐡 βˆ’ 𝐷))    β‡’   (πœ‘ β†’ 𝐻 = 𝐽)
 
Theoremtgbtwnconn1lem2 27813 Lemma for tgbtwnconn1 27815. (Contributed by Thierry Arnoux, 30-Apr-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ 𝐴 β‰  𝐡)    &   (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))    &   (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐷))    &    βˆ’ = (distβ€˜πΊ)    &   (πœ‘ β†’ 𝐸 ∈ 𝑃)    &   (πœ‘ β†’ 𝐹 ∈ 𝑃)    &   (πœ‘ β†’ 𝐻 ∈ 𝑃)    &   (πœ‘ β†’ 𝐽 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ (𝐴𝐼𝐸))    &   (πœ‘ β†’ 𝐢 ∈ (𝐴𝐼𝐹))    &   (πœ‘ β†’ 𝐸 ∈ (𝐴𝐼𝐻))    &   (πœ‘ β†’ 𝐹 ∈ (𝐴𝐼𝐽))    &   (πœ‘ β†’ (𝐸 βˆ’ 𝐷) = (𝐢 βˆ’ 𝐷))    &   (πœ‘ β†’ (𝐢 βˆ’ 𝐹) = (𝐢 βˆ’ 𝐷))    &   (πœ‘ β†’ (𝐸 βˆ’ 𝐻) = (𝐡 βˆ’ 𝐢))    &   (πœ‘ β†’ (𝐹 βˆ’ 𝐽) = (𝐡 βˆ’ 𝐷))    β‡’   (πœ‘ β†’ (𝐸 βˆ’ 𝐹) = (𝐢 βˆ’ 𝐷))
 
Theoremtgbtwnconn1lem3 27814 Lemma for tgbtwnconn1 27815. (Contributed by Thierry Arnoux, 30-Apr-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ 𝐴 β‰  𝐡)    &   (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))    &   (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐷))    &    βˆ’ = (distβ€˜πΊ)    &   (πœ‘ β†’ 𝐸 ∈ 𝑃)    &   (πœ‘ β†’ 𝐹 ∈ 𝑃)    &   (πœ‘ β†’ 𝐻 ∈ 𝑃)    &   (πœ‘ β†’ 𝐽 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ (𝐴𝐼𝐸))    &   (πœ‘ β†’ 𝐢 ∈ (𝐴𝐼𝐹))    &   (πœ‘ β†’ 𝐸 ∈ (𝐴𝐼𝐻))    &   (πœ‘ β†’ 𝐹 ∈ (𝐴𝐼𝐽))    &   (πœ‘ β†’ (𝐸 βˆ’ 𝐷) = (𝐢 βˆ’ 𝐷))    &   (πœ‘ β†’ (𝐢 βˆ’ 𝐹) = (𝐢 βˆ’ 𝐷))    &   (πœ‘ β†’ (𝐸 βˆ’ 𝐻) = (𝐡 βˆ’ 𝐢))    &   (πœ‘ β†’ (𝐹 βˆ’ 𝐽) = (𝐡 βˆ’ 𝐷))    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ 𝑋 ∈ (𝐢𝐼𝐸))    &   (πœ‘ β†’ 𝑋 ∈ (𝐷𝐼𝐹))    &   (πœ‘ β†’ 𝐢 β‰  𝐸)    β‡’   (πœ‘ β†’ 𝐷 = 𝐹)
 
Theoremtgbtwnconn1 27815 Connectivity law for betweenness. Theorem 5.1 of [Schwabhauser] p. 39-41. In earlier presentations of Tarski's axioms, this theorem appeared as an additional axiom. It was derived from the other axioms by Gupta, 1965. (Contributed by Thierry Arnoux, 30-Apr-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ 𝐴 β‰  𝐡)    &   (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))    &   (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐷))    β‡’   (πœ‘ β†’ (𝐢 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐢)))
 
Theoremtgbtwnconn2 27816 Another connectivity law for betweenness. Theorem 5.2 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 17-May-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ 𝐴 β‰  𝐡)    &   (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))    &   (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐷))    β‡’   (πœ‘ β†’ (𝐢 ∈ (𝐡𝐼𝐷) ∨ 𝐷 ∈ (𝐡𝐼𝐢)))
 
Theoremtgbtwnconn3 27817 Inner connectivity law for betweenness. Theorem 5.3 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 17-May-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐷))    &   (πœ‘ β†’ 𝐢 ∈ (𝐴𝐼𝐷))    β‡’   (πœ‘ β†’ (𝐡 ∈ (𝐴𝐼𝐢) ∨ 𝐢 ∈ (𝐴𝐼𝐡)))
 
Theoremtgbtwnconnln3 27818 Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐷))    &   (πœ‘ β†’ 𝐢 ∈ (𝐴𝐼𝐷))    &   πΏ = (LineGβ€˜πΊ)    β‡’   (πœ‘ β†’ (𝐡 ∈ (𝐴𝐿𝐢) ∨ 𝐴 = 𝐢))
 
Theoremtgbtwnconn22 27819 Double connectivity law for betweenness. (Contributed by Thierry Arnoux, 1-Dec-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ 𝐸 ∈ 𝑃)    &   (πœ‘ β†’ 𝐴 β‰  𝐡)    &   (πœ‘ β†’ 𝐢 β‰  𝐡)    &   (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))    &   (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐷))    &   (πœ‘ β†’ 𝐡 ∈ (𝐢𝐼𝐸))    β‡’   (πœ‘ β†’ 𝐡 ∈ (𝐷𝐼𝐸))
 
Theoremtgbtwnconnln1 27820 Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 β‰  𝐡)    &   (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))    &   (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐷))    β‡’   (πœ‘ β†’ (𝐴 ∈ (𝐢𝐿𝐷) ∨ 𝐢 = 𝐷))
 
Theoremtgbtwnconnln2 27821 Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 β‰  𝐡)    &   (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))    &   (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐷))    β‡’   (πœ‘ β†’ (𝐡 ∈ (𝐢𝐿𝐷) ∨ 𝐢 = 𝐷))
 
16.2.9  Less-than relation in geometric congruences
 
Syntaxcleg 27822 Less-than relation for geometric congruences.
class ≀G
 
Definitiondf-leg 27823* Define the less-than relationship between geometric distance congruence classes. See legval 27824. (Contributed by Thierry Arnoux, 21-Jun-2019.)
≀G = (𝑔 ∈ V ↦ {βŸ¨π‘’, π‘“βŸ© ∣ [(Baseβ€˜π‘”) / 𝑝][(distβ€˜π‘”) / 𝑑][(Itvβ€˜π‘”) / 𝑖]βˆƒπ‘₯ ∈ 𝑝 βˆƒπ‘¦ ∈ 𝑝 (𝑓 = (π‘₯𝑑𝑦) ∧ βˆƒπ‘§ ∈ 𝑝 (𝑧 ∈ (π‘₯𝑖𝑦) ∧ 𝑒 = (π‘₯𝑑𝑧)))})
 
Theoremlegval 27824* Value of the less-than relationship. (Contributed by Thierry Arnoux, 21-Jun-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &    ≀ = (≀Gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    β‡’   (πœ‘ β†’ ≀ = {βŸ¨π‘’, π‘“βŸ© ∣ βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 (𝑓 = (π‘₯ βˆ’ 𝑦) ∧ βˆƒπ‘§ ∈ 𝑃 (𝑧 ∈ (π‘₯𝐼𝑦) ∧ 𝑒 = (π‘₯ βˆ’ 𝑧)))})
 
Theoremlegov 27825* Value of the less-than relationship. Definition 5.4 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &    ≀ = (≀Gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    β‡’   (πœ‘ β†’ ((𝐴 βˆ’ 𝐡) ≀ (𝐢 βˆ’ 𝐷) ↔ βˆƒπ‘§ ∈ 𝑃 (𝑧 ∈ (𝐢𝐼𝐷) ∧ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝑧))))
 
Theoremlegov2 27826* An equivalent definition of the less-than relationship. Definition 5.5 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &    ≀ = (≀Gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    β‡’   (πœ‘ β†’ ((𝐴 βˆ’ 𝐡) ≀ (𝐢 βˆ’ 𝐷) ↔ βˆƒπ‘₯ ∈ 𝑃 (𝐡 ∈ (𝐴𝐼π‘₯) ∧ (𝐴 βˆ’ π‘₯) = (𝐢 βˆ’ 𝐷))))
 
Theoremlegid 27827 Reflexivity of the less-than relationship. Proposition 5.7 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &    ≀ = (≀Gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    β‡’   (πœ‘ β†’ (𝐴 βˆ’ 𝐡) ≀ (𝐴 βˆ’ 𝐡))
 
Theorembtwnleg 27828 Betweenness implies less-than relation. (Contributed by Thierry Arnoux, 3-Jul-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &    ≀ = (≀Gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))    β‡’   (πœ‘ β†’ (𝐴 βˆ’ 𝐡) ≀ (𝐴 βˆ’ 𝐢))
 
Theoremlegtrd 27829 Transitivity of the less-than relationship. Proposition 5.8 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &    ≀ = (≀Gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ 𝐸 ∈ 𝑃)    &   (πœ‘ β†’ 𝐹 ∈ 𝑃)    &   (πœ‘ β†’ (𝐴 βˆ’ 𝐡) ≀ (𝐢 βˆ’ 𝐷))    &   (πœ‘ β†’ (𝐢 βˆ’ 𝐷) ≀ (𝐸 βˆ’ 𝐹))    β‡’   (πœ‘ β†’ (𝐴 βˆ’ 𝐡) ≀ (𝐸 βˆ’ 𝐹))
 
Theoremlegtri3 27830 Equality from the less-than relationship. Proposition 5.9 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &    ≀ = (≀Gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ (𝐴 βˆ’ 𝐡) ≀ (𝐢 βˆ’ 𝐷))    &   (πœ‘ β†’ (𝐢 βˆ’ 𝐷) ≀ (𝐴 βˆ’ 𝐡))    β‡’   (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷))
 
Theoremlegtrid 27831 Trichotomy law for the less-than relationship. Proposition 5.10 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &    ≀ = (≀Gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    β‡’   (πœ‘ β†’ ((𝐴 βˆ’ 𝐡) ≀ (𝐢 βˆ’ 𝐷) ∨ (𝐢 βˆ’ 𝐷) ≀ (𝐴 βˆ’ 𝐡)))
 
Theoremleg0 27832 Degenerated (zero-length) segments are minimal. Proposition 5.11 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &    ≀ = (≀Gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    β‡’   (πœ‘ β†’ (𝐴 βˆ’ 𝐴) ≀ (𝐢 βˆ’ 𝐷))
 
Theoremlegeq 27833 Deduce equality from "less than" null segments. (Contributed by Thierry Arnoux, 12-Aug-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &    ≀ = (≀Gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ (𝐴 βˆ’ 𝐡) ≀ (𝐢 βˆ’ 𝐢))    β‡’   (πœ‘ β†’ 𝐴 = 𝐡)
 
Theoremlegbtwn 27834 Deduce betweenness from "less than" relation. Corresponds loosely to Proposition 6.13 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 25-Aug-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &    ≀ = (≀Gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ (𝐴 ∈ (𝐢𝐼𝐡) ∨ 𝐡 ∈ (𝐢𝐼𝐴)))    &   (πœ‘ β†’ (𝐢 βˆ’ 𝐴) ≀ (𝐢 βˆ’ 𝐡))    β‡’   (πœ‘ β†’ 𝐴 ∈ (𝐢𝐼𝐡))
 
Theoremtgcgrsub2 27835 Removing identical parts from the end of a line segment preserves congruence. In this version the order of points is not known. (Contributed by Thierry Arnoux, 3-Apr-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &    ≀ = (≀Gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ 𝐸 ∈ 𝑃)    &   (πœ‘ β†’ 𝐹 ∈ 𝑃)    &   (πœ‘ β†’ (𝐡 ∈ (𝐴𝐼𝐢) ∨ 𝐢 ∈ (𝐴𝐼𝐡)))    &   (πœ‘ β†’ (𝐸 ∈ (𝐷𝐼𝐹) ∨ 𝐹 ∈ (𝐷𝐼𝐸)))    &   (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐸))    &   (πœ‘ β†’ (𝐴 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐹))    β‡’   (πœ‘ β†’ (𝐡 βˆ’ 𝐢) = (𝐸 βˆ’ 𝐹))
 
Theoremltgseg 27836* The set 𝐸 denotes the possible values of the congruence. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &    ≀ = (≀Gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   πΈ = ( βˆ’ β€œ (𝑃 Γ— 𝑃))    &   (πœ‘ β†’ Fun βˆ’ )    &   (πœ‘ β†’ 𝐴 ∈ 𝐸)    β‡’   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 𝐴 = (π‘₯ βˆ’ 𝑦))
 
Theoremltgov 27837 Strict "shorter than" geometric relation between segments. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &    ≀ = (≀Gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   πΈ = ( βˆ’ β€œ (𝑃 Γ— 𝑃))    &   (πœ‘ β†’ Fun βˆ’ )    &    < = (( ≀ β†Ύ 𝐸) βˆ– I )    &   (πœ‘ β†’ (𝑃 Γ— 𝑃) βŠ† dom βˆ’ )    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    β‡’   (πœ‘ β†’ ((𝐴 βˆ’ 𝐡) < (𝐢 βˆ’ 𝐷) ↔ ((𝐴 βˆ’ 𝐡) ≀ (𝐢 βˆ’ 𝐷) ∧ (𝐴 βˆ’ 𝐡) β‰  (𝐢 βˆ’ 𝐷))))
 
Theoremlegov3 27838 An equivalent definition of the less-than relationship, from the strict relation. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &    ≀ = (≀Gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   πΈ = ( βˆ’ β€œ (𝑃 Γ— 𝑃))    &   (πœ‘ β†’ Fun βˆ’ )    &    < = (( ≀ β†Ύ 𝐸) βˆ– I )    &   (πœ‘ β†’ (𝑃 Γ— 𝑃) βŠ† dom βˆ’ )    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    β‡’   (πœ‘ β†’ ((𝐴 βˆ’ 𝐡) ≀ (𝐢 βˆ’ 𝐷) ↔ ((𝐴 βˆ’ 𝐡) < (𝐢 βˆ’ 𝐷) ∨ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷))))
 
Theoremlegso 27839 The "shorter than" relation induces an order on pairs. Remark 5.13 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &    ≀ = (≀Gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   πΈ = ( βˆ’ β€œ (𝑃 Γ— 𝑃))    &   (πœ‘ β†’ Fun βˆ’ )    &    < = (( ≀ β†Ύ 𝐸) βˆ– I )    &   (πœ‘ β†’ (𝑃 Γ— 𝑃) βŠ† dom βˆ’ )    β‡’   (πœ‘ β†’ < Or 𝐸)
 
16.2.10  Rays
 
Syntaxchlg 27840 Function producing the relation "belong to the same half-line".
class hlG
 
Definitiondf-hlg 27841* Define the function producting the relation "belong to the same half-line". (Contributed by Thierry Arnoux, 15-Aug-2020.)
hlG = (𝑔 ∈ V ↦ (𝑐 ∈ (Baseβ€˜π‘”) ↦ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ (Baseβ€˜π‘”) ∧ 𝑏 ∈ (Baseβ€˜π‘”)) ∧ (π‘Ž β‰  𝑐 ∧ 𝑏 β‰  𝑐 ∧ (π‘Ž ∈ (𝑐(Itvβ€˜π‘”)𝑏) ∨ 𝑏 ∈ (𝑐(Itvβ€˜π‘”)π‘Ž))))}))
 
Theoremishlg 27842 Rays : Definition 6.1 of [Schwabhauser] p. 43. With this definition, 𝐴(πΎβ€˜πΆ)𝐡 means that 𝐴 and 𝐡 are on the same ray with initial point 𝐢. This follows the same notation as Schwabhauser where rays are first defined as a relation. It is possible to recover the ray itself using e.g., ((πΎβ€˜πΆ) β€œ {𝐴}). (Contributed by Thierry Arnoux, 21-Dec-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΎ = (hlGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐺 ∈ 𝑉)    β‡’   (πœ‘ β†’ (𝐴(πΎβ€˜πΆ)𝐡 ↔ (𝐴 β‰  𝐢 ∧ 𝐡 β‰  𝐢 ∧ (𝐴 ∈ (𝐢𝐼𝐡) ∨ 𝐡 ∈ (𝐢𝐼𝐴)))))
 
Theoremhlcomb 27843 The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΎ = (hlGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐺 ∈ 𝑉)    β‡’   (πœ‘ β†’ (𝐴(πΎβ€˜πΆ)𝐡 ↔ 𝐡(πΎβ€˜πΆ)𝐴))
 
Theoremhlcomd 27844 The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΎ = (hlGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐺 ∈ 𝑉)    &   (πœ‘ β†’ 𝐴(πΎβ€˜πΆ)𝐡)    β‡’   (πœ‘ β†’ 𝐡(πΎβ€˜πΆ)𝐴)
 
Theoremhlne1 27845 The half-line relation implies inequality. (Contributed by Thierry Arnoux, 22-Feb-2020.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΎ = (hlGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐺 ∈ 𝑉)    &   (πœ‘ β†’ 𝐴(πΎβ€˜πΆ)𝐡)    β‡’   (πœ‘ β†’ 𝐴 β‰  𝐢)
 
Theoremhlne2 27846 The half-line relation implies inequality. (Contributed by Thierry Arnoux, 22-Feb-2020.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΎ = (hlGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐺 ∈ 𝑉)    &   (πœ‘ β†’ 𝐴(πΎβ€˜πΆ)𝐡)    β‡’   (πœ‘ β†’ 𝐡 β‰  𝐢)
 
Theoremhlln 27847 The half-line relation implies colinearity, part of Theorem 6.4 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 22-Feb-2020.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΎ = (hlGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴(πΎβ€˜πΆ)𝐡)    β‡’   (πœ‘ β†’ 𝐴 ∈ (𝐡𝐿𝐢))
 
Theoremhleqnid 27848 The endpoint does not belong to the half-line. (Contributed by Thierry Arnoux, 3-Mar-2020.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΎ = (hlGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    β‡’   (πœ‘ β†’ Β¬ 𝐴(πΎβ€˜π΄)𝐡)
 
Theoremhlid 27849 The half-line relation is reflexive. Theorem 6.5 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΎ = (hlGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 β‰  𝐢)    β‡’   (πœ‘ β†’ 𝐴(πΎβ€˜πΆ)𝐴)
 
Theoremhltr 27850 The half-line relation is transitive. Theorem 6.7 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 23-Feb-2020.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΎ = (hlGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ 𝐴(πΎβ€˜π·)𝐡)    &   (πœ‘ β†’ 𝐡(πΎβ€˜π·)𝐢)    β‡’   (πœ‘ β†’ 𝐴(πΎβ€˜π·)𝐢)
 
Theoremhlbtwn 27851 Betweenness is a sufficient condition to swap half-lines. (Contributed by Thierry Arnoux, 21-Feb-2020.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΎ = (hlGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ (𝐢𝐼𝐡))    &   (πœ‘ β†’ 𝐡 β‰  𝐢)    &   (πœ‘ β†’ 𝐷 β‰  𝐢)    β‡’   (πœ‘ β†’ (𝐴(πΎβ€˜πΆ)𝐡 ↔ 𝐴(πΎβ€˜πΆ)𝐷))
 
Theorembtwnhl1 27852 Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΎ = (hlGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ (𝐴𝐼𝐡))    &   (πœ‘ β†’ 𝐴 β‰  𝐡)    &   (πœ‘ β†’ 𝐢 β‰  𝐴)    β‡’   (πœ‘ β†’ 𝐢(πΎβ€˜π΄)𝐡)
 
Theorembtwnhl2 27853 Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΎ = (hlGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ (𝐴𝐼𝐡))    &   (πœ‘ β†’ 𝐴 β‰  𝐡)    &   (πœ‘ β†’ 𝐢 β‰  𝐡)    β‡’   (πœ‘ β†’ 𝐢(πΎβ€˜π΅)𝐴)
 
Theorembtwnhl 27854 Swap betweenness for a half-line. (Contributed by Thierry Arnoux, 2-Mar-2020.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΎ = (hlGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ 𝐴(πΎβ€˜π·)𝐡)    &   (πœ‘ β†’ 𝐷 ∈ (𝐴𝐼𝐢))    β‡’   (πœ‘ β†’ 𝐷 ∈ (𝐡𝐼𝐢))
 
Theoremlnhl 27855 Either a point 𝐢 on the line AB is on the same side as 𝐴 or on the opposite side. (Contributed by Thierry Arnoux, 21-Sep-2020.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΎ = (hlGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐢 ∈ (𝐴𝐿𝐡))    β‡’   (πœ‘ β†’ (𝐢(πΎβ€˜π΅)𝐴 ∨ 𝐡 ∈ (𝐴𝐼𝐢)))
 
Theoremhlcgrex 27856* Construct a point on a half-line, at a given distance of its origin. (Contributed by Thierry Arnoux, 1-Aug-2020.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΎ = (hlGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &    βˆ’ = (distβ€˜πΊ)    &   (πœ‘ β†’ 𝐷 β‰  𝐴)    &   (πœ‘ β†’ 𝐡 β‰  𝐢)    β‡’   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝑃 (π‘₯(πΎβ€˜π΄)𝐷 ∧ (𝐴 βˆ’ π‘₯) = (𝐡 βˆ’ 𝐢)))
 
Theoremhlcgreulem 27857 Lemma for hlcgreu 27858. (Contributed by Thierry Arnoux, 9-Aug-2020.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΎ = (hlGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &    βˆ’ = (distβ€˜πΊ)    &   (πœ‘ β†’ 𝐷 β‰  𝐴)    &   (πœ‘ β†’ 𝐡 β‰  𝐢)    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ π‘Œ ∈ 𝑃)    &   (πœ‘ β†’ 𝑋(πΎβ€˜π΄)𝐷)    &   (πœ‘ β†’ π‘Œ(πΎβ€˜π΄)𝐷)    &   (πœ‘ β†’ (𝐴 βˆ’ 𝑋) = (𝐡 βˆ’ 𝐢))    &   (πœ‘ β†’ (𝐴 βˆ’ π‘Œ) = (𝐡 βˆ’ 𝐢))    β‡’   (πœ‘ β†’ 𝑋 = π‘Œ)
 
Theoremhlcgreu 27858* The point constructed in hlcgrex 27856 is unique. Theorem 6.11 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 9-Aug-2020.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΎ = (hlGβ€˜πΊ)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &    βˆ’ = (distβ€˜πΊ)    &   (πœ‘ β†’ 𝐷 β‰  𝐴)    &   (πœ‘ β†’ 𝐡 β‰  𝐢)    β‡’   (πœ‘ β†’ βˆƒ!π‘₯ ∈ 𝑃 (π‘₯(πΎβ€˜π΄)𝐷 ∧ (𝐴 βˆ’ π‘₯) = (𝐡 βˆ’ 𝐢)))
 
16.2.11  Lines
 
Theorembtwnlng1 27859 Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ π‘Œ ∈ 𝑃)    &   (πœ‘ β†’ 𝑍 ∈ 𝑃)    &   (πœ‘ β†’ 𝑋 β‰  π‘Œ)    &   (πœ‘ β†’ 𝑍 ∈ (π‘‹πΌπ‘Œ))    β‡’   (πœ‘ β†’ 𝑍 ∈ (π‘‹πΏπ‘Œ))
 
Theorembtwnlng2 27860 Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ π‘Œ ∈ 𝑃)    &   (πœ‘ β†’ 𝑍 ∈ 𝑃)    &   (πœ‘ β†’ 𝑋 β‰  π‘Œ)    &   (πœ‘ β†’ 𝑋 ∈ (π‘πΌπ‘Œ))    β‡’   (πœ‘ β†’ 𝑍 ∈ (π‘‹πΏπ‘Œ))
 
Theorembtwnlng3 27861 Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ π‘Œ ∈ 𝑃)    &   (πœ‘ β†’ 𝑍 ∈ 𝑃)    &   (πœ‘ β†’ 𝑋 β‰  π‘Œ)    &   (πœ‘ β†’ π‘Œ ∈ (𝑋𝐼𝑍))    β‡’   (πœ‘ β†’ 𝑍 ∈ (π‘‹πΏπ‘Œ))
 
Theoremlncom 27862 Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ π‘Œ ∈ 𝑃)    &   (πœ‘ β†’ 𝑍 ∈ 𝑃)    &   (πœ‘ β†’ 𝑋 β‰  π‘Œ)    &   (πœ‘ β†’ 𝑍 ∈ (π‘ŒπΏπ‘‹))    β‡’   (πœ‘ β†’ 𝑍 ∈ (π‘‹πΏπ‘Œ))
 
Theoremlnrot1 27863 Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ π‘Œ ∈ 𝑃)    &   (πœ‘ β†’ 𝑍 ∈ 𝑃)    &   (πœ‘ β†’ 𝑋 β‰  π‘Œ)    &   (πœ‘ β†’ π‘Œ ∈ (𝑍𝐿𝑋))    &   (πœ‘ β†’ 𝑍 β‰  𝑋)    β‡’   (πœ‘ β†’ 𝑍 ∈ (π‘‹πΏπ‘Œ))
 
Theoremlnrot2 27864 Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ π‘Œ ∈ 𝑃)    &   (πœ‘ β†’ 𝑍 ∈ 𝑃)    &   (πœ‘ β†’ 𝑋 β‰  π‘Œ)    &   (πœ‘ β†’ 𝑋 ∈ (π‘ŒπΏπ‘))    &   (πœ‘ β†’ π‘Œ β‰  𝑍)    β‡’   (πœ‘ β†’ 𝑍 ∈ (π‘‹πΏπ‘Œ))
 
Theoremncolne1 27865 Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019.)
𝐡 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    &   (πœ‘ β†’ Β¬ (𝑋 ∈ (π‘ŒπΏπ‘) ∨ π‘Œ = 𝑍))    β‡’   (πœ‘ β†’ 𝑋 β‰  π‘Œ)
 
Theoremncolne2 27866 Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019.) TODO (NM): maybe ncolne2 27866 could be simplified out and deleted, replaced by ncolcom 27801.
𝐡 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    &   (πœ‘ β†’ Β¬ (𝑋 ∈ (π‘ŒπΏπ‘) ∨ π‘Œ = 𝑍))    β‡’   (πœ‘ β†’ 𝑋 β‰  𝑍)
 
Theoremtgisline 27867* The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.)
𝐡 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ ran 𝐿)    β‡’   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦))
 
Theoremtglnne 27868 It takes two different points to form a line. (Contributed by Thierry Arnoux, 27-Nov-2019.)
𝐡 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ (π‘‹πΏπ‘Œ) ∈ ran 𝐿)    β‡’   (πœ‘ β†’ 𝑋 β‰  π‘Œ)
 
Theoremtglndim0 27869 There are no lines in dimension 0. (Contributed by Thierry Arnoux, 18-Oct-2019.)
𝐡 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ (β™―β€˜π΅) = 1)    β‡’   (πœ‘ β†’ Β¬ 𝐴 ∈ ran 𝐿)
 
Theoremtgelrnln 27870 The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.)
𝐡 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑋 β‰  π‘Œ)    β‡’   (πœ‘ β†’ (π‘‹πΏπ‘Œ) ∈ ran 𝐿)
 
Theoremtglineeltr 27871 Transitivity law for lines, one half of tglineelsb2 27872. (Contributed by Thierry Arnoux, 25-May-2019.)
𝐡 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑃 ∈ 𝐡)    &   (πœ‘ β†’ 𝑄 ∈ 𝐡)    &   (πœ‘ β†’ 𝑃 β‰  𝑄)    &   (πœ‘ β†’ 𝑆 ∈ 𝐡)    &   (πœ‘ β†’ 𝑆 β‰  𝑃)    &   (πœ‘ β†’ 𝑆 ∈ (𝑃𝐿𝑄))    &   (πœ‘ β†’ 𝑅 ∈ 𝐡)    &   (πœ‘ β†’ 𝑅 ∈ (𝑃𝐿𝑆))    β‡’   (πœ‘ β†’ 𝑅 ∈ (𝑃𝐿𝑄))
 
Theoremtglineelsb2 27872 If 𝑆 lies on PQ , then PQ = PS . Theorem 6.16 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.)
𝐡 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑃 ∈ 𝐡)    &   (πœ‘ β†’ 𝑄 ∈ 𝐡)    &   (πœ‘ β†’ 𝑃 β‰  𝑄)    &   (πœ‘ β†’ 𝑆 ∈ 𝐡)    &   (πœ‘ β†’ 𝑆 β‰  𝑃)    &   (πœ‘ β†’ 𝑆 ∈ (𝑃𝐿𝑄))    β‡’   (πœ‘ β†’ (𝑃𝐿𝑄) = (𝑃𝐿𝑆))
 
Theoremtglinerflx1 27873 Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.)
𝐡 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑃 ∈ 𝐡)    &   (πœ‘ β†’ 𝑄 ∈ 𝐡)    &   (πœ‘ β†’ 𝑃 β‰  𝑄)    β‡’   (πœ‘ β†’ 𝑃 ∈ (𝑃𝐿𝑄))
 
Theoremtglinerflx2 27874 Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.)
𝐡 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑃 ∈ 𝐡)    &   (πœ‘ β†’ 𝑄 ∈ 𝐡)    &   (πœ‘ β†’ 𝑃 β‰  𝑄)    β‡’   (πœ‘ β†’ 𝑄 ∈ (𝑃𝐿𝑄))
 
Theoremtglinecom 27875 Commutativity law for lines. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.)
𝐡 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑃 ∈ 𝐡)    &   (πœ‘ β†’ 𝑄 ∈ 𝐡)    &   (πœ‘ β†’ 𝑃 β‰  𝑄)    β‡’   (πœ‘ β†’ (𝑃𝐿𝑄) = (𝑄𝐿𝑃))
 
Theoremtglinethru 27876 If 𝐴 is a line containing two distinct points 𝑃 and 𝑄, then 𝐴 is the line through 𝑃 and 𝑄. Theorem 6.18 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 25-May-2019.)
𝐡 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑃 ∈ 𝐡)    &   (πœ‘ β†’ 𝑄 ∈ 𝐡)    &   (πœ‘ β†’ 𝑃 β‰  𝑄)    &   (πœ‘ β†’ 𝑃 β‰  𝑄)    &   (πœ‘ β†’ 𝐴 ∈ ran 𝐿)    &   (πœ‘ β†’ 𝑃 ∈ 𝐴)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    β‡’   (πœ‘ β†’ 𝐴 = (𝑃𝐿𝑄))
 
Theoremtghilberti1 27877* There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.)
𝐡 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑃 ∈ 𝐡)    &   (πœ‘ β†’ 𝑄 ∈ 𝐡)    &   (πœ‘ β†’ 𝑃 β‰  𝑄)    β‡’   (πœ‘ β†’ βˆƒπ‘₯ ∈ ran 𝐿(𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯))
 
Theoremtghilberti2 27878* There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.)
𝐡 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑃 ∈ 𝐡)    &   (πœ‘ β†’ 𝑄 ∈ 𝐡)    &   (πœ‘ β†’ 𝑃 β‰  𝑄)    β‡’   (πœ‘ β†’ βˆƒ*π‘₯ ∈ ran 𝐿(𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯))
 
Theoremtglinethrueu 27879* There is a unique line going through any two distinct points. Theorem 6.19 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 25-May-2019.)
𝐡 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑃 ∈ 𝐡)    &   (πœ‘ β†’ 𝑄 ∈ 𝐡)    &   (πœ‘ β†’ 𝑃 β‰  𝑄)    β‡’   (πœ‘ β†’ βˆƒ!π‘₯ ∈ ran 𝐿(𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯))
 
Theoremtglnne0 27880 A line 𝐴 has at least one point. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝐿 = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ ran 𝐿)    β‡’   (πœ‘ β†’ 𝐴 β‰  βˆ…)
 
Theoremtglnpt2 27881* Find a second point on a line. (Contributed by Thierry Arnoux, 18-Oct-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ ran 𝐿)    &   (πœ‘ β†’ 𝑋 ∈ 𝐴)    β‡’   (πœ‘ β†’ βˆƒπ‘¦ ∈ 𝐴 𝑋 β‰  𝑦)
 
Theoremtglineintmo 27882* Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 25-May-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ ran 𝐿)    &   (πœ‘ β†’ 𝐡 ∈ ran 𝐿)    &   (πœ‘ β†’ 𝐴 β‰  𝐡)    β‡’   (πœ‘ β†’ βˆƒ*π‘₯(π‘₯ ∈ 𝐴 ∧ π‘₯ ∈ 𝐡))
 
Theoremtglineineq 27883 Two distinct lines intersect in at most one point, variation. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 6-Aug-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ ran 𝐿)    &   (πœ‘ β†’ 𝐡 ∈ ran 𝐿)    &   (πœ‘ β†’ 𝐴 β‰  𝐡)    &   (πœ‘ β†’ 𝑋 ∈ (𝐴 ∩ 𝐡))    &   (πœ‘ β†’ π‘Œ ∈ (𝐴 ∩ 𝐡))    β‡’   (πœ‘ β†’ 𝑋 = π‘Œ)
 
Theoremtglineneq 27884 Given three non-colinear points, build two different lines. (Contributed by Thierry Arnoux, 6-Aug-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ Β¬ (𝐴 ∈ (𝐡𝐿𝐢) ∨ 𝐡 = 𝐢))    β‡’   (πœ‘ β†’ (𝐴𝐿𝐡) β‰  (𝐢𝐿𝐷))
 
Theoremtglineinteq 27885 Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 6-Aug-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ Β¬ (𝐴 ∈ (𝐡𝐿𝐢) ∨ 𝐡 = 𝐢))    &   (πœ‘ β†’ 𝑋 ∈ (𝐴𝐿𝐡))    &   (πœ‘ β†’ π‘Œ ∈ (𝐴𝐿𝐡))    &   (πœ‘ β†’ 𝑋 ∈ (𝐢𝐿𝐷))    &   (πœ‘ β†’ π‘Œ ∈ (𝐢𝐿𝐷))    β‡’   (πœ‘ β†’ 𝑋 = π‘Œ)
 
Theoremncolncol 27886 Deduce non-colinearity from non-colinearity and colinearity. (Contributed by Thierry Arnoux, 27-Aug-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ Β¬ (𝐴 ∈ (𝐡𝐿𝐢) ∨ 𝐡 = 𝐢))    &   (πœ‘ β†’ 𝐷 ∈ (𝐴𝐿𝐡))    &   (πœ‘ β†’ 𝐷 β‰  𝐡)    β‡’   (πœ‘ β†’ Β¬ (𝐷 ∈ (𝐡𝐿𝐢) ∨ 𝐡 = 𝐢))
 
Theoremcoltr 27887 A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ 𝐴 ∈ (𝐡𝐿𝐢))    &   (πœ‘ β†’ (𝐡 ∈ (𝐢𝐿𝐷) ∨ 𝐢 = 𝐷))    β‡’   (πœ‘ β†’ (𝐴 ∈ (𝐢𝐿𝐷) ∨ 𝐢 = 𝐷))
 
Theoremcoltr3 27888 A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ 𝐷 ∈ 𝑃)    &   (πœ‘ β†’ 𝐴 ∈ (𝐡𝐿𝐢))    &   (πœ‘ β†’ 𝐷 ∈ (𝐴𝐼𝐢))    β‡’   (πœ‘ β†’ 𝐷 ∈ (𝐡𝐿𝐢))
 
Theoremcolline 27889* Three points are colinear iff there is a line through all three of them. Theorem 6.23 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 28-May-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝑋 ∈ 𝑃)    &   (πœ‘ β†’ π‘Œ ∈ 𝑃)    &   (πœ‘ β†’ 𝑍 ∈ 𝑃)    &   (πœ‘ β†’ 2 ≀ (β™―β€˜π‘ƒ))    β‡’   (πœ‘ β†’ ((𝑋 ∈ (π‘ŒπΏπ‘) ∨ π‘Œ = 𝑍) ↔ βˆƒπ‘Ž ∈ ran 𝐿(𝑋 ∈ π‘Ž ∧ π‘Œ ∈ π‘Ž ∧ 𝑍 ∈ π‘Ž)))
 
Theoremtglowdim2l 27890* Reformulation of the lower dimension axiom for dimension two. There exist three non-colinear points. Theorem 6.24 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 30-May-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐺DimTarskiGβ‰₯2)    β‡’   (πœ‘ β†’ βˆƒπ‘Ž ∈ 𝑃 βˆƒπ‘ ∈ 𝑃 βˆƒπ‘ ∈ 𝑃 Β¬ (𝑐 ∈ (π‘ŽπΏπ‘) ∨ π‘Ž = 𝑏))
 
Theoremtglowdim2ln 27891* There is always one point outside of any line. Theorem 6.25 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 16-Nov-2019.)
𝑃 = (Baseβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐺DimTarskiGβ‰₯2)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐴 β‰  𝐡)    β‡’   (πœ‘ β†’ βˆƒπ‘ ∈ 𝑃 Β¬ 𝑐 ∈ (𝐴𝐿𝐡))
 
16.2.12  Point inversions
 
Syntaxcmir 27892 Declare the constant for the point inversion function.
class pInvG
 
Definitiondf-mir 27893* Define the point inversion ("mirror") function. Definition 7.5 of [Schwabhauser] p. 49. See mirval 27895 and ismir 27899. (Contributed by Thierry Arnoux, 30-May-2019.)
pInvG = (𝑔 ∈ V ↦ (π‘š ∈ (Baseβ€˜π‘”) ↦ (π‘Ž ∈ (Baseβ€˜π‘”) ↦ (℩𝑏 ∈ (Baseβ€˜π‘”)((π‘š(distβ€˜π‘”)𝑏) = (π‘š(distβ€˜π‘”)π‘Ž) ∧ π‘š ∈ (𝑏(Itvβ€˜π‘”)π‘Ž))))))
 
Theoremmirreu3 27894* Existential uniqueness of the mirror point. Theorem 7.8 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   (πœ‘ β†’ 𝑀 ∈ 𝑃)    β‡’   (πœ‘ β†’ βˆƒ!𝑏 ∈ 𝑃 ((𝑀 βˆ’ 𝑏) = (𝑀 βˆ’ 𝐴) ∧ 𝑀 ∈ (𝑏𝐼𝐴)))
 
Theoremmirval 27895* Value of the point inversion function 𝑆. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   π‘† = (pInvGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    β‡’   (πœ‘ β†’ (π‘†β€˜π΄) = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 βˆ’ 𝑧) = (𝐴 βˆ’ 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
 
Theoremmirfv 27896* Value of the point inversion function 𝑀. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   π‘† = (pInvGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   π‘€ = (π‘†β€˜π΄)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    β‡’   (πœ‘ β†’ (π‘€β€˜π΅) = (℩𝑧 ∈ 𝑃 ((𝐴 βˆ’ 𝑧) = (𝐴 βˆ’ 𝐡) ∧ 𝐴 ∈ (𝑧𝐼𝐡))))
 
Theoremmircgr 27897 Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   π‘† = (pInvGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   π‘€ = (π‘†β€˜π΄)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    β‡’   (πœ‘ β†’ (𝐴 βˆ’ (π‘€β€˜π΅)) = (𝐴 βˆ’ 𝐡))
 
Theoremmirbtwn 27898 Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   π‘† = (pInvGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   π‘€ = (π‘†β€˜π΄)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    β‡’   (πœ‘ β†’ 𝐴 ∈ ((π‘€β€˜π΅)𝐼𝐡))
 
Theoremismir 27899 Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   π‘† = (pInvGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   π‘€ = (π‘†β€˜π΄)    &   (πœ‘ β†’ 𝐡 ∈ 𝑃)    &   (πœ‘ β†’ 𝐢 ∈ 𝑃)    &   (πœ‘ β†’ (𝐴 βˆ’ 𝐢) = (𝐴 βˆ’ 𝐡))    &   (πœ‘ β†’ 𝐴 ∈ (𝐢𝐼𝐡))    β‡’   (πœ‘ β†’ 𝐢 = (π‘€β€˜π΅))
 
Theoremmirf 27900 Point inversion as function. (Contributed by Thierry Arnoux, 30-May-2019.)
𝑃 = (Baseβ€˜πΊ)    &    βˆ’ = (distβ€˜πΊ)    &   πΌ = (Itvβ€˜πΊ)    &   πΏ = (LineGβ€˜πΊ)    &   π‘† = (pInvGβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ TarskiG)    &   (πœ‘ β†’ 𝐴 ∈ 𝑃)    &   π‘€ = (π‘†β€˜π΄)    β‡’   (πœ‘ β†’ 𝑀:π‘ƒβŸΆπ‘ƒ)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47805
  Copyright terms: Public domain < Previous  Next >