![]() |
Metamath
Proof Explorer Theorem List (p. 279 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30158) |
![]() (30159-31681) |
![]() (31682-47805) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ncolcom 27801 | Swapping non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β Β¬ (π β (ππΏπ) β¨ π = π)) β β’ (π β Β¬ (π β (ππΏπ) β¨ π = π)) | ||
Theorem | ncolrot1 27802 | Rotating non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β Β¬ (π β (ππΏπ) β¨ π = π)) β β’ (π β Β¬ (π β (ππΏπ) β¨ π = π)) | ||
Theorem | ncolrot2 27803 | Rotating non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β Β¬ (π β (ππΏπ) β¨ π = π)) β β’ (π β Β¬ (π β (ππΏπ) β¨ π = π)) | ||
Theorem | tgdim01ln 27804 | In geometries of dimension less than two, then any three points are colinear. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β Β¬ πΊDimTarskiGβ₯2) β β’ (π β (π β (ππΏπ) β¨ π = π)) | ||
Theorem | ncoltgdim2 27805 | If there are three non-colinear points, then the dimension is at least two. Converse of tglowdim2l 27890. (Contributed by Thierry Arnoux, 23-Feb-2020.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β Β¬ (π β (ππΏπ) β¨ π = π)) β β’ (π β πΊDimTarskiGβ₯2) | ||
Theorem | lnxfr 27806 | Transfer law for colinearity. Theorem 4.13 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ βΌ = (cgrGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β (π β (ππΏπ) β¨ π = π)) & β’ (π β β¨βπππββ© βΌ β¨βπ΄π΅πΆββ©) β β’ (π β (π΅ β (π΄πΏπΆ) β¨ π΄ = πΆ)) | ||
Theorem | lnext 27807* | Extend a line with a missing point. Theorem 4.14 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ βΌ = (cgrGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ β = (distβπΊ) & β’ (π β (π β (ππΏπ) β¨ π = π)) & β’ (π β (π β π) = (π΄ β π΅)) β β’ (π β βπ β π β¨βπππββ© βΌ β¨βπ΄π΅πββ©) | ||
Theorem | tgfscgr 27808 | Congruence law for the general five segment configuration. Theorem 4.16 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ βΌ = (cgrGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ β = (distβπΊ) & β’ (π β π β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β (π β (ππΏπ) β¨ π = π)) & β’ (π β β¨βπππββ© βΌ β¨βπ΄π΅πΆββ©) & β’ (π β (π β π) = (π΄ β π·)) & β’ (π β (π β π) = (π΅ β π·)) & β’ (π β π β π) β β’ (π β (π β π) = (πΆ β π·)) | ||
Theorem | lncgr 27809 | Congruence rule for lines. Theorem 4.17 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 28-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ βΌ = (cgrGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ β = (distβπΊ) & β’ (π β π β π) & β’ (π β (π β (ππΏπ) β¨ π = π)) & β’ (π β (π β π΄) = (π β π΅)) & β’ (π β (π β π΄) = (π β π΅)) β β’ (π β (π β π΄) = (π β π΅)) | ||
Theorem | lnid 27810 | Identity law for points on lines. Theorem 4.18 of [Schwabhauser] p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ βΌ = (cgrGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ β = (distβπΊ) & β’ (π β π β π) & β’ (π β (π β (ππΏπ) β¨ π = π)) & β’ (π β (π β π) = (π β π΄)) & β’ (π β (π β π) = (π β π΄)) β β’ (π β π = π΄) | ||
Theorem | tgidinside 27811 | Law for finding a point inside a segment. Theorem 4.19 of [Schwabhauser] p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ πΏ = (LineGβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ βΌ = (cgrGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ β = (distβπΊ) & β’ (π β π β (ππΌπ)) & β’ (π β (π β π) = (π β π΄)) & β’ (π β (π β π) = (π β π΄)) β β’ (π β π = π΄) | ||
Theorem | tgbtwnconn1lem1 27812 | Lemma for tgbtwnconn1 27815. (Contributed by Thierry Arnoux, 30-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β π΄ β π΅) & β’ (π β π΅ β (π΄πΌπΆ)) & β’ (π β π΅ β (π΄πΌπ·)) & β’ β = (distβπΊ) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β π» β π) & β’ (π β π½ β π) & β’ (π β π· β (π΄πΌπΈ)) & β’ (π β πΆ β (π΄πΌπΉ)) & β’ (π β πΈ β (π΄πΌπ»)) & β’ (π β πΉ β (π΄πΌπ½)) & β’ (π β (πΈ β π·) = (πΆ β π·)) & β’ (π β (πΆ β πΉ) = (πΆ β π·)) & β’ (π β (πΈ β π») = (π΅ β πΆ)) & β’ (π β (πΉ β π½) = (π΅ β π·)) β β’ (π β π» = π½) | ||
Theorem | tgbtwnconn1lem2 27813 | Lemma for tgbtwnconn1 27815. (Contributed by Thierry Arnoux, 30-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β π΄ β π΅) & β’ (π β π΅ β (π΄πΌπΆ)) & β’ (π β π΅ β (π΄πΌπ·)) & β’ β = (distβπΊ) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β π» β π) & β’ (π β π½ β π) & β’ (π β π· β (π΄πΌπΈ)) & β’ (π β πΆ β (π΄πΌπΉ)) & β’ (π β πΈ β (π΄πΌπ»)) & β’ (π β πΉ β (π΄πΌπ½)) & β’ (π β (πΈ β π·) = (πΆ β π·)) & β’ (π β (πΆ β πΉ) = (πΆ β π·)) & β’ (π β (πΈ β π») = (π΅ β πΆ)) & β’ (π β (πΉ β π½) = (π΅ β π·)) β β’ (π β (πΈ β πΉ) = (πΆ β π·)) | ||
Theorem | tgbtwnconn1lem3 27814 | Lemma for tgbtwnconn1 27815. (Contributed by Thierry Arnoux, 30-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β π΄ β π΅) & β’ (π β π΅ β (π΄πΌπΆ)) & β’ (π β π΅ β (π΄πΌπ·)) & β’ β = (distβπΊ) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β π» β π) & β’ (π β π½ β π) & β’ (π β π· β (π΄πΌπΈ)) & β’ (π β πΆ β (π΄πΌπΉ)) & β’ (π β πΈ β (π΄πΌπ»)) & β’ (π β πΉ β (π΄πΌπ½)) & β’ (π β (πΈ β π·) = (πΆ β π·)) & β’ (π β (πΆ β πΉ) = (πΆ β π·)) & β’ (π β (πΈ β π») = (π΅ β πΆ)) & β’ (π β (πΉ β π½) = (π΅ β π·)) & β’ (π β π β π) & β’ (π β π β (πΆπΌπΈ)) & β’ (π β π β (π·πΌπΉ)) & β’ (π β πΆ β πΈ) β β’ (π β π· = πΉ) | ||
Theorem | tgbtwnconn1 27815 | Connectivity law for betweenness. Theorem 5.1 of [Schwabhauser] p. 39-41. In earlier presentations of Tarski's axioms, this theorem appeared as an additional axiom. It was derived from the other axioms by Gupta, 1965. (Contributed by Thierry Arnoux, 30-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β π΄ β π΅) & β’ (π β π΅ β (π΄πΌπΆ)) & β’ (π β π΅ β (π΄πΌπ·)) β β’ (π β (πΆ β (π΄πΌπ·) β¨ π· β (π΄πΌπΆ))) | ||
Theorem | tgbtwnconn2 27816 | Another connectivity law for betweenness. Theorem 5.2 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 17-May-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β π΄ β π΅) & β’ (π β π΅ β (π΄πΌπΆ)) & β’ (π β π΅ β (π΄πΌπ·)) β β’ (π β (πΆ β (π΅πΌπ·) β¨ π· β (π΅πΌπΆ))) | ||
Theorem | tgbtwnconn3 27817 | Inner connectivity law for betweenness. Theorem 5.3 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 17-May-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β π΅ β (π΄πΌπ·)) & β’ (π β πΆ β (π΄πΌπ·)) β β’ (π β (π΅ β (π΄πΌπΆ) β¨ πΆ β (π΄πΌπ΅))) | ||
Theorem | tgbtwnconnln3 27818 | Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β π΅ β (π΄πΌπ·)) & β’ (π β πΆ β (π΄πΌπ·)) & β’ πΏ = (LineGβπΊ) β β’ (π β (π΅ β (π΄πΏπΆ) β¨ π΄ = πΆ)) | ||
Theorem | tgbtwnconn22 27819 | Double connectivity law for betweenness. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β π΄ β π΅) & β’ (π β πΆ β π΅) & β’ (π β π΅ β (π΄πΌπΆ)) & β’ (π β π΅ β (π΄πΌπ·)) & β’ (π β π΅ β (πΆπΌπΈ)) β β’ (π β π΅ β (π·πΌπΈ)) | ||
Theorem | tgbtwnconnln1 27820 | Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ πΏ = (LineGβπΊ) & β’ (π β π΄ β π΅) & β’ (π β π΅ β (π΄πΌπΆ)) & β’ (π β π΅ β (π΄πΌπ·)) β β’ (π β (π΄ β (πΆπΏπ·) β¨ πΆ = π·)) | ||
Theorem | tgbtwnconnln2 27821 | Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ πΏ = (LineGβπΊ) & β’ (π β π΄ β π΅) & β’ (π β π΅ β (π΄πΌπΆ)) & β’ (π β π΅ β (π΄πΌπ·)) β β’ (π β (π΅ β (πΆπΏπ·) β¨ πΆ = π·)) | ||
Syntax | cleg 27822 | Less-than relation for geometric congruences. |
class β€G | ||
Definition | df-leg 27823* | Define the less-than relationship between geometric distance congruence classes. See legval 27824. (Contributed by Thierry Arnoux, 21-Jun-2019.) |
β’ β€G = (π β V β¦ {β¨π, πβ© β£ [(Baseβπ) / π][(distβπ) / π][(Itvβπ) / π]βπ₯ β π βπ¦ β π (π = (π₯ππ¦) β§ βπ§ β π (π§ β (π₯ππ¦) β§ π = (π₯ππ§)))}) | ||
Theorem | legval 27824* | Value of the less-than relationship. (Contributed by Thierry Arnoux, 21-Jun-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ β€ = (β€GβπΊ) & β’ (π β πΊ β TarskiG) β β’ (π β β€ = {β¨π, πβ© β£ βπ₯ β π βπ¦ β π (π = (π₯ β π¦) β§ βπ§ β π (π§ β (π₯πΌπ¦) β§ π = (π₯ β π§)))}) | ||
Theorem | legov 27825* | Value of the less-than relationship. Definition 5.4 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ β€ = (β€GβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) β β’ (π β ((π΄ β π΅) β€ (πΆ β π·) β βπ§ β π (π§ β (πΆπΌπ·) β§ (π΄ β π΅) = (πΆ β π§)))) | ||
Theorem | legov2 27826* | An equivalent definition of the less-than relationship. Definition 5.5 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ β€ = (β€GβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) β β’ (π β ((π΄ β π΅) β€ (πΆ β π·) β βπ₯ β π (π΅ β (π΄πΌπ₯) β§ (π΄ β π₯) = (πΆ β π·)))) | ||
Theorem | legid 27827 | Reflexivity of the less-than relationship. Proposition 5.7 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ β€ = (β€GβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) β β’ (π β (π΄ β π΅) β€ (π΄ β π΅)) | ||
Theorem | btwnleg 27828 | Betweenness implies less-than relation. (Contributed by Thierry Arnoux, 3-Jul-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ β€ = (β€GβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π΅ β (π΄πΌπΆ)) β β’ (π β (π΄ β π΅) β€ (π΄ β πΆ)) | ||
Theorem | legtrd 27829 | Transitivity of the less-than relationship. Proposition 5.8 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ β€ = (β€GβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β (π΄ β π΅) β€ (πΆ β π·)) & β’ (π β (πΆ β π·) β€ (πΈ β πΉ)) β β’ (π β (π΄ β π΅) β€ (πΈ β πΉ)) | ||
Theorem | legtri3 27830 | Equality from the less-than relationship. Proposition 5.9 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ β€ = (β€GβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β (π΄ β π΅) β€ (πΆ β π·)) & β’ (π β (πΆ β π·) β€ (π΄ β π΅)) β β’ (π β (π΄ β π΅) = (πΆ β π·)) | ||
Theorem | legtrid 27831 | Trichotomy law for the less-than relationship. Proposition 5.10 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ β€ = (β€GβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) β β’ (π β ((π΄ β π΅) β€ (πΆ β π·) β¨ (πΆ β π·) β€ (π΄ β π΅))) | ||
Theorem | leg0 27832 | Degenerated (zero-length) segments are minimal. Proposition 5.11 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ β€ = (β€GβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) β β’ (π β (π΄ β π΄) β€ (πΆ β π·)) | ||
Theorem | legeq 27833 | Deduce equality from "less than" null segments. (Contributed by Thierry Arnoux, 12-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ β€ = (β€GβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β (π΄ β π΅) β€ (πΆ β πΆ)) β β’ (π β π΄ = π΅) | ||
Theorem | legbtwn 27834 | Deduce betweenness from "less than" relation. Corresponds loosely to Proposition 6.13 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ β€ = (β€GβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β (π΄ β (πΆπΌπ΅) β¨ π΅ β (πΆπΌπ΄))) & β’ (π β (πΆ β π΄) β€ (πΆ β π΅)) β β’ (π β π΄ β (πΆπΌπ΅)) | ||
Theorem | tgcgrsub2 27835 | Removing identical parts from the end of a line segment preserves congruence. In this version the order of points is not known. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ β€ = (β€GβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β π· β π) & β’ (π β πΈ β π) & β’ (π β πΉ β π) & β’ (π β (π΅ β (π΄πΌπΆ) β¨ πΆ β (π΄πΌπ΅))) & β’ (π β (πΈ β (π·πΌπΉ) β¨ πΉ β (π·πΌπΈ))) & β’ (π β (π΄ β π΅) = (π· β πΈ)) & β’ (π β (π΄ β πΆ) = (π· β πΉ)) β β’ (π β (π΅ β πΆ) = (πΈ β πΉ)) | ||
Theorem | ltgseg 27836* | The set πΈ denotes the possible values of the congruence. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ β€ = (β€GβπΊ) & β’ (π β πΊ β TarskiG) & β’ πΈ = ( β β (π Γ π)) & β’ (π β Fun β ) & β’ (π β π΄ β πΈ) β β’ (π β βπ₯ β π βπ¦ β π π΄ = (π₯ β π¦)) | ||
Theorem | ltgov 27837 | Strict "shorter than" geometric relation between segments. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ β€ = (β€GβπΊ) & β’ (π β πΊ β TarskiG) & β’ πΈ = ( β β (π Γ π)) & β’ (π β Fun β ) & β’ < = (( β€ βΎ πΈ) β I ) & β’ (π β (π Γ π) β dom β ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) β β’ (π β ((π΄ β π΅) < (πΆ β π·) β ((π΄ β π΅) β€ (πΆ β π·) β§ (π΄ β π΅) β (πΆ β π·)))) | ||
Theorem | legov3 27838 | An equivalent definition of the less-than relationship, from the strict relation. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ β€ = (β€GβπΊ) & β’ (π β πΊ β TarskiG) & β’ πΈ = ( β β (π Γ π)) & β’ (π β Fun β ) & β’ < = (( β€ βΎ πΈ) β I ) & β’ (π β (π Γ π) β dom β ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) β β’ (π β ((π΄ β π΅) β€ (πΆ β π·) β ((π΄ β π΅) < (πΆ β π·) β¨ (π΄ β π΅) = (πΆ β π·)))) | ||
Theorem | legso 27839 | The "shorter than" relation induces an order on pairs. Remark 5.13 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ β€ = (β€GβπΊ) & β’ (π β πΊ β TarskiG) & β’ πΈ = ( β β (π Γ π)) & β’ (π β Fun β ) & β’ < = (( β€ βΎ πΈ) β I ) & β’ (π β (π Γ π) β dom β ) β β’ (π β < Or πΈ) | ||
Syntax | chlg 27840 | Function producing the relation "belong to the same half-line". |
class hlG | ||
Definition | df-hlg 27841* | Define the function producting the relation "belong to the same half-line". (Contributed by Thierry Arnoux, 15-Aug-2020.) |
β’ hlG = (π β V β¦ (π β (Baseβπ) β¦ {β¨π, πβ© β£ ((π β (Baseβπ) β§ π β (Baseβπ)) β§ (π β π β§ π β π β§ (π β (π(Itvβπ)π) β¨ π β (π(Itvβπ)π))))})) | ||
Theorem | ishlg 27842 | Rays : Definition 6.1 of [Schwabhauser] p. 43. With this definition, π΄(πΎβπΆ)π΅ means that π΄ and π΅ are on the same ray with initial point πΆ. This follows the same notation as Schwabhauser where rays are first defined as a relation. It is possible to recover the ray itself using e.g., ((πΎβπΆ) β {π΄}). (Contributed by Thierry Arnoux, 21-Dec-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β πΊ β π) β β’ (π β (π΄(πΎβπΆ)π΅ β (π΄ β πΆ β§ π΅ β πΆ β§ (π΄ β (πΆπΌπ΅) β¨ π΅ β (πΆπΌπ΄))))) | ||
Theorem | hlcomb 27843 | The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β πΊ β π) β β’ (π β (π΄(πΎβπΆ)π΅ β π΅(πΎβπΆ)π΄)) | ||
Theorem | hlcomd 27844 | The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β πΊ β π) & β’ (π β π΄(πΎβπΆ)π΅) β β’ (π β π΅(πΎβπΆ)π΄) | ||
Theorem | hlne1 27845 | The half-line relation implies inequality. (Contributed by Thierry Arnoux, 22-Feb-2020.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β πΊ β π) & β’ (π β π΄(πΎβπΆ)π΅) β β’ (π β π΄ β πΆ) | ||
Theorem | hlne2 27846 | The half-line relation implies inequality. (Contributed by Thierry Arnoux, 22-Feb-2020.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β πΊ β π) & β’ (π β π΄(πΎβπΆ)π΅) β β’ (π β π΅ β πΆ) | ||
Theorem | hlln 27847 | The half-line relation implies colinearity, part of Theorem 6.4 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 22-Feb-2020.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β πΊ β TarskiG) & β’ πΏ = (LineGβπΊ) & β’ (π β π΄(πΎβπΆ)π΅) β β’ (π β π΄ β (π΅πΏπΆ)) | ||
Theorem | hleqnid 27848 | The endpoint does not belong to the half-line. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β πΊ β TarskiG) β β’ (π β Β¬ π΄(πΎβπ΄)π΅) | ||
Theorem | hlid 27849 | The half-line relation is reflexive. Theorem 6.5 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β πΆ) β β’ (π β π΄(πΎβπΆ)π΄) | ||
Theorem | hltr 27850 | The half-line relation is transitive. Theorem 6.7 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 23-Feb-2020.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β πΊ β TarskiG) & β’ (π β π· β π) & β’ (π β π΄(πΎβπ·)π΅) & β’ (π β π΅(πΎβπ·)πΆ) β β’ (π β π΄(πΎβπ·)πΆ) | ||
Theorem | hlbtwn 27851 | Betweenness is a sufficient condition to swap half-lines. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β πΊ β TarskiG) & β’ (π β π· β π) & β’ (π β π· β (πΆπΌπ΅)) & β’ (π β π΅ β πΆ) & β’ (π β π· β πΆ) β β’ (π β (π΄(πΎβπΆ)π΅ β π΄(πΎβπΆ)π·)) | ||
Theorem | btwnhl1 27852 | Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β πΊ β TarskiG) & β’ (π β π· β π) & β’ (π β πΆ β (π΄πΌπ΅)) & β’ (π β π΄ β π΅) & β’ (π β πΆ β π΄) β β’ (π β πΆ(πΎβπ΄)π΅) | ||
Theorem | btwnhl2 27853 | Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β πΊ β TarskiG) & β’ (π β π· β π) & β’ (π β πΆ β (π΄πΌπ΅)) & β’ (π β π΄ β π΅) & β’ (π β πΆ β π΅) β β’ (π β πΆ(πΎβπ΅)π΄) | ||
Theorem | btwnhl 27854 | Swap betweenness for a half-line. (Contributed by Thierry Arnoux, 2-Mar-2020.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β πΊ β TarskiG) & β’ (π β π· β π) & β’ (π β π΄(πΎβπ·)π΅) & β’ (π β π· β (π΄πΌπΆ)) β β’ (π β π· β (π΅πΌπΆ)) | ||
Theorem | lnhl 27855 | Either a point πΆ on the line AB is on the same side as π΄ or on the opposite side. (Contributed by Thierry Arnoux, 21-Sep-2020.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β πΊ β TarskiG) & β’ (π β π· β π) & β’ πΏ = (LineGβπΊ) & β’ (π β πΆ β (π΄πΏπ΅)) β β’ (π β (πΆ(πΎβπ΅)π΄ β¨ π΅ β (π΄πΌπΆ))) | ||
Theorem | hlcgrex 27856* | Construct a point on a half-line, at a given distance of its origin. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β πΊ β TarskiG) & β’ (π β π· β π) & β’ β = (distβπΊ) & β’ (π β π· β π΄) & β’ (π β π΅ β πΆ) β β’ (π β βπ₯ β π (π₯(πΎβπ΄)π· β§ (π΄ β π₯) = (π΅ β πΆ))) | ||
Theorem | hlcgreulem 27857 | Lemma for hlcgreu 27858. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β πΊ β TarskiG) & β’ (π β π· β π) & β’ β = (distβπΊ) & β’ (π β π· β π΄) & β’ (π β π΅ β πΆ) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π(πΎβπ΄)π·) & β’ (π β π(πΎβπ΄)π·) & β’ (π β (π΄ β π) = (π΅ β πΆ)) & β’ (π β (π΄ β π) = (π΅ β πΆ)) β β’ (π β π = π) | ||
Theorem | hlcgreu 27858* | The point constructed in hlcgrex 27856 is unique. Theorem 6.11 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 9-Aug-2020.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΎ = (hlGβπΊ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β πΊ β TarskiG) & β’ (π β π· β π) & β’ β = (distβπΊ) & β’ (π β π· β π΄) & β’ (π β π΅ β πΆ) β β’ (π β β!π₯ β π (π₯(πΎβπ΄)π· β§ (π΄ β π₯) = (π΅ β πΆ))) | ||
Theorem | btwnlng1 27859 | Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β (ππΌπ)) β β’ (π β π β (ππΏπ)) | ||
Theorem | btwnlng2 27860 | Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β (ππΌπ)) β β’ (π β π β (ππΏπ)) | ||
Theorem | btwnlng3 27861 | Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β (ππΌπ)) β β’ (π β π β (ππΏπ)) | ||
Theorem | lncom 27862 | Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β (ππΏπ)) β β’ (π β π β (ππΏπ)) | ||
Theorem | lnrot1 27863 | Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β (ππΏπ)) & β’ (π β π β π) β β’ (π β π β (ππΏπ)) | ||
Theorem | lnrot2 27864 | Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β (ππΏπ)) & β’ (π β π β π) β β’ (π β π β (ππΏπ)) | ||
Theorem | ncolne1 27865 | Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019.) |
β’ π΅ = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β Β¬ (π β (ππΏπ) β¨ π = π)) β β’ (π β π β π) | ||
Theorem | ncolne2 27866 | Non-colinear points are different. (Contributed by Thierry Arnoux, 8-Aug-2019.) TODO (NM): maybe ncolne2 27866 could be simplified out and deleted, replaced by ncolcom 27801. |
β’ π΅ = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β Β¬ (π β (ππΏπ) β¨ π = π)) β β’ (π β π β π) | ||
Theorem | tgisline 27867* | The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.) |
β’ π΅ = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β ran πΏ) β β’ (π β βπ₯ β π΅ βπ¦ β π΅ (π΄ = (π₯πΏπ¦) β§ π₯ β π¦)) | ||
Theorem | tglnne 27868 | It takes two different points to form a line. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
β’ π΅ = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β (ππΏπ) β ran πΏ) β β’ (π β π β π) | ||
Theorem | tglndim0 27869 | There are no lines in dimension 0. (Contributed by Thierry Arnoux, 18-Oct-2019.) |
β’ π΅ = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β (β―βπ΅) = 1) β β’ (π β Β¬ π΄ β ran πΏ) | ||
Theorem | tgelrnln 27870 | The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.) |
β’ π΅ = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π) β β’ (π β (ππΏπ) β ran πΏ) | ||
Theorem | tglineeltr 27871 | Transitivity law for lines, one half of tglineelsb2 27872. (Contributed by Thierry Arnoux, 25-May-2019.) |
β’ π΅ = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π) & β’ (π β π β π΅) & β’ (π β π β π) & β’ (π β π β (ππΏπ)) & β’ (π β π β π΅) & β’ (π β π β (ππΏπ)) β β’ (π β π β (ππΏπ)) | ||
Theorem | tglineelsb2 27872 | If π lies on PQ , then PQ = PS . Theorem 6.16 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
β’ π΅ = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π) & β’ (π β π β π΅) & β’ (π β π β π) & β’ (π β π β (ππΏπ)) β β’ (π β (ππΏπ) = (ππΏπ)) | ||
Theorem | tglinerflx1 27873 | Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
β’ π΅ = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π) β β’ (π β π β (ππΏπ)) | ||
Theorem | tglinerflx2 27874 | Reflexivity law for line membership. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
β’ π΅ = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π) β β’ (π β π β (ππΏπ)) | ||
Theorem | tglinecom 27875 | Commutativity law for lines. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
β’ π΅ = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π) β β’ (π β (ππΏπ) = (ππΏπ)) | ||
Theorem | tglinethru 27876 | If π΄ is a line containing two distinct points π and π, then π΄ is the line through π and π. Theorem 6.18 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 25-May-2019.) |
β’ π΅ = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π΄ β ran πΏ) & β’ (π β π β π΄) & β’ (π β π β π΄) β β’ (π β π΄ = (ππΏπ)) | ||
Theorem | tghilberti1 27877* | There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.) |
β’ π΅ = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π) β β’ (π β βπ₯ β ran πΏ(π β π₯ β§ π β π₯)) | ||
Theorem | tghilberti2 27878* | There is at most one line through any two distinct points. Hilbert's axiom I.2 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.) |
β’ π΅ = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π) β β’ (π β β*π₯ β ran πΏ(π β π₯ β§ π β π₯)) | ||
Theorem | tglinethrueu 27879* | There is a unique line going through any two distinct points. Theorem 6.19 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 25-May-2019.) |
β’ π΅ = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π) β β’ (π β β!π₯ β ran πΏ(π β π₯ β§ π β π₯)) | ||
Theorem | tglnne0 27880 | A line π΄ has at least one point. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β ran πΏ) β β’ (π β π΄ β β ) | ||
Theorem | tglnpt2 27881* | Find a second point on a line. (Contributed by Thierry Arnoux, 18-Oct-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β ran πΏ) & β’ (π β π β π΄) β β’ (π β βπ¦ β π΄ π β π¦) | ||
Theorem | tglineintmo 27882* | Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 25-May-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β ran πΏ) & β’ (π β π΅ β ran πΏ) & β’ (π β π΄ β π΅) β β’ (π β β*π₯(π₯ β π΄ β§ π₯ β π΅)) | ||
Theorem | tglineineq 27883 | Two distinct lines intersect in at most one point, variation. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β ran πΏ) & β’ (π β π΅ β ran πΏ) & β’ (π β π΄ β π΅) & β’ (π β π β (π΄ β© π΅)) & β’ (π β π β (π΄ β© π΅)) β β’ (π β π = π) | ||
Theorem | tglineneq 27884 | Given three non-colinear points, build two different lines. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β Β¬ (π΄ β (π΅πΏπΆ) β¨ π΅ = πΆ)) β β’ (π β (π΄πΏπ΅) β (πΆπΏπ·)) | ||
Theorem | tglineinteq 27885 | Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β Β¬ (π΄ β (π΅πΏπΆ) β¨ π΅ = πΆ)) & β’ (π β π β (π΄πΏπ΅)) & β’ (π β π β (π΄πΏπ΅)) & β’ (π β π β (πΆπΏπ·)) & β’ (π β π β (πΆπΏπ·)) β β’ (π β π = π) | ||
Theorem | ncolncol 27886 | Deduce non-colinearity from non-colinearity and colinearity. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β Β¬ (π΄ β (π΅πΏπΆ) β¨ π΅ = πΆ)) & β’ (π β π· β (π΄πΏπ΅)) & β’ (π β π· β π΅) β β’ (π β Β¬ (π· β (π΅πΏπΆ) β¨ π΅ = πΆ)) | ||
Theorem | coltr 27887 | A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β π΄ β (π΅πΏπΆ)) & β’ (π β (π΅ β (πΆπΏπ·) β¨ πΆ = π·)) β β’ (π β (π΄ β (πΆπΏπ·) β¨ πΆ = π·)) | ||
Theorem | coltr3 27888 | A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) & β’ (π β π΄ β (π΅πΏπΆ)) & β’ (π β π· β (π΄πΌπΆ)) β β’ (π β π· β (π΅πΏπΆ)) | ||
Theorem | colline 27889* | Three points are colinear iff there is a line through all three of them. Theorem 6.23 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 28-May-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β 2 β€ (β―βπ)) β β’ (π β ((π β (ππΏπ) β¨ π = π) β βπ β ran πΏ(π β π β§ π β π β§ π β π))) | ||
Theorem | tglowdim2l 27890* | Reformulation of the lower dimension axiom for dimension two. There exist three non-colinear points. Theorem 6.24 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 30-May-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β πΊDimTarskiGβ₯2) β β’ (π β βπ β π βπ β π βπ β π Β¬ (π β (ππΏπ) β¨ π = π)) | ||
Theorem | tglowdim2ln 27891* | There is always one point outside of any line. Theorem 6.25 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 16-Nov-2019.) |
β’ π = (BaseβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β πΊDimTarskiGβ₯2) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β π΄ β π΅) β β’ (π β βπ β π Β¬ π β (π΄πΏπ΅)) | ||
Syntax | cmir 27892 | Declare the constant for the point inversion function. |
class pInvG | ||
Definition | df-mir 27893* | Define the point inversion ("mirror") function. Definition 7.5 of [Schwabhauser] p. 49. See mirval 27895 and ismir 27899. (Contributed by Thierry Arnoux, 30-May-2019.) |
β’ pInvG = (π β V β¦ (π β (Baseβπ) β¦ (π β (Baseβπ) β¦ (β©π β (Baseβπ)((π(distβπ)π) = (π(distβπ)π) β§ π β (π(Itvβπ)π)))))) | ||
Theorem | mirreu3 27894* | Existential uniqueness of the mirror point. Theorem 7.8 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ (π β π β π) β β’ (π β β!π β π ((π β π) = (π β π΄) β§ π β (ππΌπ΄))) | ||
Theorem | mirval 27895* | Value of the point inversion function π. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) β β’ (π β (πβπ΄) = (π¦ β π β¦ (β©π§ β π ((π΄ β π§) = (π΄ β π¦) β§ π΄ β (π§πΌπ¦))))) | ||
Theorem | mirfv 27896* | Value of the point inversion function π. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) & β’ (π β π΅ β π) β β’ (π β (πβπ΅) = (β©π§ β π ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅)))) | ||
Theorem | mircgr 27897 | Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) & β’ (π β π΅ β π) β β’ (π β (π΄ β (πβπ΅)) = (π΄ β π΅)) | ||
Theorem | mirbtwn 27898 | Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) & β’ (π β π΅ β π) β β’ (π β π΄ β ((πβπ΅)πΌπ΅)) | ||
Theorem | ismir 27899 | Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β (π΄ β πΆ) = (π΄ β π΅)) & β’ (π β π΄ β (πΆπΌπ΅)) β β’ (π β πΆ = (πβπ΅)) | ||
Theorem | mirf 27900 | Point inversion as function. (Contributed by Thierry Arnoux, 30-May-2019.) |
β’ π = (BaseβπΊ) & β’ β = (distβπΊ) & β’ πΌ = (ItvβπΊ) & β’ πΏ = (LineGβπΊ) & β’ π = (pInvGβπΊ) & β’ (π β πΊ β TarskiG) & β’ (π β π΄ β π) & β’ π = (πβπ΄) β β’ (π β π:πβΆπ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |