| Metamath
Proof Explorer Theorem List (p. 279 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-left 27801* | Define the left options of a surreal. This is the set of surreals that are simpler and less than the given surreal. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ L = (𝑥 ∈ No ↦ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥}) | ||
| Definition | df-right 27802* | Define the right options of a surreal. This is the set of surreals that are simpler and greater than the given surreal. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ R = (𝑥 ∈ No ↦ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦}) | ||
| Theorem | madeval 27803 | The value of the made by function. (Contributed by Scott Fenton, 17-Dec-2021.) |
| ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)))) | ||
| Theorem | madeval2 27804* | Alternative characterization of the made by function. (Contributed by Scott Fenton, 17-Dec-2021.) |
| ⊢ (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 ∈ No ∣ ∃𝑎 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑏 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)}) | ||
| Theorem | oldval 27805 | The value of the old options function. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) | ||
| Theorem | newval 27806 | The value of the new options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( N ‘𝐴) = (( M ‘𝐴) ∖ ( O ‘𝐴)) | ||
| Theorem | madef 27807 | The made function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ M :On⟶𝒫 No | ||
| Theorem | oldf 27808 | The older function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ O :On⟶𝒫 No | ||
| Theorem | newf 27809 | The new function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ N :On⟶𝒫 No | ||
| Theorem | old0 27810 | No surreal is older than ∅. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ ( O ‘∅) = ∅ | ||
| Theorem | madessno 27811 | Made sets are surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( M ‘𝐴) ⊆ No | ||
| Theorem | oldssno 27812 | Old sets are surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( O ‘𝐴) ⊆ No | ||
| Theorem | newssno 27813 | New sets are surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( N ‘𝐴) ⊆ No | ||
| Theorem | leftval 27814* | The value of the left options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( L ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝑥 <s 𝐴} | ||
| Theorem | rightval 27815* | The value of the right options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} | ||
| Theorem | elleft 27816 | Membership in the left set of a surreal. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝐴 ∈ ( L ‘𝐵) ↔ (𝐴 ∈ ( O ‘( bday ‘𝐵)) ∧ 𝐴 <s 𝐵)) | ||
| Theorem | elright 27817 | Membership in the right set of a surreal. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝐴 ∈ ( R ‘𝐵) ↔ (𝐴 ∈ ( O ‘( bday ‘𝐵)) ∧ 𝐵 <s 𝐴)) | ||
| Theorem | leftlt 27818 | A member of a surreal's left set is less than it. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝐴 ∈ ( L ‘𝐵) → 𝐴 <s 𝐵) | ||
| Theorem | rightgt 27819 | A member of a surreal's right set is greater than it. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝐴 ∈ ( R ‘𝐵) → 𝐵 <s 𝐴) | ||
| Theorem | leftf 27820 | The functionality of the left options function. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ L : No ⟶𝒫 No | ||
| Theorem | rightf 27821 | The functionality of the right options function. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ R : No ⟶𝒫 No | ||
| Theorem | elmade 27822* | Membership in the made function. (Contributed by Scott Fenton, 6-Aug-2024.) |
| ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) | ||
| Theorem | elmade2 27823* | Membership in the made function in terms of the old function. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( O ‘𝐴)∃𝑟 ∈ 𝒫 ( O ‘𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) | ||
| Theorem | elold 27824* | Membership in an old set. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) | ||
| Theorem | ssltleft 27825 | A surreal is greater than its left options. Theorem 0(ii) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ (𝐴 ∈ No → ( L ‘𝐴) <<s {𝐴}) | ||
| Theorem | ssltright 27826 | A surreal is less than its right options. Theorem 0(i) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ (𝐴 ∈ No → {𝐴} <<s ( R ‘𝐴)) | ||
| Theorem | lltropt 27827 | The left options of a surreal are strictly less than the right options of the same surreal. (Contributed by Scott Fenton, 6-Aug-2024.) (Revised by Scott Fenton, 21-Feb-2025.) |
| ⊢ ( L ‘𝐴) <<s ( R ‘𝐴) | ||
| Theorem | made0 27828 | The only surreal made on day ∅ is 0s. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ ( M ‘∅) = { 0s } | ||
| Theorem | new0 27829 | The only surreal new on day ∅ is 0s. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ ( N ‘∅) = { 0s } | ||
| Theorem | old1 27830 | The only surreal older than 1o is 0s. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ( O ‘1o) = { 0s } | ||
| Theorem | madess 27831 | If 𝐴 is less than or equal to ordinal 𝐵, then the made set of 𝐴 is included in the made set of 𝐵. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ((𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵) → ( M ‘𝐴) ⊆ ( M ‘𝐵)) | ||
| Theorem | oldssmade 27832 | The older-than set is a subset of the made set. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( O ‘𝐴) ⊆ ( M ‘𝐴) | ||
| Theorem | oldss 27833 | If 𝐴 is less than or equal to ordinal 𝐵, then the old set of 𝐴 is included in the made set of 𝐵. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ((𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵) → ( O ‘𝐴) ⊆ ( O ‘𝐵)) | ||
| Theorem | leftssold 27834 | The left options are a subset of the old set. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( L ‘𝑋) ⊆ ( O ‘( bday ‘𝑋)) | ||
| Theorem | rightssold 27835 | The right options are a subset of the old set. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( R ‘𝑋) ⊆ ( O ‘( bday ‘𝑋)) | ||
| Theorem | leftssno 27836 | The left set of a surreal number is a subset of the surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( L ‘𝐴) ⊆ No | ||
| Theorem | rightssno 27837 | The right set of a surreal number is a subset of the surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( R ‘𝐴) ⊆ No | ||
| Theorem | madecut 27838 | Given a section that is a subset of an old set, the cut is a member of the made set. (Contributed by Scott Fenton, 7-Aug-2024.) |
| ⊢ (((𝐴 ∈ On ∧ 𝐿 <<s 𝑅) ∧ (𝐿 ⊆ ( O ‘𝐴) ∧ 𝑅 ⊆ ( O ‘𝐴))) → (𝐿 |s 𝑅) ∈ ( M ‘𝐴)) | ||
| Theorem | madeun 27839 | The made set is the union of the old set and the new set. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ( M ‘𝐴) = (( O ‘𝐴) ∪ ( N ‘𝐴)) | ||
| Theorem | madeoldsuc 27840 | The made set is the old set of its successor. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴)) | ||
| Theorem | oldsuc 27841 | The value of the old set at a successor. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ (𝐴 ∈ On → ( O ‘suc 𝐴) = (( O ‘𝐴) ∪ ( N ‘𝐴))) | ||
| Theorem | oldlim 27842 | The value of the old set at a limit ordinal. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → ( O ‘𝐴) = ∪ ( O “ 𝐴)) | ||
| Theorem | madebdayim 27843 | If a surreal is a member of a made set, its birthday is less than or equal to the level. (Contributed by Scott Fenton, 10-Aug-2024.) |
| ⊢ (𝑋 ∈ ( M ‘𝐴) → ( bday ‘𝑋) ⊆ 𝐴) | ||
| Theorem | oldbdayim 27844 | If 𝑋 is in the old set for 𝐴, then the birthday of 𝑋 is less than 𝐴. (Contributed by Scott Fenton, 10-Aug-2024.) |
| ⊢ (𝑋 ∈ ( O ‘𝐴) → ( bday ‘𝑋) ∈ 𝐴) | ||
| Theorem | oldirr 27845 | No surreal is a member of its birthday's old set. (Contributed by Scott Fenton, 10-Aug-2024.) |
| ⊢ ¬ 𝑋 ∈ ( O ‘( bday ‘𝑋)) | ||
| Theorem | leftirr 27846 | No surreal is a member of its left set. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ¬ 𝑋 ∈ ( L ‘𝑋) | ||
| Theorem | rightirr 27847 | No surreal is a member of its right set. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ ¬ 𝑋 ∈ ( R ‘𝑋) | ||
| Theorem | left0s 27848 | The left set of 0s is empty. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ ( L ‘ 0s ) = ∅ | ||
| Theorem | right0s 27849 | The right set of 0s is empty. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ ( R ‘ 0s ) = ∅ | ||
| Theorem | left1s 27850 | The left set of 1s is the singleton of 0s. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ( L ‘ 1s ) = { 0s } | ||
| Theorem | right1s 27851 | The right set of 1s is empty . (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ( R ‘ 1s ) = ∅ | ||
| Theorem | lrold 27852 | The union of the left and right options of a surreal make its old set. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ (( L ‘𝐴) ∪ ( R ‘𝐴)) = ( O ‘( bday ‘𝐴)) | ||
| Theorem | madebdaylemold 27853* | Lemma for madebday 27855. If the inductive hypothesis of madebday 27855 is satisfied, the converse of oldbdayim 27844 holds. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( bday ‘𝑋) ∈ 𝐴 → 𝑋 ∈ ( O ‘𝐴))) | ||
| Theorem | madebdaylemlrcut 27854* | Lemma for madebday 27855. If the inductive hypothesis of madebday 27855 is satisfied up to the birthday of 𝑋, then the conclusion of lrcut 27859 holds. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ ((∀𝑏 ∈ ( bday ‘𝑋)∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋) | ||
| Theorem | madebday 27855 | A surreal is part of the set made by ordinal 𝐴 iff its birthday is less than or equal to 𝐴. Remark in [Conway] p. 29. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( M ‘𝐴) ↔ ( bday ‘𝑋) ⊆ 𝐴)) | ||
| Theorem | oldbday 27856 | A surreal is part of the set older than ordinal 𝐴 iff its birthday is less than 𝐴. Remark in [Conway] p. 29. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( O ‘𝐴) ↔ ( bday ‘𝑋) ∈ 𝐴)) | ||
| Theorem | newbday 27857 | A surreal is an element of a new set iff its birthday is equal to that ordinal. Remark in [Conway] p. 29. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( N ‘𝐴) ↔ ( bday ‘𝑋) = 𝐴)) | ||
| Theorem | newbdayim 27858 | One direction of the biconditional in newbday 27857. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝑋 ∈ ( N ‘𝐴) → ( bday ‘𝑋) = 𝐴) | ||
| Theorem | lrcut 27859 | A surreal is equal to the cut of its left and right sets. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ (𝑋 ∈ No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋) | ||
| Theorem | scutfo 27860 | The surreal cut function is onto. (Contributed by Scott Fenton, 23-Aug-2024.) |
| ⊢ |s : <<s –onto→ No | ||
| Theorem | sltn0 27861 | If 𝑋 is less than 𝑌, then either ( L ‘𝑌) or ( R ‘𝑋) is non-empty. (Contributed by Scott Fenton, 10-Dec-2024.) |
| ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌) → (( L ‘𝑌) ≠ ∅ ∨ ( R ‘𝑋) ≠ ∅)) | ||
| Theorem | lruneq 27862 | If two surreals share a birthday, then the union of their left and right sets are equal. (Contributed by Scott Fenton, 17-Sep-2024.) |
| ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘𝑋) = ( bday ‘𝑌)) → (( L ‘𝑋) ∪ ( R ‘𝑋)) = (( L ‘𝑌) ∪ ( R ‘𝑌))) | ||
| Theorem | sltlpss 27863 | If two surreals share a birthday, then 𝑋 <s 𝑌 iff the left set of 𝑋 is a proper subset of the left set of 𝑌. (Contributed by Scott Fenton, 17-Sep-2024.) |
| ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘𝑋) = ( bday ‘𝑌)) → (𝑋 <s 𝑌 ↔ ( L ‘𝑋) ⊊ ( L ‘𝑌))) | ||
| Theorem | slelss 27864 | If two surreals 𝐴 and 𝐵 share a birthday, then 𝐴 ≤s 𝐵 if and only if the left set of 𝐴 is a non-strict subset of the left set of 𝐵. (Contributed by Scott Fenton, 21-Mar-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( bday ‘𝐴) = ( bday ‘𝐵)) → (𝐴 ≤s 𝐵 ↔ ( L ‘𝐴) ⊆ ( L ‘𝐵))) | ||
| Theorem | 0elold 27865 | Zero is in the old set of any non-zero number. (Contributed by Scott Fenton, 13-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐴 ≠ 0s ) ⇒ ⊢ (𝜑 → 0s ∈ ( O ‘( bday ‘𝐴))) | ||
| Theorem | 0elleft 27866 | Zero is in the left set of any positive number. (Contributed by Scott Fenton, 13-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐴) ⇒ ⊢ (𝜑 → 0s ∈ ( L ‘𝐴)) | ||
| Theorem | 0elright 27867 | Zero is in the right set of any negative number. (Contributed by Scott Fenton, 13-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 0s ) ⇒ ⊢ (𝜑 → 0s ∈ ( R ‘𝐴)) | ||
| Theorem | madefi 27868 | The made set of an ordinal natural is finite. (Contributed by Scott Fenton, 20-Aug-2025.) |
| ⊢ (𝐴 ∈ ω → ( M ‘𝐴) ∈ Fin) | ||
| Theorem | oldfi 27869 | The old set of an ordinal natural is finite. (Contributed by Scott Fenton, 20-Aug-2025.) |
| ⊢ (𝐴 ∈ ω → ( O ‘𝐴) ∈ Fin) | ||
| Theorem | bdayiun 27870* | The birthday of a surreal is the least upper bound of the successors of the birthdays of its options. This is the definition of the birthday of a combinatorial game in the Lean Combinatorial Game Theory library at https://github.com/vihdzp/combinatorial-games. (Contributed by Scott Fenton, 22-Nov-2025.) |
| ⊢ (𝐴 ∈ No → ( bday ‘𝐴) = ∪ 𝑥 ∈ ( O ‘( bday ‘𝐴))suc ( bday ‘𝑥)) | ||
| Theorem | bdayle 27871* | A condition for bounding a birthday above. (Contributed by Scott Fenton, 22-Nov-2025.) |
| ⊢ ((𝑋 ∈ No ∧ Ord 𝑂) → (( bday ‘𝑋) ⊆ 𝑂 ↔ ∀𝑦 ∈ ( O ‘( bday ‘𝑋))( bday ‘𝑦) ∈ 𝑂)) | ||
| Theorem | cofsslt 27872* | If every element of 𝐴 is bounded above by some element of 𝐵 and 𝐵 precedes 𝐶, then 𝐴 precedes 𝐶. Note - we will often use the term "cofinal" to denote that every element of 𝐴 is bounded above by some element of 𝐵. Similarly, we will use the term "coinitial" to denote that every element of 𝐴 is bounded below by some element of 𝐵. (Contributed by Scott Fenton, 24-Sep-2024.) |
| ⊢ ((𝐴 ∈ 𝒫 No ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ≤s 𝑦 ∧ 𝐵 <<s 𝐶) → 𝐴 <<s 𝐶) | ||
| Theorem | coinitsslt 27873* | If 𝐵 is coinitial with 𝐶 and 𝐴 precedes 𝐶, then 𝐴 precedes 𝐵. (Contributed by Scott Fenton, 24-Sep-2024.) |
| ⊢ ((𝐵 ∈ 𝒫 No ∧ ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝑦 ≤s 𝑥 ∧ 𝐴 <<s 𝐶) → 𝐴 <<s 𝐵) | ||
| Theorem | cofcut1 27874* | If 𝐶 is cofinal with 𝐴 and 𝐷 is coinitial with 𝐵 and the cut of 𝐴 and 𝐵 lies between 𝐶 and 𝐷, then the cut of 𝐶 and 𝐷 is equal to the cut of 𝐴 and 𝐵. Theorem 2.6 of [Gonshor] p. 10. (Contributed by Scott Fenton, 25-Sep-2024.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) | ||
| Theorem | cofcut1d 27875* | If 𝐶 is cofinal with 𝐴 and 𝐷 is coinitial with 𝐵 and the cut of 𝐴 and 𝐵 lies between 𝐶 and 𝐷, then the cut of 𝐶 and 𝐷 is equal to the cut of 𝐴 and 𝐵. Theorem 2.6 of [Gonshor] p. 10. (Contributed by Scott Fenton, 23-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) & ⊢ (𝜑 → 𝐶 <<s {(𝐴 |s 𝐵)}) & ⊢ (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐷) ⇒ ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) | ||
| Theorem | cofcut2 27876* | If 𝐴 and 𝐶 are mutually cofinal and 𝐵 and 𝐷 are mutually coinitial, then the cut of 𝐴 and 𝐵 is equal to the cut of 𝐶 and 𝐷. Theorem 2.7 of [Gonshor] p. 10. (Contributed by Scott Fenton, 25-Sep-2024.) |
| ⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 ∈ 𝒫 No ∧ 𝐷 ∈ 𝒫 No ) ∧ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) ∧ (∀𝑡 ∈ 𝐶 ∃𝑢 ∈ 𝐴 𝑡 ≤s 𝑢 ∧ ∀𝑟 ∈ 𝐷 ∃𝑠 ∈ 𝐵 𝑠 ≤s 𝑟)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) | ||
| Theorem | cofcut2d 27877* | If 𝐴 and 𝐶 are mutually cofinal and 𝐵 and 𝐷 are mutually coinitial, then the cut of 𝐴 and 𝐵 is equal to the cut of 𝐶 and 𝐷. Theorem 2.7 of [Gonshor] p. 10. (Contributed by Scott Fenton, 23-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝒫 No ) & ⊢ (𝜑 → 𝐷 ∈ 𝒫 No ) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) & ⊢ (𝜑 → ∀𝑡 ∈ 𝐶 ∃𝑢 ∈ 𝐴 𝑡 ≤s 𝑢) & ⊢ (𝜑 → ∀𝑟 ∈ 𝐷 ∃𝑠 ∈ 𝐵 𝑠 ≤s 𝑟) ⇒ ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) | ||
| Theorem | cofcutr 27878* | If 𝑋 is the cut of 𝐴 and 𝐵, then 𝐴 is cofinal with ( L ‘𝑋) and 𝐵 is coinitial with ( R ‘𝑋). Theorem 2.9 of [Gonshor] p. 12. (Contributed by Scott Fenton, 25-Sep-2024.) |
| ⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → (∀𝑥 ∈ ( L ‘𝑋)∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ ( R ‘𝑋)∃𝑤 ∈ 𝐵 𝑤 ≤s 𝑧)) | ||
| Theorem | cofcutr1d 27879* | If 𝑋 is the cut of 𝐴 and 𝐵, then 𝐴 is cofinal with ( L ‘𝑋). First half of theorem 2.9 of [Gonshor] p. 12. (Contributed by Scott Fenton, 23-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝑋 = (𝐴 |s 𝐵)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ ( L ‘𝑋)∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) | ||
| Theorem | cofcutr2d 27880* | If 𝑋 is the cut of 𝐴 and 𝐵, then 𝐵 is coinitial with ( R ‘𝑋). Second half of theorem 2.9 of [Gonshor] p. 12. (Contributed by Scott Fenton, 25-Sep-2024.) |
| ⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝑋 = (𝐴 |s 𝐵)) ⇒ ⊢ (𝜑 → ∀𝑧 ∈ ( R ‘𝑋)∃𝑤 ∈ 𝐵 𝑤 ≤s 𝑧) | ||
| Theorem | cofcutrtime 27881* | If 𝑋 is the cut of 𝐴 and 𝐵 and all of 𝐴 and 𝐵 are older than 𝑋, then ( L ‘𝑋) is cofinal with 𝐴 and ( R ‘𝑋) is coinitial with 𝐵. Note: we will call a cut where all of the elements of the cut are older than the cut itself a "timely" cut. Part of Theorem 4.02(12) of [Alling] p. 125. (Contributed by Scott Fenton, 27-Sep-2024.) |
| ⊢ (((𝐴 ∪ 𝐵) ⊆ ( O ‘( bday ‘𝑋)) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧)) | ||
| Theorem | cofcutrtime1d 27882* | If 𝑋 is a timely cut of 𝐴 and 𝐵, then ( L ‘𝑋) is cofinal with 𝐴. (Contributed by Scott Fenton, 23-Jan-2025.) |
| ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ ( O ‘( bday ‘𝑋))) & ⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝑋 = (𝐴 |s 𝐵)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦) | ||
| Theorem | cofcutrtime2d 27883* | If 𝑋 is a timely cut of 𝐴 and 𝐵, then ( R ‘𝑋) is coinitial with 𝐵. (Contributed by Scott Fenton, 23-Jan-2025.) |
| ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ ( O ‘( bday ‘𝑋))) & ⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝑋 = (𝐴 |s 𝐵)) ⇒ ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧) | ||
| Theorem | cofss 27884* | Cofinality for a subset. (Contributed by Scott Fenton, 13-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ⊆ No ) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 ≤s 𝑦) | ||
| Theorem | coiniss 27885* | Coinitiality for a subset. (Contributed by Scott Fenton, 13-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ⊆ No ) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑦 ≤s 𝑥) | ||
| Theorem | cutlt 27886* | Eliminating all elements below a given element of a cut does not affect the cut. (Contributed by Scott Fenton, 13-Mar-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐿) ⇒ ⊢ (𝜑 → 𝐴 = (({𝑋} ∪ {𝑦 ∈ 𝐿 ∣ 𝑋 <s 𝑦}) |s 𝑅)) | ||
| Theorem | cutpos 27887* | Reduce the elements of a cut for a positive number. (Contributed by Scott Fenton, 13-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = (({ 0s } ∪ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}) |s ( R ‘𝐴))) | ||
| Theorem | cutmax 27888* | If 𝐴 has a maximum, then the maximum may be used alone in the cut. (Contributed by Scott Fenton, 20-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑋) ⇒ ⊢ (𝜑 → (𝐴 |s 𝐵) = ({𝑋} |s 𝐵)) | ||
| Theorem | cutmin 27889* | If 𝐵 has a minimum, then the minimum may be used alone in the cut. (Contributed by Scott Fenton, 20-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 <<s 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 𝑋 ≤s 𝑦) ⇒ ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐴 |s {𝑋})) | ||
| Syntax | cnorec 27890 | Declare the syntax for surreal recursion of one variable. |
| class norec (𝐹) | ||
| Definition | df-norec 27891* | Define the recursion generator for surreal functions of one variable. This generator creates a recursive function of surreals from their value on their left and right sets. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ norec (𝐹) = frecs({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐹) | ||
| Theorem | lrrecval 27892* | The next step in the development of the surreals is to establish induction and recursion across left and right sets. To that end, we are going to develop a relationship 𝑅 that is founded, partial, and set-like across the surreals. This first theorem just establishes the value of 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴𝑅𝐵 ↔ 𝐴 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))) | ||
| Theorem | lrrecval2 27893* | Next, we establish an alternate expression for 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴𝑅𝐵 ↔ ( bday ‘𝐴) ∈ ( bday ‘𝐵))) | ||
| Theorem | lrrecpo 27894* | Now, we establish that 𝑅 is a partial ordering on No . (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} ⇒ ⊢ 𝑅 Po No | ||
| Theorem | lrrecse 27895* | Next, we show that 𝑅 is set-like over No . (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} ⇒ ⊢ 𝑅 Se No | ||
| Theorem | lrrecfr 27896* | Now we show that 𝑅 is founded over No . (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} ⇒ ⊢ 𝑅 Fr No | ||
| Theorem | lrrecpred 27897* | Finally, we calculate the value of the predecessor class over 𝑅. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} ⇒ ⊢ (𝐴 ∈ No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴))) | ||
| Theorem | noinds 27898* | Induction principle for a single surreal. If a property passes from a surreal's left and right sets to the surreal itself, then it holds for all surreals. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ No → (∀𝑦 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ No → 𝜒) | ||
| Theorem | norecfn 27899 | Surreal recursion over one variable is a function over the surreals. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ 𝐹 = norec (𝐺) ⇒ ⊢ 𝐹 Fn No | ||
| Theorem | norecov 27900 | Calculate the value of the surreal recursion operation. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ 𝐹 = norec (𝐺) ⇒ ⊢ (𝐴 ∈ No → (𝐹‘𝐴) = (𝐴𝐺(𝐹 ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |