Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-ismty Structured version   Visualization version   GIF version

Definition df-ismty 36667
Description: Define a function which takes two metric spaces and returns the set of isometries between the spaces. An isometry is a bijection which preserves distance. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
df-ismty Ismty = (π‘š ∈ βˆͺ ran ∞Met, 𝑛 ∈ βˆͺ ran ∞Met ↦ {𝑓 ∣ (𝑓:dom dom π‘šβ€“1-1-ontoβ†’dom dom 𝑛 ∧ βˆ€π‘₯ ∈ dom dom π‘šβˆ€π‘¦ ∈ dom dom π‘š(π‘₯π‘šπ‘¦) = ((π‘“β€˜π‘₯)𝑛(π‘“β€˜π‘¦)))})
Distinct variable group:   π‘š,𝑛,𝑓,π‘₯,𝑦

Detailed syntax breakdown of Definition df-ismty
StepHypRef Expression
1 cismty 36666 . 2 class Ismty
2 vm . . 3 setvar π‘š
3 vn . . 3 setvar 𝑛
4 cxmet 20929 . . . . 5 class ∞Met
54crn 5678 . . . 4 class ran ∞Met
65cuni 4909 . . 3 class βˆͺ ran ∞Met
72cv 1541 . . . . . . . 8 class π‘š
87cdm 5677 . . . . . . 7 class dom π‘š
98cdm 5677 . . . . . 6 class dom dom π‘š
103cv 1541 . . . . . . . 8 class 𝑛
1110cdm 5677 . . . . . . 7 class dom 𝑛
1211cdm 5677 . . . . . 6 class dom dom 𝑛
13 vf . . . . . . 7 setvar 𝑓
1413cv 1541 . . . . . 6 class 𝑓
159, 12, 14wf1o 6543 . . . . 5 wff 𝑓:dom dom π‘šβ€“1-1-ontoβ†’dom dom 𝑛
16 vx . . . . . . . . . 10 setvar π‘₯
1716cv 1541 . . . . . . . . 9 class π‘₯
18 vy . . . . . . . . . 10 setvar 𝑦
1918cv 1541 . . . . . . . . 9 class 𝑦
2017, 19, 7co 7409 . . . . . . . 8 class (π‘₯π‘šπ‘¦)
2117, 14cfv 6544 . . . . . . . . 9 class (π‘“β€˜π‘₯)
2219, 14cfv 6544 . . . . . . . . 9 class (π‘“β€˜π‘¦)
2321, 22, 10co 7409 . . . . . . . 8 class ((π‘“β€˜π‘₯)𝑛(π‘“β€˜π‘¦))
2420, 23wceq 1542 . . . . . . 7 wff (π‘₯π‘šπ‘¦) = ((π‘“β€˜π‘₯)𝑛(π‘“β€˜π‘¦))
2524, 18, 9wral 3062 . . . . . 6 wff βˆ€π‘¦ ∈ dom dom π‘š(π‘₯π‘šπ‘¦) = ((π‘“β€˜π‘₯)𝑛(π‘“β€˜π‘¦))
2625, 16, 9wral 3062 . . . . 5 wff βˆ€π‘₯ ∈ dom dom π‘šβˆ€π‘¦ ∈ dom dom π‘š(π‘₯π‘šπ‘¦) = ((π‘“β€˜π‘₯)𝑛(π‘“β€˜π‘¦))
2715, 26wa 397 . . . 4 wff (𝑓:dom dom π‘šβ€“1-1-ontoβ†’dom dom 𝑛 ∧ βˆ€π‘₯ ∈ dom dom π‘šβˆ€π‘¦ ∈ dom dom π‘š(π‘₯π‘šπ‘¦) = ((π‘“β€˜π‘₯)𝑛(π‘“β€˜π‘¦)))
2827, 13cab 2710 . . 3 class {𝑓 ∣ (𝑓:dom dom π‘šβ€“1-1-ontoβ†’dom dom 𝑛 ∧ βˆ€π‘₯ ∈ dom dom π‘šβˆ€π‘¦ ∈ dom dom π‘š(π‘₯π‘šπ‘¦) = ((π‘“β€˜π‘₯)𝑛(π‘“β€˜π‘¦)))}
292, 3, 6, 6, 28cmpo 7411 . 2 class (π‘š ∈ βˆͺ ran ∞Met, 𝑛 ∈ βˆͺ ran ∞Met ↦ {𝑓 ∣ (𝑓:dom dom π‘šβ€“1-1-ontoβ†’dom dom 𝑛 ∧ βˆ€π‘₯ ∈ dom dom π‘šβˆ€π‘¦ ∈ dom dom π‘š(π‘₯π‘šπ‘¦) = ((π‘“β€˜π‘₯)𝑛(π‘“β€˜π‘¦)))})
301, 29wceq 1542 1 wff Ismty = (π‘š ∈ βˆͺ ran ∞Met, 𝑛 ∈ βˆͺ ran ∞Met ↦ {𝑓 ∣ (𝑓:dom dom π‘šβ€“1-1-ontoβ†’dom dom 𝑛 ∧ βˆ€π‘₯ ∈ dom dom π‘šβˆ€π‘¦ ∈ dom dom π‘š(π‘₯π‘šπ‘¦) = ((π‘“β€˜π‘₯)𝑛(π‘“β€˜π‘¦)))})
Colors of variables: wff setvar class
This definition is referenced by:  ismtyval  36668
  Copyright terms: Public domain W3C validator