Step | Hyp | Ref
| Expression |
1 | | cismty 36666 |
. 2
class
Ismty |
2 | | vm |
. . 3
setvar π |
3 | | vn |
. . 3
setvar π |
4 | | cxmet 20929 |
. . . . 5
class
βMet |
5 | 4 | crn 5678 |
. . . 4
class ran
βMet |
6 | 5 | cuni 4909 |
. . 3
class βͺ ran βMet |
7 | 2 | cv 1541 |
. . . . . . . 8
class π |
8 | 7 | cdm 5677 |
. . . . . . 7
class dom π |
9 | 8 | cdm 5677 |
. . . . . 6
class dom dom
π |
10 | 3 | cv 1541 |
. . . . . . . 8
class π |
11 | 10 | cdm 5677 |
. . . . . . 7
class dom π |
12 | 11 | cdm 5677 |
. . . . . 6
class dom dom
π |
13 | | vf |
. . . . . . 7
setvar π |
14 | 13 | cv 1541 |
. . . . . 6
class π |
15 | 9, 12, 14 | wf1o 6543 |
. . . . 5
wff π:dom dom πβ1-1-ontoβdom
dom π |
16 | | vx |
. . . . . . . . . 10
setvar π₯ |
17 | 16 | cv 1541 |
. . . . . . . . 9
class π₯ |
18 | | vy |
. . . . . . . . . 10
setvar π¦ |
19 | 18 | cv 1541 |
. . . . . . . . 9
class π¦ |
20 | 17, 19, 7 | co 7409 |
. . . . . . . 8
class (π₯ππ¦) |
21 | 17, 14 | cfv 6544 |
. . . . . . . . 9
class (πβπ₯) |
22 | 19, 14 | cfv 6544 |
. . . . . . . . 9
class (πβπ¦) |
23 | 21, 22, 10 | co 7409 |
. . . . . . . 8
class ((πβπ₯)π(πβπ¦)) |
24 | 20, 23 | wceq 1542 |
. . . . . . 7
wff (π₯ππ¦) = ((πβπ₯)π(πβπ¦)) |
25 | 24, 18, 9 | wral 3062 |
. . . . . 6
wff
βπ¦ β dom
dom π(π₯ππ¦) = ((πβπ₯)π(πβπ¦)) |
26 | 25, 16, 9 | wral 3062 |
. . . . 5
wff
βπ₯ β dom
dom πβπ¦ β dom dom π(π₯ππ¦) = ((πβπ₯)π(πβπ¦)) |
27 | 15, 26 | wa 397 |
. . . 4
wff (π:dom dom πβ1-1-ontoβdom
dom π β§ βπ₯ β dom dom πβπ¦ β dom dom π(π₯ππ¦) = ((πβπ₯)π(πβπ¦))) |
28 | 27, 13 | cab 2710 |
. . 3
class {π β£ (π:dom dom πβ1-1-ontoβdom
dom π β§ βπ₯ β dom dom πβπ¦ β dom dom π(π₯ππ¦) = ((πβπ₯)π(πβπ¦)))} |
29 | 2, 3, 6, 6, 28 | cmpo 7411 |
. 2
class (π β βͺ ran βMet, π β βͺ ran
βMet β¦ {π
β£ (π:dom dom πβ1-1-ontoβdom
dom π β§ βπ₯ β dom dom πβπ¦ β dom dom π(π₯ππ¦) = ((πβπ₯)π(πβπ¦)))}) |
30 | 1, 29 | wceq 1542 |
1
wff Ismty =
(π β βͺ ran βMet, π β βͺ ran
βMet β¦ {π
β£ (π:dom dom πβ1-1-ontoβdom
dom π β§ βπ₯ β dom dom πβπ¦ β dom dom π(π₯ππ¦) = ((πβπ₯)π(πβπ¦)))}) |