Step | Hyp | Ref
| Expression |
1 | | df-ismty 36655 |
. . 3
β’ Ismty =
(π β βͺ ran βMet, π β βͺ ran
βMet β¦ {π
β£ (π:dom dom πβ1-1-ontoβdom
dom π β§ βπ₯ β dom dom πβπ¦ β dom dom π(π₯ππ¦) = ((πβπ₯)π(πβπ¦)))}) |
2 | 1 | a1i 11 |
. 2
β’ ((π β (βMetβπ) β§ π β (βMetβπ)) β Ismty = (π β βͺ ran
βMet, π β βͺ ran βMet β¦ {π β£ (π:dom dom πβ1-1-ontoβdom
dom π β§ βπ₯ β dom dom πβπ¦ β dom dom π(π₯ππ¦) = ((πβπ₯)π(πβπ¦)))})) |
3 | | dmeq 5901 |
. . . . . . . . . 10
β’ (π = π β dom π = dom π) |
4 | | xmetf 23826 |
. . . . . . . . . . 11
β’ (π β (βMetβπ) β π:(π Γ π)βΆβ*) |
5 | 4 | fdmd 6725 |
. . . . . . . . . 10
β’ (π β (βMetβπ) β dom π = (π Γ π)) |
6 | 3, 5 | sylan9eqr 2794 |
. . . . . . . . 9
β’ ((π β (βMetβπ) β§ π = π) β dom π = (π Γ π)) |
7 | 6 | ad2ant2r 745 |
. . . . . . . 8
β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ (π = π β§ π = π)) β dom π = (π Γ π)) |
8 | 7 | dmeqd 5903 |
. . . . . . 7
β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ (π = π β§ π = π)) β dom dom π = dom (π Γ π)) |
9 | | dmxpid 5927 |
. . . . . . 7
β’ dom
(π Γ π) = π |
10 | 8, 9 | eqtrdi 2788 |
. . . . . 6
β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ (π = π β§ π = π)) β dom dom π = π) |
11 | 10 | f1oeq2d 6826 |
. . . . 5
β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ (π = π β§ π = π)) β (π:dom dom πβ1-1-ontoβdom
dom π β π:πβ1-1-ontoβdom
dom π)) |
12 | | dmeq 5901 |
. . . . . . . . . 10
β’ (π = π β dom π = dom π) |
13 | | xmetf 23826 |
. . . . . . . . . . 11
β’ (π β (βMetβπ) β π:(π Γ π)βΆβ*) |
14 | 13 | fdmd 6725 |
. . . . . . . . . 10
β’ (π β (βMetβπ) β dom π = (π Γ π)) |
15 | 12, 14 | sylan9eqr 2794 |
. . . . . . . . 9
β’ ((π β (βMetβπ) β§ π = π) β dom π = (π Γ π)) |
16 | 15 | ad2ant2l 744 |
. . . . . . . 8
β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ (π = π β§ π = π)) β dom π = (π Γ π)) |
17 | 16 | dmeqd 5903 |
. . . . . . 7
β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ (π = π β§ π = π)) β dom dom π = dom (π Γ π)) |
18 | | dmxpid 5927 |
. . . . . . 7
β’ dom
(π Γ π) = π |
19 | 17, 18 | eqtrdi 2788 |
. . . . . 6
β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ (π = π β§ π = π)) β dom dom π = π) |
20 | | f1oeq3 6820 |
. . . . . 6
β’ (dom dom
π = π β (π:πβ1-1-ontoβdom
dom π β π:πβ1-1-ontoβπ)) |
21 | 19, 20 | syl 17 |
. . . . 5
β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ (π = π β§ π = π)) β (π:πβ1-1-ontoβdom
dom π β π:πβ1-1-ontoβπ)) |
22 | 11, 21 | bitrd 278 |
. . . 4
β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ (π = π β§ π = π)) β (π:dom dom πβ1-1-ontoβdom
dom π β π:πβ1-1-ontoβπ)) |
23 | | oveq 7411 |
. . . . . . . 8
β’ (π = π β (π₯ππ¦) = (π₯ππ¦)) |
24 | | oveq 7411 |
. . . . . . . 8
β’ (π = π β ((πβπ₯)π(πβπ¦)) = ((πβπ₯)π(πβπ¦))) |
25 | 23, 24 | eqeqan12d 2746 |
. . . . . . 7
β’ ((π = π β§ π = π) β ((π₯ππ¦) = ((πβπ₯)π(πβπ¦)) β (π₯ππ¦) = ((πβπ₯)π(πβπ¦)))) |
26 | 25 | adantl 482 |
. . . . . 6
β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ (π = π β§ π = π)) β ((π₯ππ¦) = ((πβπ₯)π(πβπ¦)) β (π₯ππ¦) = ((πβπ₯)π(πβπ¦)))) |
27 | 10, 26 | raleqbidv 3342 |
. . . . 5
β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ (π = π β§ π = π)) β (βπ¦ β dom dom π(π₯ππ¦) = ((πβπ₯)π(πβπ¦)) β βπ¦ β π (π₯ππ¦) = ((πβπ₯)π(πβπ¦)))) |
28 | 10, 27 | raleqbidv 3342 |
. . . 4
β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ (π = π β§ π = π)) β (βπ₯ β dom dom πβπ¦ β dom dom π(π₯ππ¦) = ((πβπ₯)π(πβπ¦)) β βπ₯ β π βπ¦ β π (π₯ππ¦) = ((πβπ₯)π(πβπ¦)))) |
29 | 22, 28 | anbi12d 631 |
. . 3
β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ (π = π β§ π = π)) β ((π:dom dom πβ1-1-ontoβdom
dom π β§ βπ₯ β dom dom πβπ¦ β dom dom π(π₯ππ¦) = ((πβπ₯)π(πβπ¦))) β (π:πβ1-1-ontoβπ β§ βπ₯ β π βπ¦ β π (π₯ππ¦) = ((πβπ₯)π(πβπ¦))))) |
30 | 29 | abbidv 2801 |
. 2
β’ (((π β (βMetβπ) β§ π β (βMetβπ)) β§ (π = π β§ π = π)) β {π β£ (π:dom dom πβ1-1-ontoβdom
dom π β§ βπ₯ β dom dom πβπ¦ β dom dom π(π₯ππ¦) = ((πβπ₯)π(πβπ¦)))} = {π β£ (π:πβ1-1-ontoβπ β§ βπ₯ β π βπ¦ β π (π₯ππ¦) = ((πβπ₯)π(πβπ¦)))}) |
31 | | fvssunirn 6921 |
. . 3
β’
(βMetβπ)
β βͺ ran βMet |
32 | | simpl 483 |
. . 3
β’ ((π β (βMetβπ) β§ π β (βMetβπ)) β π β (βMetβπ)) |
33 | 31, 32 | sselid 3979 |
. 2
β’ ((π β (βMetβπ) β§ π β (βMetβπ)) β π β βͺ ran
βMet) |
34 | | fvssunirn 6921 |
. . 3
β’
(βMetβπ)
β βͺ ran βMet |
35 | | simpr 485 |
. . 3
β’ ((π β (βMetβπ) β§ π β (βMetβπ)) β π β (βMetβπ)) |
36 | 34, 35 | sselid 3979 |
. 2
β’ ((π β (βMetβπ) β§ π β (βMetβπ)) β π β βͺ ran
βMet) |
37 | | f1of 6830 |
. . . . . 6
β’ (π:πβ1-1-ontoβπ β π:πβΆπ) |
38 | 37 | adantr 481 |
. . . . 5
β’ ((π:πβ1-1-ontoβπ β§ βπ₯ β π βπ¦ β π (π₯ππ¦) = ((πβπ₯)π(πβπ¦))) β π:πβΆπ) |
39 | | elfvdm 6925 |
. . . . . 6
β’ (π β (βMetβπ) β π β dom βMet) |
40 | | elfvdm 6925 |
. . . . . 6
β’ (π β (βMetβπ) β π β dom βMet) |
41 | | elmapg 8829 |
. . . . . 6
β’ ((π β dom βMet β§
π β dom βMet)
β (π β (π βm π) β π:πβΆπ)) |
42 | 39, 40, 41 | syl2anr 597 |
. . . . 5
β’ ((π β (βMetβπ) β§ π β (βMetβπ)) β (π β (π βm π) β π:πβΆπ)) |
43 | 38, 42 | imbitrrid 245 |
. . . 4
β’ ((π β (βMetβπ) β§ π β (βMetβπ)) β ((π:πβ1-1-ontoβπ β§ βπ₯ β π βπ¦ β π (π₯ππ¦) = ((πβπ₯)π(πβπ¦))) β π β (π βm π))) |
44 | 43 | abssdv 4064 |
. . 3
β’ ((π β (βMetβπ) β§ π β (βMetβπ)) β {π β£ (π:πβ1-1-ontoβπ β§ βπ₯ β π βπ¦ β π (π₯ππ¦) = ((πβπ₯)π(πβπ¦)))} β (π βm π)) |
45 | | ovex 7438 |
. . . 4
β’ (π βm π) β V |
46 | 45 | ssex 5320 |
. . 3
β’ ({π β£ (π:πβ1-1-ontoβπ β§ βπ₯ β π βπ¦ β π (π₯ππ¦) = ((πβπ₯)π(πβπ¦)))} β (π βm π) β {π β£ (π:πβ1-1-ontoβπ β§ βπ₯ β π βπ¦ β π (π₯ππ¦) = ((πβπ₯)π(πβπ¦)))} β V) |
47 | 44, 46 | syl 17 |
. 2
β’ ((π β (βMetβπ) β§ π β (βMetβπ)) β {π β£ (π:πβ1-1-ontoβπ β§ βπ₯ β π βπ¦ β π (π₯ππ¦) = ((πβπ₯)π(πβπ¦)))} β V) |
48 | 2, 30, 33, 36, 47 | ovmpod 7556 |
1
β’ ((π β (βMetβπ) β§ π β (βMetβπ)) β (π Ismty π) = {π β£ (π:πβ1-1-ontoβπ β§ βπ₯ β π βπ¦ β π (π₯ππ¦) = ((πβπ₯)π(πβπ¦)))}) |