Detailed syntax breakdown of Definition df-itco
| Step | Hyp | Ref
| Expression |
| 1 | | citco 48604 |
. 2
class
IterComp |
| 2 | | vf |
. . 3
setvar 𝑓 |
| 3 | | cvv 3464 |
. . 3
class
V |
| 4 | | vg |
. . . . 5
setvar 𝑔 |
| 5 | | vj |
. . . . 5
setvar 𝑗 |
| 6 | 2 | cv 1539 |
. . . . . 6
class 𝑓 |
| 7 | 4 | cv 1539 |
. . . . . 6
class 𝑔 |
| 8 | 6, 7 | ccom 5663 |
. . . . 5
class (𝑓 ∘ 𝑔) |
| 9 | 4, 5, 3, 3, 8 | cmpo 7412 |
. . . 4
class (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)) |
| 10 | | vi |
. . . . 5
setvar 𝑖 |
| 11 | | cn0 12506 |
. . . . 5
class
ℕ0 |
| 12 | 10 | cv 1539 |
. . . . . . 7
class 𝑖 |
| 13 | | cc0 11134 |
. . . . . . 7
class
0 |
| 14 | 12, 13 | wceq 1540 |
. . . . . 6
wff 𝑖 = 0 |
| 15 | | cid 5552 |
. . . . . . 7
class
I |
| 16 | 6 | cdm 5659 |
. . . . . . 7
class dom 𝑓 |
| 17 | 15, 16 | cres 5661 |
. . . . . 6
class ( I
↾ dom 𝑓) |
| 18 | 14, 17, 6 | cif 4505 |
. . . . 5
class if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓) |
| 19 | 10, 11, 18 | cmpt 5206 |
. . . 4
class (𝑖 ∈ ℕ0
↦ if(𝑖 = 0, ( I
↾ dom 𝑓), 𝑓)) |
| 20 | 9, 19, 13 | cseq 14024 |
. . 3
class
seq0((𝑔 ∈ V,
𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓))) |
| 21 | 2, 3, 20 | cmpt 5206 |
. 2
class (𝑓 ∈ V ↦ seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓)))) |
| 22 | 1, 21 | wceq 1540 |
1
wff IterComp =
(𝑓 ∈ V ↦
seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓)))) |