Detailed syntax breakdown of Definition df-itco
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | citco 48583 | . 2
class
IterComp | 
| 2 |  | vf | . . 3
setvar 𝑓 | 
| 3 |  | cvv 3479 | . . 3
class
V | 
| 4 |  | vg | . . . . 5
setvar 𝑔 | 
| 5 |  | vj | . . . . 5
setvar 𝑗 | 
| 6 | 2 | cv 1538 | . . . . . 6
class 𝑓 | 
| 7 | 4 | cv 1538 | . . . . . 6
class 𝑔 | 
| 8 | 6, 7 | ccom 5688 | . . . . 5
class (𝑓 ∘ 𝑔) | 
| 9 | 4, 5, 3, 3, 8 | cmpo 7434 | . . . 4
class (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)) | 
| 10 |  | vi | . . . . 5
setvar 𝑖 | 
| 11 |  | cn0 12528 | . . . . 5
class
ℕ0 | 
| 12 | 10 | cv 1538 | . . . . . . 7
class 𝑖 | 
| 13 |  | cc0 11156 | . . . . . . 7
class
0 | 
| 14 | 12, 13 | wceq 1539 | . . . . . 6
wff 𝑖 = 0 | 
| 15 |  | cid 5576 | . . . . . . 7
class 
I | 
| 16 | 6 | cdm 5684 | . . . . . . 7
class dom 𝑓 | 
| 17 | 15, 16 | cres 5686 | . . . . . 6
class ( I
↾ dom 𝑓) | 
| 18 | 14, 17, 6 | cif 4524 | . . . . 5
class if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓) | 
| 19 | 10, 11, 18 | cmpt 5224 | . . . 4
class (𝑖 ∈ ℕ0
↦ if(𝑖 = 0, ( I
↾ dom 𝑓), 𝑓)) | 
| 20 | 9, 19, 13 | cseq 14043 | . . 3
class
seq0((𝑔 ∈ V,
𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓))) | 
| 21 | 2, 3, 20 | cmpt 5224 | . 2
class (𝑓 ∈ V ↦ seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓)))) | 
| 22 | 1, 21 | wceq 1539 | 1
wff IterComp =
(𝑓 ∈ V ↦
seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓)))) |