| Metamath
Proof Explorer Theorem List (p. 474 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 1fzopredsuc 47301 | Join 0 and a successor to the beginning and the end of an open integer interval starting at 1. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → (0...𝑁) = (({0} ∪ (1..^𝑁)) ∪ {𝑁})) | ||
| Theorem | el1fzopredsuc 47302 | An element of an open integer interval starting at 1 joined by 0 and a successor at the beginning and the end is either 0 or an element of the open integer interval or the successor. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) ↔ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))) | ||
| Theorem | subsubelfzo0 47303 | Subtracting a difference from a number which is not less than the difference results in a bounded nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018.) |
| ⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 < (𝑁 − 𝐴)) → (𝐼 − (𝑁 − 𝐴)) ∈ (0..^𝐴)) | ||
| Theorem | 2ffzoeq 47304* | Two functions over a half-open range of nonnegative integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 1-Jul-2018.) |
| ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋 ∧ 𝑃:(0..^𝑁)⟶𝑌)) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹‘𝑖) = (𝑃‘𝑖)))) | ||
| Theorem | 2ltceilhalf 47305 | The ceiling of half of an integer greater than 2 is greater than or equal to 2. (Contributed by AV, 4-Sep-2025.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → 2 ≤ (⌈‘(𝑁 / 2))) | ||
| Theorem | ceilhalfgt1 47306 | The ceiling of half of an integer greater than two is greater than one. (Contributed by AV, 2-Nov-2025.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → 1 < (⌈‘(𝑁 / 2))) | ||
| Theorem | ceilhalfelfzo1 47307 | A positive integer less than (the ceiling of) half of another integer is in the half-open range of positive integers up to the other integer. (Contributed by AV, 7-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝐾 ∈ 𝐽 → 𝐾 ∈ (1..^𝑁))) | ||
| Theorem | gpgedgvtx1lem 47308 | Lemma for gpgedgvtx1 48014. (Contributed by AV, 1-Sep-2025.) (Proof shortened by AV, 8-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑋 ∈ 𝐽) → 𝑋 ∈ 𝐼) | ||
| Theorem | 2tceilhalfelfzo1 47309 | Two times a positive integer less than (the ceiling of) half of another integer is less than the other integer. This theorem would hold even for integers less than 3, but then a corresponding 𝐾 would not exist. (Contributed by AV, 9-Sep-2025.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (2 · 𝐾) < 𝑁) | ||
| Theorem | ceilbi 47310 | A condition equivalent to ceiling. Analogous to flbi 13831. (Contributed by AV, 2-Nov-2025.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌈‘𝐴) = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 < (𝐴 + 1)))) | ||
| Theorem | ceilhalf1 47311 | The ceiling of one half is one. (Contributed by AV, 2-Nov-2025.) |
| ⊢ (⌈‘(1 / 2)) = 1 | ||
| Theorem | rehalfge1 47312 | Half of a real number greater than or equal to two is greater than or equal to one. (Contributed by AV, 2-Nov-2025.) |
| ⊢ (𝑋 ∈ (2[,)+∞) → 1 ≤ (𝑋 / 2)) | ||
| Theorem | ceilhalfnn 47313 | The ceiling of half of a positive integer is a positive integer. (Contributed by AV, 2-Nov-2025.) |
| ⊢ (𝑁 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℕ) | ||
| Theorem | 1elfzo1ceilhalf1 47314 | 1 is in the half-open integer range from 1 to the ceiling of half of an integer greater than two is greater than one. (Contributed by AV, 2-Nov-2025.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → 1 ∈ (1..^(⌈‘(𝑁 / 2)))) | ||
| Theorem | fldivmod 47315 | Expressing the floor of a division by the modulo operator. (Contributed by AV, 6-Jun-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) | ||
| Theorem | ceildivmod 47316 | Expressing the ceiling of a division by the modulo operator. (Contributed by AV, 7-Sep-2025.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌈‘(𝐴 / 𝐵)) = ((𝐴 + ((𝐵 − 𝐴) mod 𝐵)) / 𝐵)) | ||
| Theorem | ceil5half3 47317 | The ceiling of half of 5 is 3. (Contributed by AV, 7-Sep-2025.) |
| ⊢ (⌈‘(5 / 2)) = 3 | ||
| Theorem | submodaddmod 47318 | Subtraction and addition modulo a positive integer. (Contributed by AV, 7-Sep-2025.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (((𝐴 + 𝐵) mod 𝑁) = ((𝐴 − 𝐶) mod 𝑁) ↔ ((𝐴 + (𝐵 + 𝐶)) mod 𝑁) = (𝐴 mod 𝑁))) | ||
| Theorem | difltmodne 47319 | Two nonnegative integers are not equal modulo a positive modulus if their difference is greater than 0 and less then the modulus. (Contributed by AV, 6-Sep-2025.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝐴 mod 𝑁) ≠ (𝐵 mod 𝑁)) | ||
| Theorem | zplusmodne 47320 | A nonnegative integer is not itself plus a positive integer modulo an integer greater than 1 and the positive integer. (Contributed by AV, 6-Sep-2025.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐴 + 𝐾) mod 𝑁) ≠ (𝐴 mod 𝑁)) | ||
| Theorem | addmodne 47321 | The sum of a nonnegative integer and a positive integer modulo a number greater than both integers is not equal to the nonnegative integer. (Contributed by AV, 27-Aug-2025.) (Proof shortened by AV, 6-Sep-2025.) |
| ⊢ ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0 ∧ 𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → ((𝐴 + 𝐵) mod 𝑀) ≠ 𝐴) | ||
| Theorem | plusmod5ne 47322 | A nonnegative integer is not itself plus a positive integer less than 5 modulo 5. (Contributed by AV, 6-Sep-2025.) |
| ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → ((𝐴 + 𝐾) mod 5) ≠ 𝐴) | ||
| Theorem | zp1modne 47323 | An integer is not itself plus 1 modulo an integer greater than 1. (Contributed by AV, 6-Sep-2025.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 + 1) mod 𝑁) ≠ (𝐴 mod 𝑁)) | ||
| Theorem | p1modne 47324 | A nonnegative integer is not itself plus 1 modulo an integer greater than 1 and the nonnegative integer. (Contributed by AV, 6-Sep-2025.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → ((𝐴 + 1) mod 𝑁) ≠ 𝐴) | ||
| Theorem | m1modne 47325 | A nonnegative integer is not itself minus 1 modulo an integer greater than 1 and the nonnegative integer. (Contributed by AV, 6-Sep-2025.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → ((𝐴 − 1) mod 𝑁) ≠ 𝐴) | ||
| Theorem | minusmod5ne 47326 | A nonnegative integer is not itself minus a positive integer less than 5 modulo 5. (Contributed by AV, 7-Sep-2025.) |
| ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → ((𝐴 − 𝐾) mod 5) ≠ 𝐴) | ||
| Theorem | submodlt 47327 | The difference of an element of a half-open range of nonnegative integers and the upper bound of this range modulo an integer greater than the upper bound. (Contributed by AV, 1-Sep-2025.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → ((𝐴 − 𝐵) mod 𝑁) = ((𝑁 + 𝐴) − 𝐵)) | ||
| Theorem | submodneaddmod 47328 | An integer minus 𝐵 is not itself plus 𝐶 modulo an integer greater than the sum of 𝐵 and 𝐶. (Contributed by AV, 6-Sep-2025.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (1 ≤ (𝐵 + 𝐶) ∧ (𝐵 + 𝐶) < 𝑁)) → ((𝐴 + 𝐵) mod 𝑁) ≠ ((𝐴 − 𝐶) mod 𝑁)) | ||
| Theorem | m1modnep2mod 47329 | A nonnegative integer minus 1 is not itself plus 2 modulo an integer greater than 3 and the nonnegative integer. (Contributed by AV, 6-Sep-2025.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘4) ∧ 𝐴 ∈ ℤ) → ((𝐴 − 1) mod 𝑁) ≠ ((𝐴 + 2) mod 𝑁)) | ||
| Theorem | minusmodnep2tmod 47330 | A nonnegative integer minus a positive integer 1 or 2 is not itself plus 2 times the positive integer modulo 5. (Contributed by AV, 8-Sep-2025.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → ((𝐴 − 𝐵) mod 5) ≠ ((𝐴 + (2 · 𝐵)) mod 5)) | ||
| Theorem | m1mod0mod1 47331 | An integer decreased by 1 is 0 modulo a positive integer iff the integer is 1 modulo the same modulus. (Contributed by AV, 6-Jun-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1)) | ||
| Theorem | elmod2 47332 | An integer modulo 2 is either 0 or 1. (Contributed by AV, 24-May-2020.) (Proof shortened by OpenAI, 3-Jul-2020.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 mod 2) ∈ {0, 1}) | ||
| Theorem | smonoord 47333* | Ordering relation for a strictly monotonic sequence, increasing case. Analogous to monoord 14048 (except that the case 𝑀 = 𝑁 must be excluded). Duplicate of monoords 45274? (Contributed by AV, 12-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) < (𝐹‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) < (𝐹‘𝑁)) | ||
| Theorem | fsummsndifre 47334* | A finite sum with one of its integer summands removed is a real number. (Contributed by Alexander van der Vekens, 31-Aug-2018.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 ∈ ℝ) | ||
| Theorem | fsumsplitsndif 47335* | Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 31-Aug-2018.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ 𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + ⦋𝑋 / 𝑘⦌𝐵)) | ||
| Theorem | fsummmodsndifre 47336* | A finite sum of summands modulo a positive number with one of its summands removed is a real number. (Contributed by Alexander van der Vekens, 31-Aug-2018.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∖ {𝑋})(𝐵 mod 𝑁) ∈ ℝ) | ||
| Theorem | fsummmodsnunz 47337* | A finite sum of summands modulo a positive number with an additional summand is an integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ) | ||
| Theorem | setsidel 47338 | The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑅) | ||
| Theorem | setsnidel 47339 | The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) ⇒ ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑅) | ||
| Theorem | setsv 47340 | The value of the structure replacement function is a set. (Contributed by AV, 10-Nov-2021.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) | ||
According to Wikipedia ("Image (mathematics)", 17-Mar-2024, https://en.wikipedia.org/wiki/ImageSupport_(mathematics)): "... evaluating a given function 𝑓 at each element of a given subset 𝐴 of its domain produces a set, called the "image of 𝐴 under (or through) 𝑓". Similarly, the inverse image (or preimage) of a given subset 𝐵 of the codomain of 𝑓 is the set of all elements of the domain that map to the members of 𝐵." The preimage of a set 𝐵 under a function 𝑓 is often denoted as "f^-1 (B)", but in set.mm, the idiom (◡𝑓 “ 𝐵) is used. As a special case, the idiom for the preimage of a function value at 𝑋 under a function 𝐹 is (◡𝐹 “ {(𝐹‘𝑋)}) (according to Wikipedia, the preimage of a singleton is also called a "fiber"). We use the label fragment "preima" (as in mptpreima 6227) for theorems about preimages (sometimes, also "imacnv" is used as in fvimacnvi 7041), and "preimafv" (as in preimafvn0 47342) for theorems about preimages of a function value. In this section, 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} will be the set of all preimages of function values of a function 𝐹, that means 𝑆 ∈ 𝑃 is a preimage of a function value (see, for example, elsetpreimafv 47347): 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}). With the help of such a set, it is shown that every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective and an injective function (see fundcmpsurinj 47371) by constructing a surjective function 𝑔:𝐴–onto→𝑃 and an injective function ℎ:𝑃–1-1→𝐵 so that 𝐹 = (ℎ ∘ 𝑔) ( see fundcmpsurinjpreimafv 47370). See also Wikipedia ("Surjective function", 17-Mar-2024, https://en.wikipedia.org/wiki/Surjective_function 47370 (section "Composition and decomposition"). This is different from the decomposition of 𝐹 into the surjective function 𝑔:𝐴–onto→(𝐹 “ 𝐴) (with (𝑔‘𝑥) = (𝐹‘𝑥) for 𝑥 ∈ 𝐴) and the injective function ℎ = ( I ↾ (𝐹 “ 𝐴)), ( see fundcmpsurinjimaid 47373), see also Wikipedia ("Bijection, injection and surjection", 17-Mar-2024, https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection 47373 (section "Properties"). Finally, it is shown that every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective, a bijective and an injective function (see fundcmpsurbijinj 47372), by showing that there is a bijection between the set of all preimages of values of a function and the range of the function (see imasetpreimafvbij 47368). From this, both variants of decompositions of a function into a surjective and an injective function can be derived: Let 𝐹 = ((𝐼 ∘ 𝐵) ∘ 𝑆) be a decomposition of a function into a surjective, a bijective and an injective function, then 𝐹 = (𝐽 ∘ 𝑆) with 𝐽 = (𝐼 ∘ 𝐵) (an injective function) is a decomposition into a surjective and an injective function corresponding to fundcmpsurinj 47371, and 𝐹 = (𝐼 ∘ 𝑂) with 𝑂 = (𝐵 ∘ 𝑆) (a surjective function) is a decomposition into a surjective and an injective function corresponding to fundcmpsurinjimaid 47373. | ||
| Theorem | preimafvsnel 47341 | The preimage of a function value at 𝑋 contains 𝑋. (Contributed by AV, 7-Mar-2024.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)})) | ||
| Theorem | preimafvn0 47342 | The preimage of a function value is not empty. (Contributed by AV, 7-Mar-2024.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ≠ ∅) | ||
| Theorem | uniimafveqt 47343* | The union of the image of a subset 𝑆 of the domain of a function with elements having the same function value is the function value at one of the elements of 𝑆. (Contributed by AV, 5-Mar-2024.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋) → ∪ (𝐹 “ 𝑆) = (𝐹‘𝑋))) | ||
| Theorem | uniimaprimaeqfv 47344 | The union of the image of the preimage of a function value is the function value. (Contributed by AV, 12-Mar-2024.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑋)})) = (𝐹‘𝑋)) | ||
| Theorem | setpreimafvex 47345* | The class 𝑃 of all preimages of function values is a set. (Contributed by AV, 10-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝑃 ∈ V) | ||
| Theorem | elsetpreimafvb 47346* | The characterization of an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 10-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) | ||
| Theorem | elsetpreimafv 47347* | An element of the class 𝑃 of all preimages of function values. (Contributed by AV, 8-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ (𝑆 ∈ 𝑃 → ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) | ||
| Theorem | elsetpreimafvssdm 47348* | An element of the class 𝑃 of all preimages of function values is a subset of the domain of the function. (Contributed by AV, 8-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → 𝑆 ⊆ 𝐴) | ||
| Theorem | fvelsetpreimafv 47349* | There is an element in a preimage 𝑆 of function values so that 𝑆 is the preimage of the function value at this element. (Contributed by AV, 8-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∃𝑥 ∈ 𝑆 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) | ||
| Theorem | preimafvelsetpreimafv 47350* | The preimage of a function value is an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 10-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ 𝑃) | ||
| Theorem | preimafvsspwdm 47351* | The class 𝑃 of all preimages of function values is a subset of the power set of the domain of the function. (Contributed by AV, 5-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ (𝐹 Fn 𝐴 → 𝑃 ⊆ 𝒫 𝐴) | ||
| Theorem | 0nelsetpreimafv 47352* | The empty set is not an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 6-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ (𝐹 Fn 𝐴 → ∅ ∉ 𝑃) | ||
| Theorem | elsetpreimafvbi 47353* | An element of the preimage of a function value is an element of the domain of the function with the same value as another element of the preimage. (Contributed by AV, 9-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → (𝑌 ∈ 𝑆 ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)))) | ||
| Theorem | elsetpreimafveqfv 47354* | The elements of the preimage of a function value have the same function values. (Contributed by AV, 5-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝐹‘𝑋) = (𝐹‘𝑌)) | ||
| Theorem | eqfvelsetpreimafv 47355* | If an element of the domain of the function has the same function value as an element of the preimage of a function value, then it is an element of the same preimage. (Contributed by AV, 9-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → ((𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)) → 𝑌 ∈ 𝑆)) | ||
| Theorem | elsetpreimafvrab 47356* | An element of the preimage of a function value expressed as a restricted class abstraction. (Contributed by AV, 9-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → 𝑆 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐹‘𝑋)}) | ||
| Theorem | imaelsetpreimafv 47357* | The image of an element of the preimage of a function value is the singleton consisting of the function value at one of its elements. (Contributed by AV, 5-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → (𝐹 “ 𝑆) = {(𝐹‘𝑋)}) | ||
| Theorem | uniimaelsetpreimafv 47358* | The union of the image of an element of the preimage of a function value is an element of the range of the function. (Contributed by AV, 5-Mar-2024.) (Revised by AV, 22-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∪ (𝐹 “ 𝑆) ∈ ran 𝐹) | ||
| Theorem | elsetpreimafveq 47359* | If two preimages of function values contain elements with identical function values, then both preimages are equal. (Contributed by AV, 8-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅)) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑆 = 𝑅)) | ||
| Theorem | fundcmpsurinjlem1 47360* | Lemma 1 for fundcmpsurinj 47371. (Contributed by AV, 4-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (◡𝐹 “ {(𝐹‘𝑥)})) ⇒ ⊢ ran 𝐺 = 𝑃 | ||
| Theorem | fundcmpsurinjlem2 47361* | Lemma 2 for fundcmpsurinj 47371. (Contributed by AV, 4-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (◡𝐹 “ {(𝐹‘𝑥)})) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐺:𝐴–onto→𝑃) | ||
| Theorem | fundcmpsurinjlem3 47362* | Lemma 3 for fundcmpsurinj 47371. (Contributed by AV, 3-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → (𝐻‘𝑋) = ∪ (𝐹 “ 𝑋)) | ||
| Theorem | imasetpreimafvbijlemf 47363* | Lemma for imasetpreimafvbij 47368: the mapping 𝐻 is a function into the range of function 𝐹. (Contributed by AV, 22-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ (𝐹 Fn 𝐴 → 𝐻:𝑃⟶(𝐹 “ 𝐴)) | ||
| Theorem | imasetpreimafvbijlemfv 47364* | Lemma for imasetpreimafvbij 47368: the value of the mapping 𝐻 at a preimage of a value of function 𝐹. (Contributed by AV, 5-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑌) = (𝐹‘𝑋)) | ||
| Theorem | imasetpreimafvbijlemfv1 47365* | Lemma for imasetpreimafvbij 47368: for a preimage of a value of function 𝐹 there is an element of the preimage so that the value of the mapping 𝐻 at this preimage is the function value at this element. (Contributed by AV, 5-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → ∃𝑦 ∈ 𝑋 (𝐻‘𝑋) = (𝐹‘𝑦)) | ||
| Theorem | imasetpreimafvbijlemf1 47366* | Lemma for imasetpreimafvbij 47368: the mapping 𝐻 is an injective function into the range of function 𝐹. (Contributed by AV, 9-Mar-2024.) (Revised by AV, 22-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ (𝐹 Fn 𝐴 → 𝐻:𝑃–1-1→(𝐹 “ 𝐴)) | ||
| Theorem | imasetpreimafvbijlemfo 47367* | Lemma for imasetpreimafvbij 47368: the mapping 𝐻 is a function onto the range of function 𝐹. (Contributed by AV, 22-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐻:𝑃–onto→(𝐹 “ 𝐴)) | ||
| Theorem | imasetpreimafvbij 47368* | The mapping 𝐻 is a bijective function between the set 𝑃 of all preimages of values of function 𝐹 and the range of 𝐹. (Contributed by AV, 22-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐻:𝑃–1-1-onto→(𝐹 “ 𝐴)) | ||
| Theorem | fundcmpsurbijinjpreimafv 47369* | Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective function onto 𝑃, a bijective function from 𝑃 and an injective function into the codomain of 𝐹. (Contributed by AV, 22-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑖((𝑔:𝐴–onto→𝑃 ∧ ℎ:𝑃–1-1-onto→(𝐹 “ 𝐴) ∧ 𝑖:(𝐹 “ 𝐴)–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔))) | ||
| Theorem | fundcmpsurinjpreimafv 47370* | Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective function onto 𝑃 and an injective function from 𝑃. (Contributed by AV, 12-Mar-2024.) (Proof shortened by AV, 22-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ(𝑔:𝐴–onto→𝑃 ∧ ℎ:𝑃–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) | ||
| Theorem | fundcmpsurinj 47371* | Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective and an injective function. (Contributed by AV, 13-Mar-2024.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) | ||
| Theorem | fundcmpsurbijinj 47372* | Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective, a bijective and an injective function. (Contributed by AV, 23-Mar-2024.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑖∃𝑝∃𝑞((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1-onto→𝑞 ∧ 𝑖:𝑞–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔))) | ||
| Theorem | fundcmpsurinjimaid 47373* | Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective function onto the image (𝐹 “ 𝐴) of the domain of 𝐹 and an injective function from the image (𝐹 “ 𝐴). (Contributed by AV, 17-Mar-2024.) |
| ⊢ 𝐼 = (𝐹 “ 𝐴) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) & ⊢ 𝐻 = ( I ↾ 𝐼) ⇒ ⊢ (𝐹:𝐴⟶𝐵 → (𝐺:𝐴–onto→𝐼 ∧ 𝐻:𝐼–1-1→𝐵 ∧ 𝐹 = (𝐻 ∘ 𝐺))) | ||
| Theorem | fundcmpsurinjALT 47374* | Alternate proof of fundcmpsurinj 47371, based on fundcmpsurinjimaid 47373: Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective and an injective function. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by AV, 13-Mar-2024.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) | ||
Based on the theorems of the fourierdlem* series of GS's mathbox. | ||
| Syntax | ciccp 47375 | Extend class notation with the partitions of a closed interval of extended reals. |
| class RePart | ||
| Definition | df-iccp 47376* | Define partitions of a closed interval of extended reals. Such partitions are finite increasing sequences of extended reals. (Contributed by AV, 8-Jul-2020.) |
| ⊢ RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ* ↑m (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) | ||
| Theorem | iccpval 47377* | Partition consisting of a fixed number 𝑀 of parts. (Contributed by AV, 9-Jul-2020.) |
| ⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) | ||
| Theorem | iccpart 47378* | A special partition. Corresponds to fourierdlem2 46086 in GS's mathbox. (Contributed by AV, 9-Jul-2020.) |
| ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) | ||
| Theorem | iccpartimp 47379 | Implications for a class being a partition. (Contributed by AV, 11-Jul-2020.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) | ||
| Theorem | iccpartres 47380 | The restriction of a partition is a partition. (Contributed by AV, 16-Jul-2020.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘(𝑀 + 1))) → (𝑃 ↾ (0...𝑀)) ∈ (RePart‘𝑀)) | ||
| Theorem | iccpartxr 47381 | If there is a partition, then all intermediate points and bounds are extended real numbers. (Contributed by AV, 11-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) & ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) ⇒ ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ*) | ||
| Theorem | iccpartgtprec 47382 | If there is a partition, then all intermediate points and the upper bound are strictly greater than the preceeding intermediate points or lower bound. (Contributed by AV, 11-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) ⇒ ⊢ (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃‘𝐼)) | ||
| Theorem | iccpartipre 47383 | If there is a partition, then all intermediate points are real numbers. (Contributed by AV, 11-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) & ⊢ (𝜑 → 𝐼 ∈ (1..^𝑀)) ⇒ ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ) | ||
| Theorem | iccpartiltu 47384* | If there is a partition, then all intermediate points are strictly less than the upper bound. (Contributed by AV, 12-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) | ||
| Theorem | iccpartigtl 47385* | If there is a partition, then all intermediate points are strictly greater than the lower bound. (Contributed by AV, 12-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑖)) | ||
| Theorem | iccpartlt 47386 | If there is a partition, then the lower bound is strictly less than the upper bound. Corresponds to fourierdlem11 46095 in GS's mathbox. (Contributed by AV, 12-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → (𝑃‘0) < (𝑃‘𝑀)) | ||
| Theorem | iccpartltu 47387* | If there is a partition, then all intermediate points and the lower bound are strictly less than the upper bound. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘𝑀)) | ||
| Theorem | iccpartgtl 47388* | If there is a partition, then all intermediate points and the upper bound are strictly greater than the lower bound. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃‘𝑖)) | ||
| Theorem | iccpartgt 47389* | If there is a partition, then all intermediate points and the bounds are strictly ordered. (Contributed by AV, 18-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)(𝑖 < 𝑗 → (𝑃‘𝑖) < (𝑃‘𝑗))) | ||
| Theorem | iccpartleu 47390* | If there is a partition, then all intermediate points and the lower and the upper bound are less than or equal to the upper bound. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘𝑖) ≤ (𝑃‘𝑀)) | ||
| Theorem | iccpartgel 47391* | If there is a partition, then all intermediate points and the upper and the lower bound are greater than or equal to the lower bound. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃‘𝑖)) | ||
| Theorem | iccpartrn 47392 | If there is a partition, then all intermediate points and bounds are contained in a closed interval of extended reals. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ran 𝑃 ⊆ ((𝑃‘0)[,](𝑃‘𝑀))) | ||
| Theorem | iccpartf 47393 | The range of the partition is between its starting point and its ending point. Corresponds to fourierdlem15 46099 in GS's mathbox. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → 𝑃:(0...𝑀)⟶((𝑃‘0)[,](𝑃‘𝑀))) | ||
| Theorem | iccpartel 47394 | If there is a partition, then all intermediate points and bounds are contained in a closed interval of extended reals. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝐼 ∈ (0...𝑀)) → (𝑃‘𝐼) ∈ ((𝑃‘0)[,](𝑃‘𝑀))) | ||
| Theorem | iccelpart 47395* | An element of any partitioned half-open interval of extended reals is an element of a part of this partition. (Contributed by AV, 18-Jul-2020.) |
| ⊢ (𝑀 ∈ ℕ → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) | ||
| Theorem | iccpartiun 47396* | A half-open interval of extended reals is the union of the parts of its partition. (Contributed by AV, 18-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ((𝑃‘0)[,)(𝑃‘𝑀)) = ∪ 𝑖 ∈ (0..^𝑀)((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) | ||
| Theorem | icceuelpartlem 47397 | Lemma for icceuelpart 47398. (Contributed by AV, 19-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → ((𝐼 ∈ (0..^𝑀) ∧ 𝐽 ∈ (0..^𝑀)) → (𝐼 < 𝐽 → (𝑃‘(𝐼 + 1)) ≤ (𝑃‘𝐽)))) | ||
| Theorem | icceuelpart 47398* | An element of a partitioned half-open interval of extended reals is an element of exactly one part of the partition. (Contributed by AV, 19-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ((𝑃‘0)[,)(𝑃‘𝑀))) → ∃!𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) | ||
| Theorem | iccpartdisj 47399* | The segments of a partitioned half-open interval of extended reals are a disjoint collection. (Contributed by AV, 19-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) ⇒ ⊢ (𝜑 → Disj 𝑖 ∈ (0..^𝑀)((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) | ||
| Theorem | iccpartnel 47400 | A point of a partition is not an element of any open interval determined by the partition. Corresponds to fourierdlem12 46096 in GS's mathbox. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 8-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝑃) ⇒ ⊢ ((𝜑 ∧ 𝐼 ∈ (0..^𝑀)) → ¬ 𝑋 ∈ ((𝑃‘𝐼)(,)(𝑃‘(𝐼 + 1)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |