| Metamath
Proof Explorer Theorem List (p. 474 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 2elfz3nn0 47301 | If there are two elements in a finite set of sequential integers starting at 0, these two elements as well as the upper bound are nonnegative integers. (Contributed by Alexander van der Vekens, 7-Apr-2018.) |
| ⊢ ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) | ||
| Theorem | fz0addcom 47302 | The addition of two members of a finite set of sequential integers starting at 0 is commutative. (Contributed by Alexander van der Vekens, 22-May-2018.) (Revised by Alexander van der Vekens, 9-Jun-2018.) |
| ⊢ ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | 2elfz2melfz 47303 | If the sum of two integers of a 0-based finite set of sequential integers is greater than the upper bound, the difference between one of the integers and the difference between the upper bound and the other integer is in the 0-based finite set of sequential integers with the first integer as upper bound. (Contributed by Alexander van der Vekens, 7-Apr-2018.) (Revised by Alexander van der Vekens, 31-May-2018.) |
| ⊢ ((𝐴 ∈ (0...𝑁) ∧ 𝐵 ∈ (0...𝑁)) → (𝑁 < (𝐴 + 𝐵) → (𝐵 − (𝑁 − 𝐴)) ∈ (0...𝐴))) | ||
| Theorem | fz0addge0 47304 | The sum of two integers in 0-based finite sets of sequential integers is greater than or equal to zero. (Contributed by Alexander van der Vekens, 8-Jun-2018.) |
| ⊢ ((𝐴 ∈ (0...𝑀) ∧ 𝐵 ∈ (0...𝑁)) → 0 ≤ (𝐴 + 𝐵)) | ||
| Theorem | elfzlble 47305 | Membership of an integer in a finite set of sequential integers with the integer as upper bound and a lower bound less than or equal to the integer. (Contributed by AV, 21-Oct-2018.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ((𝑁 − 𝑀)...𝑁)) | ||
| Theorem | elfzelfzlble 47306 | Membership of an element of a finite set of sequential integers in a finite set of sequential integers with the same upper bound and a lower bound less than the upper bound. (Contributed by AV, 21-Oct-2018.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑁 < (𝑀 + 𝐾)) → 𝐾 ∈ ((𝑁 − 𝑀)...𝑁)) | ||
| Theorem | fzopred 47307 | Join a predecessor to the beginning of an open integer interval. Generalization of fzo0sn0fzo1 13676. (Contributed by AV, 14-Jul-2020.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑀..^𝑁) = ({𝑀} ∪ ((𝑀 + 1)..^𝑁))) | ||
| Theorem | fzopredsuc 47308 | Join a predecessor and a successor to the beginning and the end of an open integer interval. This theorem holds even if 𝑁 = 𝑀 (then (𝑀...𝑁) = {𝑀} = ({𝑀} ∪ ∅) ∪ {𝑀}). (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = (({𝑀} ∪ ((𝑀 + 1)..^𝑁)) ∪ {𝑁})) | ||
| Theorem | 1fzopredsuc 47309 | Join 0 and a successor to the beginning and the end of an open integer interval starting at 1. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → (0...𝑁) = (({0} ∪ (1..^𝑁)) ∪ {𝑁})) | ||
| Theorem | el1fzopredsuc 47310 | An element of an open integer interval starting at 1 joined by 0 and a successor at the beginning and the end is either 0 or an element of the open integer interval or the successor. (Contributed by AV, 14-Jul-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) ↔ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))) | ||
| Theorem | subsubelfzo0 47311 | Subtracting a difference from a number which is not less than the difference results in a bounded nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018.) |
| ⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 < (𝑁 − 𝐴)) → (𝐼 − (𝑁 − 𝐴)) ∈ (0..^𝐴)) | ||
| Theorem | 2ffzoeq 47312* | Two functions over a half-open range of nonnegative integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 1-Jul-2018.) |
| ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋 ∧ 𝑃:(0..^𝑁)⟶𝑌)) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹‘𝑖) = (𝑃‘𝑖)))) | ||
| Theorem | 2ltceilhalf 47313 | The ceiling of half of an integer greater than 2 is greater than or equal to 2. (Contributed by AV, 4-Sep-2025.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → 2 ≤ (⌈‘(𝑁 / 2))) | ||
| Theorem | ceilhalfgt1 47314 | The ceiling of half of an integer greater than two is greater than one. (Contributed by AV, 2-Nov-2025.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → 1 < (⌈‘(𝑁 / 2))) | ||
| Theorem | ceilhalfelfzo1 47315 | A positive integer less than (the ceiling of) half of another integer is in the half-open range of positive integers up to the other integer. (Contributed by AV, 7-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝐾 ∈ 𝐽 → 𝐾 ∈ (1..^𝑁))) | ||
| Theorem | gpgedgvtx1lem 47316 | Lemma for gpgedgvtx1 48037. (Contributed by AV, 1-Sep-2025.) (Proof shortened by AV, 8-Sep-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑋 ∈ 𝐽) → 𝑋 ∈ 𝐼) | ||
| Theorem | 2tceilhalfelfzo1 47317 | Two times a positive integer less than (the ceiling of) half of another integer is less than the other integer. This theorem would hold even for integers less than 3, but then a corresponding 𝐾 would not exist. (Contributed by AV, 9-Sep-2025.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (2 · 𝐾) < 𝑁) | ||
| Theorem | ceilbi 47318 | A condition equivalent to ceiling. Analogous to flbi 13738. (Contributed by AV, 2-Nov-2025.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌈‘𝐴) = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 < (𝐴 + 1)))) | ||
| Theorem | ceilhalf1 47319 | The ceiling of one half is one. (Contributed by AV, 2-Nov-2025.) |
| ⊢ (⌈‘(1 / 2)) = 1 | ||
| Theorem | rehalfge1 47320 | Half of a real number greater than or equal to two is greater than or equal to one. (Contributed by AV, 2-Nov-2025.) |
| ⊢ (𝑋 ∈ (2[,)+∞) → 1 ≤ (𝑋 / 2)) | ||
| Theorem | ceilhalfnn 47321 | The ceiling of half of a positive integer is a positive integer. (Contributed by AV, 2-Nov-2025.) |
| ⊢ (𝑁 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℕ) | ||
| Theorem | 1elfzo1ceilhalf1 47322 | 1 is in the half-open integer range from 1 to the ceiling of half of an integer greater than two is greater than one. (Contributed by AV, 2-Nov-2025.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → 1 ∈ (1..^(⌈‘(𝑁 / 2)))) | ||
| Theorem | fldivmod 47323 | Expressing the floor of a division by the modulo operator. (Contributed by AV, 6-Jun-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) | ||
| Theorem | ceildivmod 47324 | Expressing the ceiling of a division by the modulo operator. (Contributed by AV, 7-Sep-2025.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌈‘(𝐴 / 𝐵)) = ((𝐴 + ((𝐵 − 𝐴) mod 𝐵)) / 𝐵)) | ||
| Theorem | ceil5half3 47325 | The ceiling of half of 5 is 3. (Contributed by AV, 7-Sep-2025.) |
| ⊢ (⌈‘(5 / 2)) = 3 | ||
| Theorem | submodaddmod 47326 | Subtraction and addition modulo a positive integer. (Contributed by AV, 7-Sep-2025.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (((𝐴 + 𝐵) mod 𝑁) = ((𝐴 − 𝐶) mod 𝑁) ↔ ((𝐴 + (𝐵 + 𝐶)) mod 𝑁) = (𝐴 mod 𝑁))) | ||
| Theorem | difltmodne 47327 | Two nonnegative integers are not equal modulo a positive modulus if their difference is greater than 0 and less than the modulus. (Contributed by AV, 6-Sep-2025.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝐴 mod 𝑁) ≠ (𝐵 mod 𝑁)) | ||
| Theorem | zplusmodne 47328 | A nonnegative integer is not itself plus a positive integer modulo an integer greater than 1 and the positive integer. (Contributed by AV, 6-Sep-2025.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐴 + 𝐾) mod 𝑁) ≠ (𝐴 mod 𝑁)) | ||
| Theorem | addmodne 47329 | The sum of a nonnegative integer and a positive integer modulo a number greater than both integers is not equal to the nonnegative integer. (Contributed by AV, 27-Aug-2025.) (Proof shortened by AV, 6-Sep-2025.) |
| ⊢ ((𝑀 ∈ ℕ ∧ (𝐴 ∈ ℕ0 ∧ 𝐴 < 𝑀) ∧ (𝐵 ∈ ℕ ∧ 𝐵 < 𝑀)) → ((𝐴 + 𝐵) mod 𝑀) ≠ 𝐴) | ||
| Theorem | plusmod5ne 47330 | A nonnegative integer is not itself plus a positive integer less than 5 modulo 5. (Contributed by AV, 6-Sep-2025.) |
| ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → ((𝐴 + 𝐾) mod 5) ≠ 𝐴) | ||
| Theorem | zp1modne 47331 | An integer is not itself plus 1 modulo an integer greater than 1. (Contributed by AV, 6-Sep-2025.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 + 1) mod 𝑁) ≠ (𝐴 mod 𝑁)) | ||
| Theorem | p1modne 47332 | A nonnegative integer is not itself plus 1 modulo an integer greater than 1 and the nonnegative integer. (Contributed by AV, 6-Sep-2025.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → ((𝐴 + 1) mod 𝑁) ≠ 𝐴) | ||
| Theorem | m1modne 47333 | A nonnegative integer is not itself minus 1 modulo an integer greater than 1 and the nonnegative integer. (Contributed by AV, 6-Sep-2025.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → ((𝐴 − 1) mod 𝑁) ≠ 𝐴) | ||
| Theorem | minusmod5ne 47334 | A nonnegative integer is not itself minus a positive integer less than 5 modulo 5. (Contributed by AV, 7-Sep-2025.) |
| ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → ((𝐴 − 𝐾) mod 5) ≠ 𝐴) | ||
| Theorem | submodlt 47335 | The difference of an element of a half-open range of nonnegative integers and the upper bound of this range modulo an integer greater than the upper bound. (Contributed by AV, 1-Sep-2025.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (0..^𝐵) ∧ 𝐵 < 𝑁) → ((𝐴 − 𝐵) mod 𝑁) = ((𝑁 + 𝐴) − 𝐵)) | ||
| Theorem | submodneaddmod 47336 | An integer minus 𝐵 is not itself plus 𝐶 modulo an integer greater than the sum of 𝐵 and 𝐶. (Contributed by AV, 6-Sep-2025.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (1 ≤ (𝐵 + 𝐶) ∧ (𝐵 + 𝐶) < 𝑁)) → ((𝐴 + 𝐵) mod 𝑁) ≠ ((𝐴 − 𝐶) mod 𝑁)) | ||
| Theorem | m1modnep2mod 47337 | A nonnegative integer minus 1 is not itself plus 2 modulo an integer greater than 3 and the nonnegative integer. (Contributed by AV, 6-Sep-2025.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘4) ∧ 𝐴 ∈ ℤ) → ((𝐴 − 1) mod 𝑁) ≠ ((𝐴 + 2) mod 𝑁)) | ||
| Theorem | minusmodnep2tmod 47338 | A nonnegative integer minus a positive integer 1 or 2 is not itself plus 2 times the positive integer modulo 5. (Contributed by AV, 8-Sep-2025.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (1..^3)) → ((𝐴 − 𝐵) mod 5) ≠ ((𝐴 + (2 · 𝐵)) mod 5)) | ||
| Theorem | m1mod0mod1 47339 | An integer decreased by 1 is 0 modulo a positive integer iff the integer is 1 modulo the same modulus. (Contributed by AV, 6-Jun-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 < 𝑁) → (((𝐴 − 1) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = 1)) | ||
| Theorem | elmod2 47340 | An integer modulo 2 is either 0 or 1. (Contributed by AV, 24-May-2020.) (Proof shortened by OpenAI, 3-Jul-2020.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 mod 2) ∈ {0, 1}) | ||
| Theorem | mod0mul 47341* | If an integer is 0 modulo a positive integer, this integer must be a multiple of the modulus. (Contributed by AV, 7-Jun-2020.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) = 0 → ∃𝑥 ∈ ℤ 𝐴 = (𝑥 · 𝑁))) | ||
| Theorem | modn0mul 47342* | If an integer is not 0 modulo a positive integer, this integer must be the sum of a multiple of the modulus and a positive integer less than the modulus. (Contributed by AV, 7-Jun-2020.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) ≠ 0 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦))) | ||
| Theorem | m1modmmod 47343 | An integer decreased by 1 modulo a positive integer minus the integer modulo the same modulus is either -1 or the modulus minus 1. (Contributed by AV, 7-Jun-2020.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1)) | ||
| Theorem | difmodm1lt 47344 | The difference between an integer modulo a positive integer and the integer decreased by 1 modulo the same modulus is less than the modulus decreased by 1 (if the modulus is greater than 2). This theorem would not be valid for an odd 𝐴 and 𝑁 = 2, since ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) would be (1 − 0) = 1 which is not less than (𝑁 − 1) = 1. (Contributed by AV, 6-Jun-2012.) (Proof shortened by SN, 27-Nov-2025.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)) | ||
| Theorem | 8mod5e3 47345 | 8 modulo 5 is 3. (Contributed by AV, 20-Nov-2025.) |
| ⊢ (8 mod 5) = 3 | ||
| Theorem | modmkpkne 47346 | If an integer minus a constant equals another integer plus the constant modulo 𝑁, then the first integer plus the constant equals the second integer minus the constant modulo 𝑁 iff the fourfold of the constant is a multiple of 𝑁. (Contributed by AV, 15-Nov-2025.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (((𝑌 − 𝐾) mod 𝑁) = ((𝑋 + 𝐾) mod 𝑁) → (((𝑌 + 𝐾) mod 𝑁) = ((𝑋 − 𝐾) mod 𝑁) ↔ ((4 · 𝐾) mod 𝑁) = 0))) | ||
| Theorem | modmknepk 47347 | A nonnegative integer less than the modulus plus/minus a positive integer less than (the ceiling of) half of the modulus are not equal modulo the modulus. For this theorem, it is essential that 𝐾 < (𝑁 / 2)! (Contributed by AV, 3-Sep-2025.) (Revised by AV, 15-Nov-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼 ∧ 𝐾 ∈ 𝐽) → ((𝑌 − 𝐾) mod 𝑁) ≠ ((𝑌 + 𝐾) mod 𝑁)) | ||
| Theorem | modlt0b 47348 | An integer with an absolute value less than a positive integer is 0 modulo the positive integer iff it is 0. (Contributed by AV, 21-Nov-2025.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℤ ∧ (abs‘𝑋) < 𝑁) → ((𝑋 mod 𝑁) = 0 ↔ 𝑋 = 0)) | ||
| Theorem | mod2addne 47349 | The sums of a nonnegative integer less than the modulus and two integers whose difference is less than the modulus are not equal modulo the modulus. (Contributed by AV, 15-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ (𝑋 ∈ 𝐼 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (abs‘(𝐴 − 𝐵)) ∈ (1..^𝑁)) → ((𝑋 + 𝐴) mod 𝑁) ≠ ((𝑋 + 𝐵) mod 𝑁)) | ||
| Theorem | modm1nep1 47350 | A nonnegative integer less than a modulus greater than 2 plus/minus one are not equal modulo the modulus. (Contributed by AV, 15-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑌 ∈ 𝐼) → ((𝑌 − 1) mod 𝑁) ≠ ((𝑌 + 1) mod 𝑁)) | ||
| Theorem | modm2nep1 47351 | A nonnegative integer less than a modulus greater than 4 plus one/minus two are not equal modulo the modulus. (Contributed by AV, 22-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 − 2) mod 𝑁) ≠ ((𝑌 + 1) mod 𝑁)) | ||
| Theorem | modp2nep1 47352 | A nonnegative integer less than a modulus greater than 4 plus one/plus two are not equal modulo the modulus. (Contributed by AV, 22-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 + 2) mod 𝑁) ≠ ((𝑌 + 1) mod 𝑁)) | ||
| Theorem | modm1nep2 47353 | A nonnegative integer less than a modulus greater than 4 plus one/minus two are not equal modulo the modulus. (Contributed by AV, 22-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 − 1) mod 𝑁) ≠ ((𝑌 + 2) mod 𝑁)) | ||
| Theorem | modm1nem2 47354 | A nonnegative integer less than a modulus greater than 4 minus one/minus two are not equal modulo the modulus. (Contributed by AV, 22-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑌 ∈ 𝐼) → ((𝑌 − 1) mod 𝑁) ≠ ((𝑌 − 2) mod 𝑁)) | ||
| Theorem | modm1p1ne 47355 | If an integer minus one equals another integer plus one modulo an integer greater than 4, then the first integer plus one is not equal to the second integer minus one modulo the same modulus. (Contributed by AV, 15-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘5) ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼) → (((𝑌 − 1) mod 𝑁) = ((𝑋 + 1) mod 𝑁) → ((𝑌 + 1) mod 𝑁) ≠ ((𝑋 − 1) mod 𝑁))) | ||
| Theorem | smonoord 47356* | Ordering relation for a strictly monotonic sequence, increasing case. Analogous to monoord 13957 (except that the case 𝑀 = 𝑁 must be excluded). Duplicate of monoords 45279? (Contributed by AV, 12-Jul-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) < (𝐹‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) < (𝐹‘𝑁)) | ||
| Theorem | fsummsndifre 47357* | A finite sum with one of its integer summands removed is a real number. (Contributed by Alexander van der Vekens, 31-Aug-2018.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 ∈ ℝ) | ||
| Theorem | fsumsplitsndif 47358* | Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 31-Aug-2018.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ 𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + ⦋𝑋 / 𝑘⦌𝐵)) | ||
| Theorem | fsummmodsndifre 47359* | A finite sum of summands modulo a positive number with one of its summands removed is a real number. (Contributed by Alexander van der Vekens, 31-Aug-2018.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∖ {𝑋})(𝐵 mod 𝑁) ∈ ℝ) | ||
| Theorem | fsummmodsnunz 47360* | A finite sum of summands modulo a positive number with an additional summand is an integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ) | ||
| Theorem | setsidel 47361 | The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑅) | ||
| Theorem | setsnidel 47362 | The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) ⇒ ⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ 𝑅) | ||
| Theorem | setsv 47363 | The value of the structure replacement function is a set. (Contributed by AV, 10-Nov-2021.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) | ||
According to Wikipedia ("Image (mathematics)", 17-Mar-2024, https://en.wikipedia.org/wiki/ImageSupport_(mathematics)): "... evaluating a given function 𝑓 at each element of a given subset 𝐴 of its domain produces a set, called the "image of 𝐴 under (or through) 𝑓". Similarly, the inverse image (or preimage) of a given subset 𝐵 of the codomain of 𝑓 is the set of all elements of the domain that map to the members of 𝐵." The preimage of a set 𝐵 under a function 𝑓 is often denoted as "f^-1 (B)", but in set.mm, the idiom (◡𝑓 “ 𝐵) is used. As a special case, the idiom for the preimage of a function value at 𝑋 under a function 𝐹 is (◡𝐹 “ {(𝐹‘𝑋)}) (according to Wikipedia, the preimage of a singleton is also called a "fiber"). We use the label fragment "preima" (as in mptpreima 6191) for theorems about preimages (sometimes, also "imacnv" is used as in fvimacnvi 6990), and "preimafv" (as in preimafvn0 47365) for theorems about preimages of a function value. In this section, 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} will be the set of all preimages of function values of a function 𝐹, that means 𝑆 ∈ 𝑃 is a preimage of a function value (see, for example, elsetpreimafv 47370): 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}). With the help of such a set, it is shown that every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective and an injective function (see fundcmpsurinj 47394) by constructing a surjective function 𝑔:𝐴–onto→𝑃 and an injective function ℎ:𝑃–1-1→𝐵 so that 𝐹 = (ℎ ∘ 𝑔) ( see fundcmpsurinjpreimafv 47393). See also Wikipedia ("Surjective function", 17-Mar-2024, https://en.wikipedia.org/wiki/Surjective_function 47393 (section "Composition and decomposition"). This is different from the decomposition of 𝐹 into the surjective function 𝑔:𝐴–onto→(𝐹 “ 𝐴) (with (𝑔‘𝑥) = (𝐹‘𝑥) for 𝑥 ∈ 𝐴) and the injective function ℎ = ( I ↾ (𝐹 “ 𝐴)), ( see fundcmpsurinjimaid 47396), see also Wikipedia ("Bijection, injection and surjection", 17-Mar-2024, https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection 47396 (section "Properties"). Finally, it is shown that every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective, a bijective and an injective function (see fundcmpsurbijinj 47395), by showing that there is a bijection between the set of all preimages of values of a function and the range of the function (see imasetpreimafvbij 47391). From this, both variants of decompositions of a function into a surjective and an injective function can be derived: Let 𝐹 = ((𝐼 ∘ 𝐵) ∘ 𝑆) be a decomposition of a function into a surjective, a bijective and an injective function, then 𝐹 = (𝐽 ∘ 𝑆) with 𝐽 = (𝐼 ∘ 𝐵) (an injective function) is a decomposition into a surjective and an injective function corresponding to fundcmpsurinj 47394, and 𝐹 = (𝐼 ∘ 𝑂) with 𝑂 = (𝐵 ∘ 𝑆) (a surjective function) is a decomposition into a surjective and an injective function corresponding to fundcmpsurinjimaid 47396. | ||
| Theorem | preimafvsnel 47364 | The preimage of a function value at 𝑋 contains 𝑋. (Contributed by AV, 7-Mar-2024.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)})) | ||
| Theorem | preimafvn0 47365 | The preimage of a function value is not empty. (Contributed by AV, 7-Mar-2024.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ≠ ∅) | ||
| Theorem | uniimafveqt 47366* | The union of the image of a subset 𝑆 of the domain of a function with elements having the same function value is the function value at one of the elements of 𝑆. (Contributed by AV, 5-Mar-2024.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = (𝐹‘𝑋) → ∪ (𝐹 “ 𝑆) = (𝐹‘𝑋))) | ||
| Theorem | uniimaprimaeqfv 47367 | The union of the image of the preimage of a function value is the function value. (Contributed by AV, 12-Mar-2024.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑋)})) = (𝐹‘𝑋)) | ||
| Theorem | setpreimafvex 47368* | The class 𝑃 of all preimages of function values is a set. (Contributed by AV, 10-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝑃 ∈ V) | ||
| Theorem | elsetpreimafvb 47369* | The characterization of an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 10-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)}))) | ||
| Theorem | elsetpreimafv 47370* | An element of the class 𝑃 of all preimages of function values. (Contributed by AV, 8-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ (𝑆 ∈ 𝑃 → ∃𝑥 ∈ 𝐴 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) | ||
| Theorem | elsetpreimafvssdm 47371* | An element of the class 𝑃 of all preimages of function values is a subset of the domain of the function. (Contributed by AV, 8-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → 𝑆 ⊆ 𝐴) | ||
| Theorem | fvelsetpreimafv 47372* | There is an element in a preimage 𝑆 of function values so that 𝑆 is the preimage of the function value at this element. (Contributed by AV, 8-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∃𝑥 ∈ 𝑆 𝑆 = (◡𝐹 “ {(𝐹‘𝑥)})) | ||
| Theorem | preimafvelsetpreimafv 47373* | The preimage of a function value is an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 10-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ 𝑃) | ||
| Theorem | preimafvsspwdm 47374* | The class 𝑃 of all preimages of function values is a subset of the power set of the domain of the function. (Contributed by AV, 5-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ (𝐹 Fn 𝐴 → 𝑃 ⊆ 𝒫 𝐴) | ||
| Theorem | 0nelsetpreimafv 47375* | The empty set is not an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 6-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ (𝐹 Fn 𝐴 → ∅ ∉ 𝑃) | ||
| Theorem | elsetpreimafvbi 47376* | An element of the preimage of a function value is an element of the domain of the function with the same value as another element of the preimage. (Contributed by AV, 9-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → (𝑌 ∈ 𝑆 ↔ (𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)))) | ||
| Theorem | elsetpreimafveqfv 47377* | The elements of the preimage of a function value have the same function values. (Contributed by AV, 5-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝐹‘𝑋) = (𝐹‘𝑌)) | ||
| Theorem | eqfvelsetpreimafv 47378* | If an element of the domain of the function has the same function value as an element of the preimage of a function value, then it is an element of the same preimage. (Contributed by AV, 9-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → ((𝑌 ∈ 𝐴 ∧ (𝐹‘𝑌) = (𝐹‘𝑋)) → 𝑌 ∈ 𝑆)) | ||
| Theorem | elsetpreimafvrab 47379* | An element of the preimage of a function value expressed as a restricted class abstraction. (Contributed by AV, 9-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → 𝑆 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (𝐹‘𝑋)}) | ||
| Theorem | imaelsetpreimafv 47380* | The image of an element of the preimage of a function value is the singleton consisting of the function value at one of its elements. (Contributed by AV, 5-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑋 ∈ 𝑆) → (𝐹 “ 𝑆) = {(𝐹‘𝑋)}) | ||
| Theorem | uniimaelsetpreimafv 47381* | The union of the image of an element of the preimage of a function value is an element of the range of the function. (Contributed by AV, 5-Mar-2024.) (Revised by AV, 22-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∪ (𝐹 “ 𝑆) ∈ ran 𝐹) | ||
| Theorem | elsetpreimafveq 47382* | If two preimages of function values contain elements with identical function values, then both preimages are equal. (Contributed by AV, 8-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ (𝑆 ∈ 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑅)) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑆 = 𝑅)) | ||
| Theorem | fundcmpsurinjlem1 47383* | Lemma 1 for fundcmpsurinj 47394. (Contributed by AV, 4-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (◡𝐹 “ {(𝐹‘𝑥)})) ⇒ ⊢ ran 𝐺 = 𝑃 | ||
| Theorem | fundcmpsurinjlem2 47384* | Lemma 2 for fundcmpsurinj 47394. (Contributed by AV, 4-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (◡𝐹 “ {(𝐹‘𝑥)})) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐺:𝐴–onto→𝑃) | ||
| Theorem | fundcmpsurinjlem3 47385* | Lemma 3 for fundcmpsurinj 47394. (Contributed by AV, 3-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → (𝐻‘𝑋) = ∪ (𝐹 “ 𝑋)) | ||
| Theorem | imasetpreimafvbijlemf 47386* | Lemma for imasetpreimafvbij 47391: the mapping 𝐻 is a function into the range of function 𝐹. (Contributed by AV, 22-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ (𝐹 Fn 𝐴 → 𝐻:𝑃⟶(𝐹 “ 𝐴)) | ||
| Theorem | imasetpreimafvbijlemfv 47387* | Lemma for imasetpreimafvbij 47391: the value of the mapping 𝐻 at a preimage of a value of function 𝐹. (Contributed by AV, 5-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ∈ 𝑌) → (𝐻‘𝑌) = (𝐹‘𝑋)) | ||
| Theorem | imasetpreimafvbijlemfv1 47388* | Lemma for imasetpreimafvbij 47391: for a preimage of a value of function 𝐹 there is an element of the preimage so that the value of the mapping 𝐻 at this preimage is the function value at this element. (Contributed by AV, 5-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → ∃𝑦 ∈ 𝑋 (𝐻‘𝑋) = (𝐹‘𝑦)) | ||
| Theorem | imasetpreimafvbijlemf1 47389* | Lemma for imasetpreimafvbij 47391: the mapping 𝐻 is an injective function into the range of function 𝐹. (Contributed by AV, 9-Mar-2024.) (Revised by AV, 22-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ (𝐹 Fn 𝐴 → 𝐻:𝑃–1-1→(𝐹 “ 𝐴)) | ||
| Theorem | imasetpreimafvbijlemfo 47390* | Lemma for imasetpreimafvbij 47391: the mapping 𝐻 is a function onto the range of function 𝐹. (Contributed by AV, 22-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐻:𝑃–onto→(𝐹 “ 𝐴)) | ||
| Theorem | imasetpreimafvbij 47391* | The mapping 𝐻 is a bijective function between the set 𝑃 of all preimages of values of function 𝐹 and the range of 𝐹. (Contributed by AV, 22-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} & ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐻:𝑃–1-1-onto→(𝐹 “ 𝐴)) | ||
| Theorem | fundcmpsurbijinjpreimafv 47392* | Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective function onto 𝑃, a bijective function from 𝑃 and an injective function into the codomain of 𝐹. (Contributed by AV, 22-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑖((𝑔:𝐴–onto→𝑃 ∧ ℎ:𝑃–1-1-onto→(𝐹 “ 𝐴) ∧ 𝑖:(𝐹 “ 𝐴)–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔))) | ||
| Theorem | fundcmpsurinjpreimafv 47393* | Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective function onto 𝑃 and an injective function from 𝑃. (Contributed by AV, 12-Mar-2024.) (Proof shortened by AV, 22-Mar-2024.) |
| ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ⇒ ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ(𝑔:𝐴–onto→𝑃 ∧ ℎ:𝑃–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) | ||
| Theorem | fundcmpsurinj 47394* | Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective and an injective function. (Contributed by AV, 13-Mar-2024.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) | ||
| Theorem | fundcmpsurbijinj 47395* | Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective, a bijective and an injective function. (Contributed by AV, 23-Mar-2024.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑖∃𝑝∃𝑞((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1-onto→𝑞 ∧ 𝑖:𝑞–1-1→𝐵) ∧ 𝐹 = ((𝑖 ∘ ℎ) ∘ 𝑔))) | ||
| Theorem | fundcmpsurinjimaid 47396* | Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective function onto the image (𝐹 “ 𝐴) of the domain of 𝐹 and an injective function from the image (𝐹 “ 𝐴). (Contributed by AV, 17-Mar-2024.) |
| ⊢ 𝐼 = (𝐹 “ 𝐴) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) & ⊢ 𝐻 = ( I ↾ 𝐼) ⇒ ⊢ (𝐹:𝐴⟶𝐵 → (𝐺:𝐴–onto→𝐼 ∧ 𝐻:𝐼–1-1→𝐵 ∧ 𝐹 = (𝐻 ∘ 𝐺))) | ||
| Theorem | fundcmpsurinjALT 47397* | Alternate proof of fundcmpsurinj 47394, based on fundcmpsurinjimaid 47396: Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective and an injective function. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by AV, 13-Mar-2024.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) | ||
Based on the theorems of the fourierdlem* series of GS's mathbox. | ||
| Syntax | ciccp 47398 | Extend class notation with the partitions of a closed interval of extended reals. |
| class RePart | ||
| Definition | df-iccp 47399* | Define partitions of a closed interval of extended reals. Such partitions are finite increasing sequences of extended reals. (Contributed by AV, 8-Jul-2020.) |
| ⊢ RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ* ↑m (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) | ||
| Theorem | iccpval 47400* | Partition consisting of a fixed number 𝑀 of parts. (Contributed by AV, 9-Jul-2020.) |
| ⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |