Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-ack Structured version   Visualization version   GIF version

Definition df-ack 46006
Description: Define the Ackermann function (recursively). (Contributed by Thierry Arnoux, 28-Apr-2024.) (Revised by AV, 2-May-2024.)
Assertion
Ref Expression
df-ack Ack = seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))
Distinct variable group:   𝑓,𝑖,𝑗,𝑛

Detailed syntax breakdown of Definition df-ack
StepHypRef Expression
1 cack 46004 . 2 class Ack
2 vf . . . 4 setvar 𝑓
3 vj . . . 4 setvar 𝑗
4 cvv 3432 . . . 4 class V
5 vn . . . . 5 setvar 𝑛
6 cn0 12233 . . . . 5 class 0
7 c1 10872 . . . . . 6 class 1
85cv 1538 . . . . . . . 8 class 𝑛
9 caddc 10874 . . . . . . . 8 class +
108, 7, 9co 7275 . . . . . . 7 class (𝑛 + 1)
112cv 1538 . . . . . . . 8 class 𝑓
12 citco 46003 . . . . . . . 8 class IterComp
1311, 12cfv 6433 . . . . . . 7 class (IterComp‘𝑓)
1410, 13cfv 6433 . . . . . 6 class ((IterComp‘𝑓)‘(𝑛 + 1))
157, 14cfv 6433 . . . . 5 class (((IterComp‘𝑓)‘(𝑛 + 1))‘1)
165, 6, 15cmpt 5157 . . . 4 class (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))
172, 3, 4, 4, 16cmpo 7277 . . 3 class (𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1)))
18 vi . . . 4 setvar 𝑖
1918cv 1538 . . . . . 6 class 𝑖
20 cc0 10871 . . . . . 6 class 0
2119, 20wceq 1539 . . . . 5 wff 𝑖 = 0
225, 6, 10cmpt 5157 . . . . 5 class (𝑛 ∈ ℕ0 ↦ (𝑛 + 1))
2321, 22, 19cif 4459 . . . 4 class if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)
2418, 6, 23cmpt 5157 . . 3 class (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))
2517, 24, 20cseq 13721 . 2 class seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))
261, 25wceq 1539 1 wff Ack = seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))
Colors of variables: wff setvar class
This definition is referenced by:  ackvalsuc1mpt  46024  ackval0  46026
  Copyright terms: Public domain W3C validator