Detailed syntax breakdown of Definition df-ack
| Step | Hyp | Ref
| Expression |
| 1 | | cack 48579 |
. 2
class
Ack |
| 2 | | vf |
. . . 4
setvar 𝑓 |
| 3 | | vj |
. . . 4
setvar 𝑗 |
| 4 | | cvv 3480 |
. . . 4
class
V |
| 5 | | vn |
. . . . 5
setvar 𝑛 |
| 6 | | cn0 12526 |
. . . . 5
class
ℕ0 |
| 7 | | c1 11156 |
. . . . . 6
class
1 |
| 8 | 5 | cv 1539 |
. . . . . . . 8
class 𝑛 |
| 9 | | caddc 11158 |
. . . . . . . 8
class
+ |
| 10 | 8, 7, 9 | co 7431 |
. . . . . . 7
class (𝑛 + 1) |
| 11 | 2 | cv 1539 |
. . . . . . . 8
class 𝑓 |
| 12 | | citco 48578 |
. . . . . . . 8
class
IterComp |
| 13 | 11, 12 | cfv 6561 |
. . . . . . 7
class
(IterComp‘𝑓) |
| 14 | 10, 13 | cfv 6561 |
. . . . . 6
class
((IterComp‘𝑓)‘(𝑛 + 1)) |
| 15 | 7, 14 | cfv 6561 |
. . . . 5
class
(((IterComp‘𝑓)‘(𝑛 + 1))‘1) |
| 16 | 5, 6, 15 | cmpt 5225 |
. . . 4
class (𝑛 ∈ ℕ0
↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1)) |
| 17 | 2, 3, 4, 4, 16 | cmpo 7433 |
. . 3
class (𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦
(((IterComp‘𝑓)‘(𝑛 + 1))‘1))) |
| 18 | | vi |
. . . 4
setvar 𝑖 |
| 19 | 18 | cv 1539 |
. . . . . 6
class 𝑖 |
| 20 | | cc0 11155 |
. . . . . 6
class
0 |
| 21 | 19, 20 | wceq 1540 |
. . . . 5
wff 𝑖 = 0 |
| 22 | 5, 6, 10 | cmpt 5225 |
. . . . 5
class (𝑛 ∈ ℕ0
↦ (𝑛 +
1)) |
| 23 | 21, 22, 19 | cif 4525 |
. . . 4
class if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖) |
| 24 | 18, 6, 23 | cmpt 5225 |
. . 3
class (𝑖 ∈ ℕ0
↦ if(𝑖 = 0, (𝑛 ∈ ℕ0
↦ (𝑛 + 1)), 𝑖)) |
| 25 | 17, 24, 20 | cseq 14042 |
. 2
class
seq0((𝑓 ∈ V,
𝑗 ∈ V ↦ (𝑛 ∈ ℕ0
↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))) |
| 26 | 1, 25 | wceq 1540 |
1
wff Ack =
seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0
↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))) |