![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > itcoval | Structured version Visualization version GIF version |
Description: The value of the function that returns the n-th iterate of a class (usually a function) with regard to composition. (Contributed by AV, 2-May-2024.) |
Ref | Expression |
---|---|
itcoval | ⊢ (𝐹 ∈ 𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-itco 48395 | . 2 ⊢ IterComp = (𝑓 ∈ V ↦ seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓)))) | |
2 | eqidd 2741 | . . 3 ⊢ (𝑓 = 𝐹 → 0 = 0) | |
3 | coeq1 5882 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 ∘ 𝑔) = (𝐹 ∘ 𝑔)) | |
4 | 3 | mpoeq3dv 7531 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)) = (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))) |
5 | dmeq 5928 | . . . . . 6 ⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) | |
6 | 5 | reseq2d 6011 | . . . . 5 ⊢ (𝑓 = 𝐹 → ( I ↾ dom 𝑓) = ( I ↾ dom 𝐹)) |
7 | id 22 | . . . . 5 ⊢ (𝑓 = 𝐹 → 𝑓 = 𝐹) | |
8 | 6, 7 | ifeq12d 4569 | . . . 4 ⊢ (𝑓 = 𝐹 → if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓) = if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)) |
9 | 8 | mpteq2dv 5268 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) |
10 | 2, 4, 9 | seqeq123d 14063 | . 2 ⊢ (𝑓 = 𝐹 → seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓))) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))) |
11 | elex 3509 | . 2 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
12 | seqex 14056 | . . 3 ⊢ seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) ∈ V | |
13 | 12 | a1i 11 | . 2 ⊢ (𝐹 ∈ 𝑉 → seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) ∈ V) |
14 | 1, 10, 11, 13 | fvmptd3 7054 | 1 ⊢ (𝐹 ∈ 𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ifcif 4548 ↦ cmpt 5249 I cid 5592 dom cdm 5700 ↾ cres 5702 ∘ ccom 5704 ‘cfv 6575 ∈ cmpo 7452 0cc0 11186 ℕ0cn0 12555 seqcseq 14054 IterCompcitco 48393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7772 ax-inf2 9712 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-seq 14055 df-itco 48395 |
This theorem is referenced by: itcoval0 48398 itcoval1 48399 itcoval2 48400 itcoval3 48401 itcovalsuc 48403 |
Copyright terms: Public domain | W3C validator |