![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > itcoval | Structured version Visualization version GIF version |
Description: The value of the function that returns the n-th iterate of a class (usually a function) with regard to composition. (Contributed by AV, 2-May-2024.) |
Ref | Expression |
---|---|
itcoval | β’ (πΉ β π β (IterCompβπΉ) = seq0((π β V, π β V β¦ (πΉ β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-itco 47810 | . 2 β’ IterComp = (π β V β¦ seq0((π β V, π β V β¦ (π β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom π), π)))) | |
2 | eqidd 2729 | . . 3 β’ (π = πΉ β 0 = 0) | |
3 | coeq1 5864 | . . . 4 β’ (π = πΉ β (π β π) = (πΉ β π)) | |
4 | 3 | mpoeq3dv 7505 | . . 3 β’ (π = πΉ β (π β V, π β V β¦ (π β π)) = (π β V, π β V β¦ (πΉ β π))) |
5 | dmeq 5910 | . . . . . 6 β’ (π = πΉ β dom π = dom πΉ) | |
6 | 5 | reseq2d 5989 | . . . . 5 β’ (π = πΉ β ( I βΎ dom π) = ( I βΎ dom πΉ)) |
7 | id 22 | . . . . 5 β’ (π = πΉ β π = πΉ) | |
8 | 6, 7 | ifeq12d 4553 | . . . 4 β’ (π = πΉ β if(π = 0, ( I βΎ dom π), π) = if(π = 0, ( I βΎ dom πΉ), πΉ)) |
9 | 8 | mpteq2dv 5254 | . . 3 β’ (π = πΉ β (π β β0 β¦ if(π = 0, ( I βΎ dom π), π)) = (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ))) |
10 | 2, 4, 9 | seqeq123d 14015 | . 2 β’ (π = πΉ β seq0((π β V, π β V β¦ (π β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom π), π))) = seq0((π β V, π β V β¦ (πΉ β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ)))) |
11 | elex 3492 | . 2 β’ (πΉ β π β πΉ β V) | |
12 | seqex 14008 | . . 3 β’ seq0((π β V, π β V β¦ (πΉ β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ))) β V | |
13 | 12 | a1i 11 | . 2 β’ (πΉ β π β seq0((π β V, π β V β¦ (πΉ β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ))) β V) |
14 | 1, 10, 11, 13 | fvmptd3 7033 | 1 β’ (πΉ β π β (IterCompβπΉ) = seq0((π β V, π β V β¦ (πΉ β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3473 ifcif 4532 β¦ cmpt 5235 I cid 5579 dom cdm 5682 βΎ cres 5684 β ccom 5686 βcfv 6553 β cmpo 7428 0cc0 11146 β0cn0 12510 seqcseq 14006 IterCompcitco 47808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 ax-inf2 9672 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-seq 14007 df-itco 47810 |
This theorem is referenced by: itcoval0 47813 itcoval1 47814 itcoval2 47815 itcoval3 47816 itcovalsuc 47818 |
Copyright terms: Public domain | W3C validator |