![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > itcoval | Structured version Visualization version GIF version |
Description: The value of the function that returns the n-th iterate of a class (usually a function) with regard to composition. (Contributed by AV, 2-May-2024.) |
Ref | Expression |
---|---|
itcoval | β’ (πΉ β π β (IterCompβπΉ) = seq0((π β V, π β V β¦ (πΉ β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-itco 47298 | . 2 β’ IterComp = (π β V β¦ seq0((π β V, π β V β¦ (π β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom π), π)))) | |
2 | eqidd 2733 | . . 3 β’ (π = πΉ β 0 = 0) | |
3 | coeq1 5855 | . . . 4 β’ (π = πΉ β (π β π) = (πΉ β π)) | |
4 | 3 | mpoeq3dv 7484 | . . 3 β’ (π = πΉ β (π β V, π β V β¦ (π β π)) = (π β V, π β V β¦ (πΉ β π))) |
5 | dmeq 5901 | . . . . . 6 β’ (π = πΉ β dom π = dom πΉ) | |
6 | 5 | reseq2d 5979 | . . . . 5 β’ (π = πΉ β ( I βΎ dom π) = ( I βΎ dom πΉ)) |
7 | id 22 | . . . . 5 β’ (π = πΉ β π = πΉ) | |
8 | 6, 7 | ifeq12d 4548 | . . . 4 β’ (π = πΉ β if(π = 0, ( I βΎ dom π), π) = if(π = 0, ( I βΎ dom πΉ), πΉ)) |
9 | 8 | mpteq2dv 5249 | . . 3 β’ (π = πΉ β (π β β0 β¦ if(π = 0, ( I βΎ dom π), π)) = (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ))) |
10 | 2, 4, 9 | seqeq123d 13971 | . 2 β’ (π = πΉ β seq0((π β V, π β V β¦ (π β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom π), π))) = seq0((π β V, π β V β¦ (πΉ β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ)))) |
11 | elex 3492 | . 2 β’ (πΉ β π β πΉ β V) | |
12 | seqex 13964 | . . 3 β’ seq0((π β V, π β V β¦ (πΉ β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ))) β V | |
13 | 12 | a1i 11 | . 2 β’ (πΉ β π β seq0((π β V, π β V β¦ (πΉ β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ))) β V) |
14 | 1, 10, 11, 13 | fvmptd3 7018 | 1 β’ (πΉ β π β (IterCompβπΉ) = seq0((π β V, π β V β¦ (πΉ β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 ifcif 4527 β¦ cmpt 5230 I cid 5572 dom cdm 5675 βΎ cres 5677 β ccom 5679 βcfv 6540 β cmpo 7407 0cc0 11106 β0cn0 12468 seqcseq 13962 IterCompcitco 47296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-seq 13963 df-itco 47298 |
This theorem is referenced by: itcoval0 47301 itcoval1 47302 itcoval2 47303 itcoval3 47304 itcovalsuc 47306 |
Copyright terms: Public domain | W3C validator |