| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itcoval | Structured version Visualization version GIF version | ||
| Description: The value of the function that returns the n-th iterate of a class (usually a function) with regard to composition. (Contributed by AV, 2-May-2024.) |
| Ref | Expression |
|---|---|
| itcoval | ⊢ (𝐹 ∈ 𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-itco 48787 | . 2 ⊢ IterComp = (𝑓 ∈ V ↦ seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓)))) | |
| 2 | eqidd 2734 | . . 3 ⊢ (𝑓 = 𝐹 → 0 = 0) | |
| 3 | coeq1 5803 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 ∘ 𝑔) = (𝐹 ∘ 𝑔)) | |
| 4 | 3 | mpoeq3dv 7433 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)) = (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))) |
| 5 | dmeq 5849 | . . . . . 6 ⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) | |
| 6 | 5 | reseq2d 5934 | . . . . 5 ⊢ (𝑓 = 𝐹 → ( I ↾ dom 𝑓) = ( I ↾ dom 𝐹)) |
| 7 | id 22 | . . . . 5 ⊢ (𝑓 = 𝐹 → 𝑓 = 𝐹) | |
| 8 | 6, 7 | ifeq12d 4498 | . . . 4 ⊢ (𝑓 = 𝐹 → if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓) = if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)) |
| 9 | 8 | mpteq2dv 5189 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) |
| 10 | 2, 4, 9 | seqeq123d 13921 | . 2 ⊢ (𝑓 = 𝐹 → seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓))) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))) |
| 11 | elex 3458 | . 2 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
| 12 | seqex 13914 | . . 3 ⊢ seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) ∈ V | |
| 13 | 12 | a1i 11 | . 2 ⊢ (𝐹 ∈ 𝑉 → seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) ∈ V) |
| 14 | 1, 10, 11, 13 | fvmptd3 6960 | 1 ⊢ (𝐹 ∈ 𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ifcif 4476 ↦ cmpt 5176 I cid 5515 dom cdm 5621 ↾ cres 5623 ∘ ccom 5625 ‘cfv 6488 ∈ cmpo 7356 0cc0 11015 ℕ0cn0 12390 seqcseq 13912 IterCompcitco 48785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 ax-inf2 9540 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-seq 13913 df-itco 48787 |
| This theorem is referenced by: itcoval0 48790 itcoval1 48791 itcoval2 48792 itcoval3 48793 itcovalsuc 48795 |
| Copyright terms: Public domain | W3C validator |