Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > itcoval | Structured version Visualization version GIF version |
Description: The value of the function that returns the n-th iterate of a class (usually a function) with regard to composition. (Contributed by AV, 2-May-2024.) |
Ref | Expression |
---|---|
itcoval | ⊢ (𝐹 ∈ 𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-itco 46249 | . 2 ⊢ IterComp = (𝑓 ∈ V ↦ seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓)))) | |
2 | eqidd 2737 | . . 3 ⊢ (𝑓 = 𝐹 → 0 = 0) | |
3 | coeq1 5779 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 ∘ 𝑔) = (𝐹 ∘ 𝑔)) | |
4 | 3 | mpoeq3dv 7386 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)) = (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))) |
5 | dmeq 5825 | . . . . . 6 ⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) | |
6 | 5 | reseq2d 5903 | . . . . 5 ⊢ (𝑓 = 𝐹 → ( I ↾ dom 𝑓) = ( I ↾ dom 𝐹)) |
7 | id 22 | . . . . 5 ⊢ (𝑓 = 𝐹 → 𝑓 = 𝐹) | |
8 | 6, 7 | ifeq12d 4486 | . . . 4 ⊢ (𝑓 = 𝐹 → if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓) = if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)) |
9 | 8 | mpteq2dv 5183 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) |
10 | 2, 4, 9 | seqeq123d 13780 | . 2 ⊢ (𝑓 = 𝐹 → seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓))) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))) |
11 | elex 3455 | . 2 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
12 | seqex 13773 | . . 3 ⊢ seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) ∈ V | |
13 | 12 | a1i 11 | . 2 ⊢ (𝐹 ∈ 𝑉 → seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) ∈ V) |
14 | 1, 10, 11, 13 | fvmptd3 6930 | 1 ⊢ (𝐹 ∈ 𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ifcif 4465 ↦ cmpt 5164 I cid 5499 dom cdm 5600 ↾ cres 5602 ∘ ccom 5604 ‘cfv 6458 ∈ cmpo 7309 0cc0 10921 ℕ0cn0 12283 seqcseq 13771 IterCompcitco 46247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 ax-inf2 9447 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-seq 13772 df-itco 46249 |
This theorem is referenced by: itcoval0 46252 itcoval1 46253 itcoval2 46254 itcoval3 46255 itcovalsuc 46257 |
Copyright terms: Public domain | W3C validator |