Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcoval Structured version   Visualization version   GIF version

Theorem itcoval 45425
Description: The value of the function that returns the n-th iterate of a class (usually a function) with regard to composition. (Contributed by AV, 2-May-2024.)
Assertion
Ref Expression
itcoval (𝐹𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))))
Distinct variable group:   𝑔,𝐹,𝑖,𝑗
Allowed substitution hints:   𝑉(𝑔,𝑖,𝑗)

Proof of Theorem itcoval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-itco 45423 . 2 IterComp = (𝑓 ∈ V ↦ seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓))))
2 eqidd 2760 . . 3 (𝑓 = 𝐹 → 0 = 0)
3 coeq1 5690 . . . 4 (𝑓 = 𝐹 → (𝑓𝑔) = (𝐹𝑔))
43mpoeq3dv 7220 . . 3 (𝑓 = 𝐹 → (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓𝑔)) = (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)))
5 dmeq 5736 . . . . . 6 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
65reseq2d 5816 . . . . 5 (𝑓 = 𝐹 → ( I ↾ dom 𝑓) = ( I ↾ dom 𝐹))
7 id 22 . . . . 5 (𝑓 = 𝐹𝑓 = 𝐹)
86, 7ifeq12d 4434 . . . 4 (𝑓 = 𝐹 → if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓) = if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))
98mpteq2dv 5121 . . 3 (𝑓 = 𝐹 → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))
102, 4, 9seqeq123d 13412 . 2 (𝑓 = 𝐹 → seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓))) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))))
11 elex 3427 . 2 (𝐹𝑉𝐹 ∈ V)
12 seqex 13405 . . 3 seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) ∈ V
1312a1i 11 . 2 (𝐹𝑉 → seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) ∈ V)
141, 10, 11, 13fvmptd3 6775 1 (𝐹𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2112  Vcvv 3407  ifcif 4413  cmpt 5105   I cid 5422  dom cdm 5517  cres 5519  ccom 5521  cfv 6328  cmpo 7145  0cc0 10560  0cn0 11919  seqcseq 13403  IterCompcitco 45421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pr 5291  ax-un 7452  ax-inf2 9122
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-seq 13404  df-itco 45423
This theorem is referenced by:  itcoval0  45426  itcoval1  45427  itcoval2  45428  itcoval3  45429  itcovalsuc  45431
  Copyright terms: Public domain W3C validator