Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcoval Structured version   Visualization version   GIF version

Theorem itcoval 48516
Description: The value of the function that returns the n-th iterate of a class (usually a function) with regard to composition. (Contributed by AV, 2-May-2024.)
Assertion
Ref Expression
itcoval (𝐹𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))))
Distinct variable group:   𝑔,𝐹,𝑖,𝑗
Allowed substitution hints:   𝑉(𝑔,𝑖,𝑗)

Proof of Theorem itcoval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-itco 48514 . 2 IterComp = (𝑓 ∈ V ↦ seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓))))
2 eqidd 2735 . . 3 (𝑓 = 𝐹 → 0 = 0)
3 coeq1 5848 . . . 4 (𝑓 = 𝐹 → (𝑓𝑔) = (𝐹𝑔))
43mpoeq3dv 7493 . . 3 (𝑓 = 𝐹 → (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓𝑔)) = (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)))
5 dmeq 5894 . . . . . 6 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
65reseq2d 5977 . . . . 5 (𝑓 = 𝐹 → ( I ↾ dom 𝑓) = ( I ↾ dom 𝐹))
7 id 22 . . . . 5 (𝑓 = 𝐹𝑓 = 𝐹)
86, 7ifeq12d 4527 . . . 4 (𝑓 = 𝐹 → if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓) = if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))
98mpteq2dv 5224 . . 3 (𝑓 = 𝐹 → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))
102, 4, 9seqeq123d 14032 . 2 (𝑓 = 𝐹 → seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓))) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))))
11 elex 3484 . 2 (𝐹𝑉𝐹 ∈ V)
12 seqex 14025 . . 3 seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) ∈ V
1312a1i 11 . 2 (𝐹𝑉 → seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) ∈ V)
141, 10, 11, 13fvmptd3 7018 1 (𝐹𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3463  ifcif 4505  cmpt 5205   I cid 5557  dom cdm 5665  cres 5667  ccom 5669  cfv 6540  cmpo 7414  0cc0 11136  0cn0 12508  seqcseq 14023  IterCompcitco 48512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7736  ax-inf2 9662
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-seq 14024  df-itco 48514
This theorem is referenced by:  itcoval0  48517  itcoval1  48518  itcoval2  48519  itcoval3  48520  itcovalsuc  48522
  Copyright terms: Public domain W3C validator