Detailed syntax breakdown of Definition df-lco
| Step | Hyp | Ref
| Expression |
| 1 | | clinco 48322 |
. 2
class
LinCo |
| 2 | | vm |
. . 3
setvar 𝑚 |
| 3 | | vv |
. . 3
setvar 𝑣 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑚 |
| 6 | | cbs 17247 |
. . . . 5
class
Base |
| 7 | 5, 6 | cfv 6561 |
. . . 4
class
(Base‘𝑚) |
| 8 | 7 | cpw 4600 |
. . 3
class 𝒫
(Base‘𝑚) |
| 9 | | vs |
. . . . . . . 8
setvar 𝑠 |
| 10 | 9 | cv 1539 |
. . . . . . 7
class 𝑠 |
| 11 | | csca 17300 |
. . . . . . . . 9
class
Scalar |
| 12 | 5, 11 | cfv 6561 |
. . . . . . . 8
class
(Scalar‘𝑚) |
| 13 | | c0g 17484 |
. . . . . . . 8
class
0g |
| 14 | 12, 13 | cfv 6561 |
. . . . . . 7
class
(0g‘(Scalar‘𝑚)) |
| 15 | | cfsupp 9401 |
. . . . . . 7
class
finSupp |
| 16 | 10, 14, 15 | wbr 5143 |
. . . . . 6
wff 𝑠 finSupp
(0g‘(Scalar‘𝑚)) |
| 17 | | vc |
. . . . . . . 8
setvar 𝑐 |
| 18 | 17 | cv 1539 |
. . . . . . 7
class 𝑐 |
| 19 | 3 | cv 1539 |
. . . . . . . 8
class 𝑣 |
| 20 | | clinc 48321 |
. . . . . . . . 9
class
linC |
| 21 | 5, 20 | cfv 6561 |
. . . . . . . 8
class ( linC
‘𝑚) |
| 22 | 10, 19, 21 | co 7431 |
. . . . . . 7
class (𝑠( linC ‘𝑚)𝑣) |
| 23 | 18, 22 | wceq 1540 |
. . . . . 6
wff 𝑐 = (𝑠( linC ‘𝑚)𝑣) |
| 24 | 16, 23 | wa 395 |
. . . . 5
wff (𝑠 finSupp
(0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣)) |
| 25 | 12, 6 | cfv 6561 |
. . . . . 6
class
(Base‘(Scalar‘𝑚)) |
| 26 | | cmap 8866 |
. . . . . 6
class
↑m |
| 27 | 25, 19, 26 | co 7431 |
. . . . 5
class
((Base‘(Scalar‘𝑚)) ↑m 𝑣) |
| 28 | 24, 9, 27 | wrex 3070 |
. . . 4
wff
∃𝑠 ∈
((Base‘(Scalar‘𝑚)) ↑m 𝑣)(𝑠 finSupp
(0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣)) |
| 29 | 28, 17, 7 | crab 3436 |
. . 3
class {𝑐 ∈ (Base‘𝑚) ∣ ∃𝑠 ∈
((Base‘(Scalar‘𝑚)) ↑m 𝑣)(𝑠 finSupp
(0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣))} |
| 30 | 2, 3, 4, 8, 29 | cmpo 7433 |
. 2
class (𝑚 ∈ V, 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ {𝑐 ∈ (Base‘𝑚) ∣ ∃𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣)(𝑠 finSupp
(0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣))}) |
| 31 | 1, 30 | wceq 1540 |
1
wff LinCo =
(𝑚 ∈ V, 𝑣 ∈ 𝒫
(Base‘𝑚) ↦
{𝑐 ∈ (Base‘𝑚) ∣ ∃𝑠 ∈
((Base‘(Scalar‘𝑚)) ↑m 𝑣)(𝑠 finSupp
(0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣))}) |