Step | Hyp | Ref
| Expression |
1 | | clinco 47134 |
. 2
class
LinCo |
2 | | vm |
. . 3
setvar π |
3 | | vv |
. . 3
setvar π£ |
4 | | cvv 3475 |
. . 3
class
V |
5 | 2 | cv 1541 |
. . . . 5
class π |
6 | | cbs 17144 |
. . . . 5
class
Base |
7 | 5, 6 | cfv 6544 |
. . . 4
class
(Baseβπ) |
8 | 7 | cpw 4603 |
. . 3
class π«
(Baseβπ) |
9 | | vs |
. . . . . . . 8
setvar π |
10 | 9 | cv 1541 |
. . . . . . 7
class π |
11 | | csca 17200 |
. . . . . . . . 9
class
Scalar |
12 | 5, 11 | cfv 6544 |
. . . . . . . 8
class
(Scalarβπ) |
13 | | c0g 17385 |
. . . . . . . 8
class
0g |
14 | 12, 13 | cfv 6544 |
. . . . . . 7
class
(0gβ(Scalarβπ)) |
15 | | cfsupp 9361 |
. . . . . . 7
class
finSupp |
16 | 10, 14, 15 | wbr 5149 |
. . . . . 6
wff π finSupp
(0gβ(Scalarβπ)) |
17 | | vc |
. . . . . . . 8
setvar π |
18 | 17 | cv 1541 |
. . . . . . 7
class π |
19 | 3 | cv 1541 |
. . . . . . . 8
class π£ |
20 | | clinc 47133 |
. . . . . . . . 9
class
linC |
21 | 5, 20 | cfv 6544 |
. . . . . . . 8
class ( linC
βπ) |
22 | 10, 19, 21 | co 7409 |
. . . . . . 7
class (π ( linC βπ)π£) |
23 | 18, 22 | wceq 1542 |
. . . . . 6
wff π = (π ( linC βπ)π£) |
24 | 16, 23 | wa 397 |
. . . . 5
wff (π finSupp
(0gβ(Scalarβπ)) β§ π = (π ( linC βπ)π£)) |
25 | 12, 6 | cfv 6544 |
. . . . . 6
class
(Baseβ(Scalarβπ)) |
26 | | cmap 8820 |
. . . . . 6
class
βm |
27 | 25, 19, 26 | co 7409 |
. . . . 5
class
((Baseβ(Scalarβπ)) βm π£) |
28 | 24, 9, 27 | wrex 3071 |
. . . 4
wff
βπ β
((Baseβ(Scalarβπ)) βm π£)(π finSupp
(0gβ(Scalarβπ)) β§ π = (π ( linC βπ)π£)) |
29 | 28, 17, 7 | crab 3433 |
. . 3
class {π β (Baseβπ) β£ βπ β
((Baseβ(Scalarβπ)) βm π£)(π finSupp
(0gβ(Scalarβπ)) β§ π = (π ( linC βπ)π£))} |
30 | 2, 3, 4, 8, 29 | cmpo 7411 |
. 2
class (π β V, π£ β π« (Baseβπ) β¦ {π β (Baseβπ) β£ βπ β ((Baseβ(Scalarβπ)) βm π£)(π finSupp
(0gβ(Scalarβπ)) β§ π = (π ( linC βπ)π£))}) |
31 | 1, 30 | wceq 1542 |
1
wff LinCo =
(π β V, π£ β π«
(Baseβπ) β¦
{π β (Baseβπ) β£ βπ β
((Baseβ(Scalarβπ)) βm π£)(π finSupp
(0gβ(Scalarβπ)) β§ π = (π ( linC βπ)π£))}) |