Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-lco Structured version   Visualization version   GIF version

Definition df-lco 47136
Description: Define the operation constructing the set of all linear combinations for a set of vectors. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 28-Jul-2019.)
Assertion
Ref Expression
df-lco LinCo = (π‘š ∈ V, 𝑣 ∈ 𝒫 (Baseβ€˜π‘š) ↦ {𝑐 ∈ (Baseβ€˜π‘š) ∣ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ 𝑐 = (𝑠( linC β€˜π‘š)𝑣))})
Distinct variable group:   π‘š,𝑐,𝑠,𝑣

Detailed syntax breakdown of Definition df-lco
StepHypRef Expression
1 clinco 47134 . 2 class LinCo
2 vm . . 3 setvar π‘š
3 vv . . 3 setvar 𝑣
4 cvv 3475 . . 3 class V
52cv 1541 . . . . 5 class π‘š
6 cbs 17144 . . . . 5 class Base
75, 6cfv 6544 . . . 4 class (Baseβ€˜π‘š)
87cpw 4603 . . 3 class 𝒫 (Baseβ€˜π‘š)
9 vs . . . . . . . 8 setvar 𝑠
109cv 1541 . . . . . . 7 class 𝑠
11 csca 17200 . . . . . . . . 9 class Scalar
125, 11cfv 6544 . . . . . . . 8 class (Scalarβ€˜π‘š)
13 c0g 17385 . . . . . . . 8 class 0g
1412, 13cfv 6544 . . . . . . 7 class (0gβ€˜(Scalarβ€˜π‘š))
15 cfsupp 9361 . . . . . . 7 class finSupp
1610, 14, 15wbr 5149 . . . . . 6 wff 𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘š))
17 vc . . . . . . . 8 setvar 𝑐
1817cv 1541 . . . . . . 7 class 𝑐
193cv 1541 . . . . . . . 8 class 𝑣
20 clinc 47133 . . . . . . . . 9 class linC
215, 20cfv 6544 . . . . . . . 8 class ( linC β€˜π‘š)
2210, 19, 21co 7409 . . . . . . 7 class (𝑠( linC β€˜π‘š)𝑣)
2318, 22wceq 1542 . . . . . 6 wff 𝑐 = (𝑠( linC β€˜π‘š)𝑣)
2416, 23wa 397 . . . . 5 wff (𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ 𝑐 = (𝑠( linC β€˜π‘š)𝑣))
2512, 6cfv 6544 . . . . . 6 class (Baseβ€˜(Scalarβ€˜π‘š))
26 cmap 8820 . . . . . 6 class ↑m
2725, 19, 26co 7409 . . . . 5 class ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣)
2824, 9, 27wrex 3071 . . . 4 wff βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ 𝑐 = (𝑠( linC β€˜π‘š)𝑣))
2928, 17, 7crab 3433 . . 3 class {𝑐 ∈ (Baseβ€˜π‘š) ∣ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ 𝑐 = (𝑠( linC β€˜π‘š)𝑣))}
302, 3, 4, 8, 29cmpo 7411 . 2 class (π‘š ∈ V, 𝑣 ∈ 𝒫 (Baseβ€˜π‘š) ↦ {𝑐 ∈ (Baseβ€˜π‘š) ∣ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ 𝑐 = (𝑠( linC β€˜π‘š)𝑣))})
311, 30wceq 1542 1 wff LinCo = (π‘š ∈ V, 𝑣 ∈ 𝒫 (Baseβ€˜π‘š) ↦ {𝑐 ∈ (Baseβ€˜π‘š) ∣ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ 𝑐 = (𝑠( linC β€˜π‘š)𝑣))})
Colors of variables: wff setvar class
This definition is referenced by:  lcoop  47140
  Copyright terms: Public domain W3C validator