Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoop Structured version   Visualization version   GIF version

Theorem lcoop 44460
Description: A linear combination as operation. (Contributed by AV, 5-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lcoop.b 𝐵 = (Base‘𝑀)
lcoop.s 𝑆 = (Scalar‘𝑀)
lcoop.r 𝑅 = (Base‘𝑆)
Assertion
Ref Expression
lcoop ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) = {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))})
Distinct variable groups:   𝐵,𝑐   𝑀,𝑐,𝑠   𝑅,𝑐,𝑠   𝑉,𝑐,𝑠
Allowed substitution hints:   𝐵(𝑠)   𝑆(𝑠,𝑐)   𝑋(𝑠,𝑐)

Proof of Theorem lcoop
Dummy variables 𝑚 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3512 . . 3 (𝑀𝑋𝑀 ∈ V)
21adantr 483 . 2 ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → 𝑀 ∈ V)
3 lcoop.b . . . . . 6 𝐵 = (Base‘𝑀)
43pweqi 4542 . . . . 5 𝒫 𝐵 = 𝒫 (Base‘𝑀)
54eleq2i 2904 . . . 4 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
65biimpi 218 . . 3 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
76adantl 484 . 2 ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 (Base‘𝑀))
83fvexi 6678 . . 3 𝐵 ∈ V
9 rabexg 5226 . . 3 (𝐵 ∈ V → {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))} ∈ V)
108, 9mp1i 13 . 2 ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))} ∈ V)
11 fveq2 6664 . . . . . 6 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
1211, 3syl6eqr 2874 . . . . 5 (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵)
1312adantr 483 . . . 4 ((𝑚 = 𝑀𝑣 = 𝑉) → (Base‘𝑚) = 𝐵)
14 2fveq3 6669 . . . . . . . 8 (𝑚 = 𝑀 → (Base‘(Scalar‘𝑚)) = (Base‘(Scalar‘𝑀)))
1514adantr 483 . . . . . . 7 ((𝑚 = 𝑀𝑣 = 𝑉) → (Base‘(Scalar‘𝑚)) = (Base‘(Scalar‘𝑀)))
16 lcoop.r . . . . . . . 8 𝑅 = (Base‘𝑆)
17 lcoop.s . . . . . . . . 9 𝑆 = (Scalar‘𝑀)
1817fveq2i 6667 . . . . . . . 8 (Base‘𝑆) = (Base‘(Scalar‘𝑀))
1916, 18eqtri 2844 . . . . . . 7 𝑅 = (Base‘(Scalar‘𝑀))
2015, 19syl6eqr 2874 . . . . . 6 ((𝑚 = 𝑀𝑣 = 𝑉) → (Base‘(Scalar‘𝑚)) = 𝑅)
21 simpr 487 . . . . . 6 ((𝑚 = 𝑀𝑣 = 𝑉) → 𝑣 = 𝑉)
2220, 21oveq12d 7168 . . . . 5 ((𝑚 = 𝑀𝑣 = 𝑉) → ((Base‘(Scalar‘𝑚)) ↑m 𝑣) = (𝑅m 𝑉))
23 2fveq3 6669 . . . . . . . . 9 (𝑚 = 𝑀 → (0g‘(Scalar‘𝑚)) = (0g‘(Scalar‘𝑀)))
2417a1i 11 . . . . . . . . . . 11 (𝑚 = 𝑀𝑆 = (Scalar‘𝑀))
2524eqcomd 2827 . . . . . . . . . 10 (𝑚 = 𝑀 → (Scalar‘𝑀) = 𝑆)
2625fveq2d 6668 . . . . . . . . 9 (𝑚 = 𝑀 → (0g‘(Scalar‘𝑀)) = (0g𝑆))
2723, 26eqtrd 2856 . . . . . . . 8 (𝑚 = 𝑀 → (0g‘(Scalar‘𝑚)) = (0g𝑆))
2827adantr 483 . . . . . . 7 ((𝑚 = 𝑀𝑣 = 𝑉) → (0g‘(Scalar‘𝑚)) = (0g𝑆))
2928breq2d 5070 . . . . . 6 ((𝑚 = 𝑀𝑣 = 𝑉) → (𝑠 finSupp (0g‘(Scalar‘𝑚)) ↔ 𝑠 finSupp (0g𝑆)))
30 fveq2 6664 . . . . . . . . 9 (𝑚 = 𝑀 → ( linC ‘𝑚) = ( linC ‘𝑀))
3130adantr 483 . . . . . . . 8 ((𝑚 = 𝑀𝑣 = 𝑉) → ( linC ‘𝑚) = ( linC ‘𝑀))
32 eqidd 2822 . . . . . . . 8 ((𝑚 = 𝑀𝑣 = 𝑉) → 𝑠 = 𝑠)
3331, 32, 21oveq123d 7171 . . . . . . 7 ((𝑚 = 𝑀𝑣 = 𝑉) → (𝑠( linC ‘𝑚)𝑣) = (𝑠( linC ‘𝑀)𝑉))
3433eqeq2d 2832 . . . . . 6 ((𝑚 = 𝑀𝑣 = 𝑉) → (𝑐 = (𝑠( linC ‘𝑚)𝑣) ↔ 𝑐 = (𝑠( linC ‘𝑀)𝑉)))
3529, 34anbi12d 632 . . . . 5 ((𝑚 = 𝑀𝑣 = 𝑉) → ((𝑠 finSupp (0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣)) ↔ (𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))))
3622, 35rexeqbidv 3402 . . . 4 ((𝑚 = 𝑀𝑣 = 𝑉) → (∃𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣)(𝑠 finSupp (0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣)) ↔ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))))
3713, 36rabeqbidv 3485 . . 3 ((𝑚 = 𝑀𝑣 = 𝑉) → {𝑐 ∈ (Base‘𝑚) ∣ ∃𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣)(𝑠 finSupp (0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣))} = {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))})
3811pweqd 4543 . . 3 (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 (Base‘𝑀))
39 df-lco 44456 . . 3 LinCo = (𝑚 ∈ V, 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ {𝑐 ∈ (Base‘𝑚) ∣ ∃𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣)(𝑠 finSupp (0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣))})
4037, 38, 39ovmpox 7297 . 2 ((𝑀 ∈ V ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))} ∈ V) → (𝑀 LinCo 𝑉) = {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))})
412, 7, 10, 40syl3anc 1367 1 ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) = {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wrex 3139  {crab 3142  Vcvv 3494  𝒫 cpw 4538   class class class wbr 5058  cfv 6349  (class class class)co 7150  m cmap 8400   finSupp cfsupp 8827  Basecbs 16477  Scalarcsca 16562  0gc0g 16707   linC clinc 44453   LinCo clinco 44454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-iota 6308  df-fun 6351  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-lco 44456
This theorem is referenced by:  lcoval  44461  lco0  44476
  Copyright terms: Public domain W3C validator