Step | Hyp | Ref
| Expression |
1 | | elex 3450 |
. . 3
⊢ (𝑀 ∈ 𝑋 → 𝑀 ∈ V) |
2 | 1 | adantr 481 |
. 2
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑀 ∈ V) |
3 | | lcoop.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑀) |
4 | 3 | pweqi 4551 |
. . . . 5
⊢ 𝒫
𝐵 = 𝒫
(Base‘𝑀) |
5 | 4 | eleq2i 2830 |
. . . 4
⊢ (𝑉 ∈ 𝒫 𝐵 ↔ 𝑉 ∈ 𝒫 (Base‘𝑀)) |
6 | 5 | biimpi 215 |
. . 3
⊢ (𝑉 ∈ 𝒫 𝐵 → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
7 | 6 | adantl 482 |
. 2
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
8 | 3 | fvexi 6788 |
. . 3
⊢ 𝐵 ∈ V |
9 | | rabexg 5255 |
. . 3
⊢ (𝐵 ∈ V → {𝑐 ∈ 𝐵 ∣ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))} ∈ V) |
10 | 8, 9 | mp1i 13 |
. 2
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑐 ∈ 𝐵 ∣ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))} ∈ V) |
11 | | fveq2 6774 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) |
12 | 11, 3 | eqtr4di 2796 |
. . . . 5
⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) |
13 | 12 | adantr 481 |
. . . 4
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = 𝑉) → (Base‘𝑚) = 𝐵) |
14 | | 2fveq3 6779 |
. . . . . . . 8
⊢ (𝑚 = 𝑀 → (Base‘(Scalar‘𝑚)) =
(Base‘(Scalar‘𝑀))) |
15 | 14 | adantr 481 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = 𝑉) → (Base‘(Scalar‘𝑚)) =
(Base‘(Scalar‘𝑀))) |
16 | | lcoop.r |
. . . . . . . 8
⊢ 𝑅 = (Base‘𝑆) |
17 | | lcoop.s |
. . . . . . . . 9
⊢ 𝑆 = (Scalar‘𝑀) |
18 | 17 | fveq2i 6777 |
. . . . . . . 8
⊢
(Base‘𝑆) =
(Base‘(Scalar‘𝑀)) |
19 | 16, 18 | eqtri 2766 |
. . . . . . 7
⊢ 𝑅 =
(Base‘(Scalar‘𝑀)) |
20 | 15, 19 | eqtr4di 2796 |
. . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = 𝑉) → (Base‘(Scalar‘𝑚)) = 𝑅) |
21 | | simpr 485 |
. . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = 𝑉) → 𝑣 = 𝑉) |
22 | 20, 21 | oveq12d 7293 |
. . . . 5
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = 𝑉) → ((Base‘(Scalar‘𝑚)) ↑m 𝑣) = (𝑅 ↑m 𝑉)) |
23 | | 2fveq3 6779 |
. . . . . . . . 9
⊢ (𝑚 = 𝑀 →
(0g‘(Scalar‘𝑚)) = (0g‘(Scalar‘𝑀))) |
24 | 17 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑀 → 𝑆 = (Scalar‘𝑀)) |
25 | 24 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → (Scalar‘𝑀) = 𝑆) |
26 | 25 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝑚 = 𝑀 →
(0g‘(Scalar‘𝑀)) = (0g‘𝑆)) |
27 | 23, 26 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝑚 = 𝑀 →
(0g‘(Scalar‘𝑚)) = (0g‘𝑆)) |
28 | 27 | adantr 481 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = 𝑉) →
(0g‘(Scalar‘𝑚)) = (0g‘𝑆)) |
29 | 28 | breq2d 5086 |
. . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = 𝑉) → (𝑠 finSupp
(0g‘(Scalar‘𝑚)) ↔ 𝑠 finSupp (0g‘𝑆))) |
30 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑚 = 𝑀 → ( linC ‘𝑚) = ( linC ‘𝑀)) |
31 | 30 | adantr 481 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = 𝑉) → ( linC ‘𝑚) = ( linC ‘𝑀)) |
32 | | eqidd 2739 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = 𝑉) → 𝑠 = 𝑠) |
33 | 31, 32, 21 | oveq123d 7296 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = 𝑉) → (𝑠( linC ‘𝑚)𝑣) = (𝑠( linC ‘𝑀)𝑉)) |
34 | 33 | eqeq2d 2749 |
. . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = 𝑉) → (𝑐 = (𝑠( linC ‘𝑚)𝑣) ↔ 𝑐 = (𝑠( linC ‘𝑀)𝑉))) |
35 | 29, 34 | anbi12d 631 |
. . . . 5
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = 𝑉) → ((𝑠 finSupp
(0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣)) ↔ (𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉)))) |
36 | 22, 35 | rexeqbidv 3337 |
. . . 4
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = 𝑉) → (∃𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣)(𝑠 finSupp
(0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣)) ↔ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉)))) |
37 | 13, 36 | rabeqbidv 3420 |
. . 3
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = 𝑉) → {𝑐 ∈ (Base‘𝑚) ∣ ∃𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣)(𝑠 finSupp
(0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣))} = {𝑐 ∈ 𝐵 ∣ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))}) |
38 | 11 | pweqd 4552 |
. . 3
⊢ (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 (Base‘𝑀)) |
39 | | df-lco 45748 |
. . 3
⊢ LinCo =
(𝑚 ∈ V, 𝑣 ∈ 𝒫
(Base‘𝑚) ↦
{𝑐 ∈ (Base‘𝑚) ∣ ∃𝑠 ∈
((Base‘(Scalar‘𝑚)) ↑m 𝑣)(𝑠 finSupp
(0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣))}) |
40 | 37, 38, 39 | ovmpox 7426 |
. 2
⊢ ((𝑀 ∈ V ∧ 𝑉 ∈ 𝒫
(Base‘𝑀) ∧ {𝑐 ∈ 𝐵 ∣ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))} ∈ V) → (𝑀 LinCo 𝑉) = {𝑐 ∈ 𝐵 ∣ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))}) |
41 | 2, 7, 10, 40 | syl3anc 1370 |
1
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) = {𝑐 ∈ 𝐵 ∣ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))}) |