Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoop Structured version   Visualization version   GIF version

Theorem lcoop 48367
Description: A linear combination as operation. (Contributed by AV, 5-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lcoop.b 𝐵 = (Base‘𝑀)
lcoop.s 𝑆 = (Scalar‘𝑀)
lcoop.r 𝑅 = (Base‘𝑆)
Assertion
Ref Expression
lcoop ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) = {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))})
Distinct variable groups:   𝐵,𝑐   𝑀,𝑐,𝑠   𝑅,𝑐,𝑠   𝑉,𝑐,𝑠
Allowed substitution hints:   𝐵(𝑠)   𝑆(𝑠,𝑐)   𝑋(𝑠,𝑐)

Proof of Theorem lcoop
Dummy variables 𝑚 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3485 . . 3 (𝑀𝑋𝑀 ∈ V)
21adantr 480 . 2 ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → 𝑀 ∈ V)
3 lcoop.b . . . . . 6 𝐵 = (Base‘𝑀)
43pweqi 4596 . . . . 5 𝒫 𝐵 = 𝒫 (Base‘𝑀)
54eleq2i 2827 . . . 4 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
65biimpi 216 . . 3 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
76adantl 481 . 2 ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 (Base‘𝑀))
83fvexi 6895 . . 3 𝐵 ∈ V
9 rabexg 5312 . . 3 (𝐵 ∈ V → {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))} ∈ V)
108, 9mp1i 13 . 2 ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))} ∈ V)
11 fveq2 6881 . . . . . 6 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
1211, 3eqtr4di 2789 . . . . 5 (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵)
1312adantr 480 . . . 4 ((𝑚 = 𝑀𝑣 = 𝑉) → (Base‘𝑚) = 𝐵)
14 2fveq3 6886 . . . . . . . 8 (𝑚 = 𝑀 → (Base‘(Scalar‘𝑚)) = (Base‘(Scalar‘𝑀)))
1514adantr 480 . . . . . . 7 ((𝑚 = 𝑀𝑣 = 𝑉) → (Base‘(Scalar‘𝑚)) = (Base‘(Scalar‘𝑀)))
16 lcoop.r . . . . . . . 8 𝑅 = (Base‘𝑆)
17 lcoop.s . . . . . . . . 9 𝑆 = (Scalar‘𝑀)
1817fveq2i 6884 . . . . . . . 8 (Base‘𝑆) = (Base‘(Scalar‘𝑀))
1916, 18eqtri 2759 . . . . . . 7 𝑅 = (Base‘(Scalar‘𝑀))
2015, 19eqtr4di 2789 . . . . . 6 ((𝑚 = 𝑀𝑣 = 𝑉) → (Base‘(Scalar‘𝑚)) = 𝑅)
21 simpr 484 . . . . . 6 ((𝑚 = 𝑀𝑣 = 𝑉) → 𝑣 = 𝑉)
2220, 21oveq12d 7428 . . . . 5 ((𝑚 = 𝑀𝑣 = 𝑉) → ((Base‘(Scalar‘𝑚)) ↑m 𝑣) = (𝑅m 𝑉))
23 2fveq3 6886 . . . . . . . . 9 (𝑚 = 𝑀 → (0g‘(Scalar‘𝑚)) = (0g‘(Scalar‘𝑀)))
2417a1i 11 . . . . . . . . . . 11 (𝑚 = 𝑀𝑆 = (Scalar‘𝑀))
2524eqcomd 2742 . . . . . . . . . 10 (𝑚 = 𝑀 → (Scalar‘𝑀) = 𝑆)
2625fveq2d 6885 . . . . . . . . 9 (𝑚 = 𝑀 → (0g‘(Scalar‘𝑀)) = (0g𝑆))
2723, 26eqtrd 2771 . . . . . . . 8 (𝑚 = 𝑀 → (0g‘(Scalar‘𝑚)) = (0g𝑆))
2827adantr 480 . . . . . . 7 ((𝑚 = 𝑀𝑣 = 𝑉) → (0g‘(Scalar‘𝑚)) = (0g𝑆))
2928breq2d 5136 . . . . . 6 ((𝑚 = 𝑀𝑣 = 𝑉) → (𝑠 finSupp (0g‘(Scalar‘𝑚)) ↔ 𝑠 finSupp (0g𝑆)))
30 fveq2 6881 . . . . . . . . 9 (𝑚 = 𝑀 → ( linC ‘𝑚) = ( linC ‘𝑀))
3130adantr 480 . . . . . . . 8 ((𝑚 = 𝑀𝑣 = 𝑉) → ( linC ‘𝑚) = ( linC ‘𝑀))
32 eqidd 2737 . . . . . . . 8 ((𝑚 = 𝑀𝑣 = 𝑉) → 𝑠 = 𝑠)
3331, 32, 21oveq123d 7431 . . . . . . 7 ((𝑚 = 𝑀𝑣 = 𝑉) → (𝑠( linC ‘𝑚)𝑣) = (𝑠( linC ‘𝑀)𝑉))
3433eqeq2d 2747 . . . . . 6 ((𝑚 = 𝑀𝑣 = 𝑉) → (𝑐 = (𝑠( linC ‘𝑚)𝑣) ↔ 𝑐 = (𝑠( linC ‘𝑀)𝑉)))
3529, 34anbi12d 632 . . . . 5 ((𝑚 = 𝑀𝑣 = 𝑉) → ((𝑠 finSupp (0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣)) ↔ (𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))))
3622, 35rexeqbidv 3330 . . . 4 ((𝑚 = 𝑀𝑣 = 𝑉) → (∃𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣)(𝑠 finSupp (0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣)) ↔ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))))
3713, 36rabeqbidv 3439 . . 3 ((𝑚 = 𝑀𝑣 = 𝑉) → {𝑐 ∈ (Base‘𝑚) ∣ ∃𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣)(𝑠 finSupp (0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣))} = {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))})
3811pweqd 4597 . . 3 (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 (Base‘𝑀))
39 df-lco 48363 . . 3 LinCo = (𝑚 ∈ V, 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ {𝑐 ∈ (Base‘𝑚) ∣ ∃𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣)(𝑠 finSupp (0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣))})
4037, 38, 39ovmpox 7565 . 2 ((𝑀 ∈ V ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))} ∈ V) → (𝑀 LinCo 𝑉) = {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))})
412, 7, 10, 40syl3anc 1373 1 ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) = {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3061  {crab 3420  Vcvv 3464  𝒫 cpw 4580   class class class wbr 5124  cfv 6536  (class class class)co 7410  m cmap 8845   finSupp cfsupp 9378  Basecbs 17233  Scalarcsca 17279  0gc0g 17458   linC clinc 48360   LinCo clinco 48361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-lco 48363
This theorem is referenced by:  lcoval  48368  lco0  48383
  Copyright terms: Public domain W3C validator