| Metamath
Proof Explorer Theorem List (p. 472 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | alneu 47101 | If a statement holds for all sets, there is not a unique set for which the statement holds. (Contributed by Alexander van der Vekens, 28-Nov-2017.) |
| ⊢ (∀𝑥𝜑 → ¬ ∃!𝑥𝜑) | ||
| Theorem | eu2ndop1stv 47102* | If there is a unique second component in an ordered pair contained in a given set, the first component must be a set. (Contributed by Alexander van der Vekens, 29-Nov-2017.) |
| ⊢ (∃!𝑦〈𝐴, 𝑦〉 ∈ 𝑉 → 𝐴 ∈ V) | ||
| Theorem | dfateq12d 47103 | Equality deduction for "defined at". (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵)) | ||
| Theorem | nfdfat 47104 | Bound-variable hypothesis builder for "defined at". To prove a deduction version of this theorem is not easily possible because many deduction versions for bound-variable hypothesis builder for constructs the definition of "defined at" is based on are not available (e.g., for Fun/Rel, dom, ⊆, etc.). (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 | ||
| Theorem | dfdfat2 47105* | Alternate definition of the predicate "defined at" not using the Fun predicate. (Contributed by Alexander van der Vekens, 22-Jul-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦)) | ||
| Theorem | fundmdfat 47106 | A function is defined at any element of its domain. (Contributed by AV, 2-Sep-2022.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 𝐹 defAt 𝐴) | ||
| Theorem | dfatprc 47107 | A function is not defined at a proper class. (Contributed by AV, 1-Sep-2022.) |
| ⊢ (¬ 𝐴 ∈ V → ¬ 𝐹 defAt 𝐴) | ||
| Theorem | dfatelrn 47108 | The value of a function 𝐹 at a set 𝐴 is in the range of the function 𝐹 if 𝐹 is defined at 𝐴. (Contributed by AV, 1-Sep-2022.) |
| ⊢ (𝐹 defAt 𝐴 → (𝐹‘𝐴) ∈ ran 𝐹) | ||
| Theorem | dfafv2 47109 | Alternative definition of (𝐹'''𝐴) using (𝐹‘𝐴) directly. (Contributed by Alexander van der Vekens, 22-Jul-2017.) (Revised by AV, 25-Aug-2022.) |
| ⊢ (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) | ||
| Theorem | afveq12d 47110 | Equality deduction for function value, analogous to fveq12d 6882. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹'''𝐴) = (𝐺'''𝐵)) | ||
| Theorem | afveq1 47111 | Equality theorem for function value, analogous to fveq1 6874. (Contributed by Alexander van der Vekens, 22-Jul-2017.) |
| ⊢ (𝐹 = 𝐺 → (𝐹'''𝐴) = (𝐺'''𝐴)) | ||
| Theorem | afveq2 47112 | Equality theorem for function value, analogous to fveq1 6874. (Contributed by Alexander van der Vekens, 22-Jul-2017.) |
| ⊢ (𝐴 = 𝐵 → (𝐹'''𝐴) = (𝐹'''𝐵)) | ||
| Theorem | nfafv 47113 | Bound-variable hypothesis builder for function value, analogous to nffv 6885. To prove a deduction version of this analogous to nffvd 6887 is not easily possible because a deduction version of nfdfat 47104 cannot be shown easily. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥(𝐹'''𝐴) | ||
| Theorem | csbafv12g 47114 | Move class substitution in and out of a function value, analogous to csbfv12 6923, with a direct proof proposed by Mario Carneiro, analogous to csbov123 7447. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹'''𝐵) = (⦋𝐴 / 𝑥⦌𝐹'''⦋𝐴 / 𝑥⦌𝐵)) | ||
| Theorem | afvfundmfveq 47115 | If a class is a function restricted to a member of its domain, then the function value for this member is equal for both definitions. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹‘𝐴)) | ||
| Theorem | afvnfundmuv 47116 | If a set is not in the domain of a class or the class is not a function restricted to the set, then the function value for this set is the universe. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹'''𝐴) = V) | ||
| Theorem | ndmafv 47117 | The value of a class outside its domain is the universe, compare with ndmfv 6910. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = V) | ||
| Theorem | afvvdm 47118 | If the function value of a class for an argument is a set, the argument is contained in the domain of the class. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ ((𝐹'''𝐴) ∈ 𝐵 → 𝐴 ∈ dom 𝐹) | ||
| Theorem | nfunsnafv 47119 | If the restriction of a class to a singleton is not a function, its value is the universe, compare with nfunsn 6917. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹'''𝐴) = V) | ||
| Theorem | afvvfunressn 47120 | If the function value of a class for an argument is a set, the class restricted to the singleton of the argument is a function. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ ((𝐹'''𝐴) ∈ 𝐵 → Fun (𝐹 ↾ {𝐴})) | ||
| Theorem | afvprc 47121 | A function's value at a proper class is the universe, compare with fvprc 6867. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ (¬ 𝐴 ∈ V → (𝐹'''𝐴) = V) | ||
| Theorem | afvvv 47122 | If a function's value at an argument is a set, the argument is also a set. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ ((𝐹'''𝐴) ∈ 𝐵 → 𝐴 ∈ V) | ||
| Theorem | afvpcfv0 47123 | If the value of the alternative function at an argument is the universe, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ ((𝐹'''𝐴) = V → (𝐹‘𝐴) = ∅) | ||
| Theorem | afvnufveq 47124 | The value of the alternative function at a set as argument equals the function's value at this argument. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ ((𝐹'''𝐴) ≠ V → (𝐹'''𝐴) = (𝐹‘𝐴)) | ||
| Theorem | afvvfveq 47125 | The value of the alternative function at a set as argument equals the function's value at this argument. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ ((𝐹'''𝐴) ∈ 𝐵 → (𝐹'''𝐴) = (𝐹‘𝐴)) | ||
| Theorem | afv0fv0 47126 | If the value of the alternative function at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ ((𝐹'''𝐴) = ∅ → (𝐹‘𝐴) = ∅) | ||
| Theorem | afvfvn0fveq 47127 | If the function's value at an argument is not the empty set, it equals the value of the alternative function at this argument. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐹'''𝐴) = (𝐹‘𝐴)) | ||
| Theorem | afv0nbfvbi 47128 | The function's value at an argument is an element of a set if and only if the value of the alternative function at this argument is an element of that set, if the set does not contain the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ (∅ ∉ 𝐵 → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹‘𝐴) ∈ 𝐵)) | ||
| Theorem | afvfv0bi 47129 | The function's value at an argument is the empty set if and only if the value of the alternative function at this argument is either the empty set or the universe. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ ((𝐹‘𝐴) = ∅ ↔ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V)) | ||
| Theorem | afveu 47130* | The value of a function at a unique point, analogous to fveu 6864. (Contributed by Alexander van der Vekens, 29-Nov-2017.) |
| ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) | ||
| Theorem | fnbrafvb 47131 | Equivalence of function value and binary relation, analogous to fnbrfvb 6928. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) | ||
| Theorem | fnopafvb 47132 | Equivalence of function value and ordered pair membership, analogous to fnopfvb 6929. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ 〈𝐵, 𝐶〉 ∈ 𝐹)) | ||
| Theorem | funbrafvb 47133 | Equivalence of function value and binary relation, analogous to funbrfvb 6931. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹'''𝐴) = 𝐵 ↔ 𝐴𝐹𝐵)) | ||
| Theorem | funopafvb 47134 | Equivalence of function value and ordered pair membership, analogous to funopfvb 6932. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹'''𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹)) | ||
| Theorem | funbrafv 47135 | The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6926. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹'''𝐴) = 𝐵)) | ||
| Theorem | funbrafv2b 47136 | Function value in terms of a binary relation, analogous to funbrfv2b 6935. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹'''𝐴) = 𝐵))) | ||
| Theorem | dfafn5a 47137* | Representation of a function in terms of its values, analogous to dffn5 6936 (only one direction of implication!). (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥))) | ||
| Theorem | dfafn5b 47138* | Representation of a function in terms of its values, analogous to dffn5 6936 (only if it is assumed that the function value for each x is a set). (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)))) | ||
| Theorem | fnrnafv 47139* | The range of a function expressed as a collection of the function's values, analogous to fnrnfv 6937. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹'''𝑥)}) | ||
| Theorem | afvelrnb 47140* | A member of a function's range is a value of the function, analogous to fvelrnb 6938 with the additional requirement that the member must be a set. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝑉) → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵)) | ||
| Theorem | afvelrnb0 47141* | A member of a function's range is a value of the function, only one direction of implication of fvelrnb 6938. (Contributed by Alexander van der Vekens, 1-Jun-2017.) |
| ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝐵)) | ||
| Theorem | dfaimafn 47142* | Alternate definition of the image of a function, analogous to dfimafn 6940. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦}) | ||
| Theorem | dfaimafn2 47143* | Alternate definition of the image of a function as an indexed union of singletons of function values, analogous to dfimafn2 6941. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {(𝐹'''𝑥)}) | ||
| Theorem | afvelima 47144* | Function value in an image, analogous to fvelima 6943. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹'''𝑥) = 𝐴) | ||
| Theorem | afvelrn 47145 | A function's value belongs to its range, analogous to fvelrn 7065. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹'''𝐴) ∈ ran 𝐹) | ||
| Theorem | fnafvelrn 47146 | A function's value belongs to its range, analogous to fnfvelrn 7069. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹'''𝐵) ∈ ran 𝐹) | ||
| Theorem | fafvelcdm 47147 | A function's value belongs to its codomain, analogous to ffvelcdm 7070. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹'''𝐶) ∈ 𝐵) | ||
| Theorem | ffnafv 47148* | A function maps to a class to which all values belong, analogous to ffnfv 7108. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝐵)) | ||
| Theorem | afvres 47149 | The value of a restricted function, analogous to fvres 6894. (Contributed by Alexander van der Vekens, 22-Jul-2017.) |
| ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)'''𝐴) = (𝐹'''𝐴)) | ||
| Theorem | tz6.12-afv 47150* | Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27, analogous to tz6.12 6900. (Contributed by Alexander van der Vekens, 29-Nov-2017.) |
| ⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹'''𝐴) = 𝑦) | ||
| Theorem | tz6.12-1-afv 47151* | Function value (Theorem 6.12(1) of [TakeutiZaring] p. 27, analogous to tz6.12-1 6898. (Contributed by Alexander van der Vekens, 29-Nov-2017.) |
| ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹'''𝐴) = 𝑦) | ||
| Theorem | dmfcoafv 47152 | Domains of a function composition, analogous to dmfco 6974. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
| ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹 ∘ 𝐺) ↔ (𝐺'''𝐴) ∈ dom 𝐹)) | ||
| Theorem | afvco2 47153 | Value of a function composition, analogous to fvco2 6975. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
| ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺)'''𝑋) = (𝐹'''(𝐺'''𝑋))) | ||
| Theorem | rlimdmafv 47154 | Two ways to express that a function has a limit, analogous to rlimdm 15565. (Contributed by Alexander van der Vekens, 27-Nov-2017.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ⇝𝑟 ↔ 𝐹 ⇝𝑟 ( ⇝𝑟 '''𝐹))) | ||
| Theorem | aoveq123d 47155 | Equality deduction for operation value, analogous to oveq123d 7424. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ((𝐴𝐹𝐶)) = ((𝐵𝐺𝐷)) ) | ||
| Theorem | nfaov 47156 | Bound-variable hypothesis builder for operation value, analogous to nfov 7433. To prove a deduction version of this analogous to nfovd 7432 is not quickly possible because many deduction versions for bound-variable hypothesis builder for constructs the definition of alternative operation values is based on are not available (see nfafv 47113). (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 ((𝐴𝐹𝐵)) | ||
| Theorem | csbaovg 47157 | Move class substitution in and out of an operation. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ (𝐴 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌ ((𝐵𝐹𝐶)) = ((⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶)) ) | ||
| Theorem | aovfundmoveq 47158 | If a class is a function restricted to an ordered pair of its domain, then the value of the operation on this pair is equal for both definitions. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ (𝐹 defAt 〈𝐴, 𝐵〉 → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) | ||
| Theorem | aovnfundmuv 47159 | If an ordered pair is not in the domain of a class or the class is not a function restricted to the ordered pair, then the operation value for this pair is the universal class. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ (¬ 𝐹 defAt 〈𝐴, 𝐵〉 → ((𝐴𝐹𝐵)) = V) | ||
| Theorem | ndmaov 47160 | The value of an operation outside its domain, analogous to ndmafv 47117. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 → ((𝐴𝐹𝐵)) = V) | ||
| Theorem | ndmaovg 47161 | The value of an operation outside its domain, analogous to ndmovg 7588. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → ((𝐴𝐹𝐵)) = V) | ||
| Theorem | aovvdm 47162 | If the operation value of a class for an ordered pair is a set, the ordered pair is contained in the domain of the class. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝐶 → 〈𝐴, 𝐵〉 ∈ dom 𝐹) | ||
| Theorem | nfunsnaov 47163 | If the restriction of a class to a singleton is not a function, its operation value is the universal class. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ (¬ Fun (𝐹 ↾ {〈𝐴, 𝐵〉}) → ((𝐴𝐹𝐵)) = V) | ||
| Theorem | aovvfunressn 47164 | If the operation value of a class for an argument is a set, the class restricted to the singleton of the argument is a function. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝐶 → Fun (𝐹 ↾ {〈𝐴, 𝐵〉})) | ||
| Theorem | aovprc 47165 | The value of an operation when the one of the arguments is a proper class, analogous to ovprc 7441. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ Rel dom 𝐹 ⇒ ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴𝐹𝐵)) = V) | ||
| Theorem | aovrcl 47166 | Reverse closure for an operation value, analogous to afvvv 47122. In contrast to ovrcl 7444, elementhood of the operation's value in a set is required, not containing an element. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ Rel dom 𝐹 ⇒ ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝐶 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | aovpcov0 47167 | If the alternative value of the operation on an ordered pair is the universal class, the operation's value at this ordered pair is the empty set. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ ( ((𝐴𝐹𝐵)) = V → (𝐴𝐹𝐵) = ∅) | ||
| Theorem | aovnuoveq 47168 | The alternative value of the operation on an ordered pair equals the operation's value at this ordered pair. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ ( ((𝐴𝐹𝐵)) ≠ V → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) | ||
| Theorem | aovvoveq 47169 | The alternative value of the operation on an ordered pair equals the operation's value on this ordered pair. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝐶 → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) | ||
| Theorem | aov0ov0 47170 | If the alternative value of the operation on an ordered pair is the empty set, the operation's value at this ordered pair is the empty set. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ ( ((𝐴𝐹𝐵)) = ∅ → (𝐴𝐹𝐵) = ∅) | ||
| Theorem | aovovn0oveq 47171 | If the operation's value at an argument is not the empty set, it equals the value of the alternative operation at this argument. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ ((𝐴𝐹𝐵) ≠ ∅ → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) | ||
| Theorem | aov0nbovbi 47172 | The operation's value on an ordered pair is an element of a set if and only if the alternative value of the operation on this ordered pair is an element of that set, if the set does not contain the empty set. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ (∅ ∉ 𝐶 → ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶)) | ||
| Theorem | aovov0bi 47173 | The operation's value on an ordered pair is the empty set if and only if the alternative value of the operation on this ordered pair is either the empty set or the universal class. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ ((𝐴𝐹𝐵) = ∅ ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V)) | ||
| Theorem | rspceaov 47174* | A frequently used special case of rspc2ev 3614 for operation values, analogous to rspceov 7452. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = ((𝐶𝐹𝐷)) ) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = ((𝑥𝐹𝑦)) ) | ||
| Theorem | fnotaovb 47175 | Equivalence of operation value and ordered triple membership, analogous to fnopfvb 6929. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ( ((𝐶𝐹𝐷)) = 𝑅 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) | ||
| Theorem | ffnaov 47176* | An operation maps to a class to which all values belong, analogous to ffnov 7531. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶)) | ||
| Theorem | faovcl 47177 | Closure law for an operation, analogous to fovcl 7533. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝐶) | ||
| Theorem | aovmpt4g 47178* | Value of a function given by the maps-to notation, analogous to ovmpt4g 7552. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = 𝐶) | ||
| Theorem | aoprssdm 47179* | Domain of closure of an operation. In contrast to oprssdm 7586, no additional property for S (¬ ∅ ∈ 𝑆) is required! (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦)) ∈ 𝑆) ⇒ ⊢ (𝑆 × 𝑆) ⊆ dom 𝐹 | ||
| Theorem | ndmaovcl 47180 | The "closure" of an operation outside its domain, when the operation's value is a set in contrast to ndmovcl 7590 where it is required that the domain contains the empty set (∅ ∈ 𝑆). (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ dom 𝐹 = (𝑆 × 𝑆) & ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆) & ⊢ ((𝐴𝐹𝐵)) ∈ V ⇒ ⊢ ((𝐴𝐹𝐵)) ∈ 𝑆 | ||
| Theorem | ndmaovrcl 47181 | Reverse closure law, in contrast to ndmovrcl 7591 where it is required that the operation's domain doesn't contain the empty set (¬ ∅ ∈ 𝑆), no additional asumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ dom 𝐹 = (𝑆 × 𝑆) ⇒ ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) | ||
| Theorem | ndmaovcom 47182 | Any operation is commutative outside its domain, analogous to ndmovcom 7592. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ dom 𝐹 = (𝑆 × 𝑆) ⇒ ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) = ((𝐵𝐹𝐴)) ) | ||
| Theorem | ndmaovass 47183 | Any operation is associative outside its domain. In contrast to ndmovass 7593 where it is required that the operation's domain doesn't contain the empty set (¬ ∅ ∈ 𝑆), no additional assumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ dom 𝐹 = (𝑆 × 𝑆) ⇒ ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (( ((𝐴𝐹𝐵)) 𝐹𝐶)) = ((𝐴𝐹 ((𝐵𝐹𝐶)) )) ) | ||
| Theorem | ndmaovdistr 47184 | Any operation is distributive outside its domain. In contrast to ndmovdistr 7594 where it is required that the operation's domain doesn't contain the empty set (¬ ∅ ∈ 𝑆), no additional assumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ dom 𝐹 = (𝑆 × 𝑆) & ⊢ dom 𝐺 = (𝑆 × 𝑆) ⇒ ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ((𝐴𝐺 ((𝐵𝐹𝐶)) )) = (( ((𝐴𝐺𝐵)) 𝐹 ((𝐴𝐺𝐶)) )) ) | ||
In the following, a second approach is followed to define function values alternately to df-afv 47097. The current definition of the value (𝐹‘𝐴) of a function 𝐹 at an argument 𝐴 (see df-fv 6538) assures that this value is always a set, see fex 7217. This is because this definition can be applied to any classes 𝐹 and 𝐴, and evaluates to the empty set when it is not meaningful (as shown by ndmfv 6910 and fvprc 6867). "(𝐹‘𝐴) is meaningful" means "the class 𝐹 regarded as function is defined at the argument 𝐴" in this context. This is also expressed by 𝐹 defAt 𝐴, see df-dfat 47096. In the theory of partial functions, it is a common case that 𝐹 is not defined at 𝐴. Although it is very convenient for many theorems on functions and their proofs, there are some cases in which from (𝐹‘𝐴) = ∅ alone it cannot be decided/derived whether (𝐹‘𝐴) is meaningful (𝐹 is actually a function which is defined for 𝐴 and really has the function value ∅ at 𝐴) or not. Therefore, additional assumptions are required, such as ∅ ∉ ran 𝐹, ∅ ∈ ran 𝐹, 𝐹 defAt 𝐴, or Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 (see, for example, ndmfvrcl 6911). To avoid such an ambiguity, an alternative definition (𝐹''''𝐴) (see df-afv2 47186) would be possible which evaluates to a set not belonging to the range of 𝐹 ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) if it is not meaningful (see ndfatafv2 47188). We say "(𝐹''''𝐴) is not defined (or undefined)" if (𝐹''''𝐴) is not in the range of 𝐹 ((𝐹''''𝐴) ∉ ran 𝐹). Because of afv2ndefb 47201, this is equivalent to ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹. If (𝐹''''𝐴) is in the range of 𝐹 ((𝐹''''𝐴) ∈ ran 𝐹), we say that "(𝐹''''𝐴) is defined". If ran 𝐹 is a set, we can use the symbol Undef to express that (𝐹''''𝐴) is not defined: (𝐹''''𝐴) = (Undef‘ran 𝐹) (see ndfatafv2undef 47189). We could have used this symbol directly to define the alternate value of a function, which would have the advantage that (𝐹''''𝐴) would always be a set. But first this symbol is defined using the original function value, which would not make it possible to replace the original definition by the alternate definition, and second we would have to assume that ran 𝐹 ∈ V in most of the theorems. To summarize, that means (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹‘𝐴) = ∅ (see afv2ndeffv0 47237), but (𝐹‘𝐴) = ∅ → (𝐹''''𝐴) ∉ ran 𝐹 is not generally valid, see afv2fv0 47242. The alternate definition, however, corresponds to the current definition ((𝐹‘𝐴) = (𝐹''''𝐴)) if the function 𝐹 is defined at 𝐴 (see dfatafv2eqfv 47238). With this definition the following intuitive equivalence holds: (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹), see dfatafv2rnb 47204. An interesting question would be if (𝐹‘𝐴) could be replaced by (𝐹'''𝐴) in most of the theorems based on function values. If we look at the (currently 24) proofs using the definition df-fv 6538 of (𝐹‘𝐴), we see that analogues for the following 7 theorems can be proven using the alternative definition: fveq1 6874-> afv2eq1 47193, fveq2 6875-> afv2eq2 47194, nffv 6885-> nfafv2 47195, csbfv12 6923-> csbafv212g , rlimdm 15565-> rlimdmafv2 47235, tz6.12-1 6898-> tz6.12-1-afv2 47218, fveu 6864-> afv2eu 47215. Six theorems proved by directly using df-fv 6538 are within a mathbox (fvsb 44424, uncov 37571) or not used (rlimdmafv 47154, avril1 30390) or experimental (dfafv2 47109, dfafv22 47236). However, the remaining 11 theorems proved by directly using df-fv 6538 are used more or less often: * fvex 6888: used in about 1600 proofs: Only if the function is defined at the argument, or the range of the function/class is a set, analog theorems can be proven (dfatafv2ex 47190 resp. afv2ex 47191). All of these 1600 proofs have to be checked if one of these two theorems can be used instead of fvex 6888. * fvres 6894: used in about 400 proofs : Only if the function is defined at the argument, an analog theorem can be proven (afv2res 47216). In the undefined case such a theorem cannot exist (without additional assumptions), because the range of (𝐹 ↾ 𝐵) is mostly different from the range of 𝐹, and therefore also the "undefined" values are different. All of these 400 proofs have to be checked if afv2res 47216 can be used instead of fvres 6894. * tz6.12-2 6863 (-> tz6.12-2-afv2 47214): root theorem of many theorems which have not a strict analogue, and which are used many times: ** fvprc 6867 (-> afv2prc 47203), used in 193 proofs, ** tz6.12i 6903 (-> tz6.12i-afv2 47220), used - indirectly via fvbr0 6904 and fvrn0 6905 - in 19 proofs, and in fvclss 7232 used in fvclex 7955 used in fvresex 7956 (which is not used!) and in dcomex 10459 (used in 4 proofs), ** ndmfv 6910 (-> ndmafv2nrn ), used in 124 proofs ** nfunsn 6917 (-> nfunsnafv2 ), used by fvfundmfvn0 6918 (used in 3 proofs), and dffv2 6973 (not used) ** funpartfv 35909, setrec2lem1 49505 (mathboxes) * fv2 6870: only used by elfv 6873, which is only used by fv3 6893, which is not used. * dffv3 6871 (-> dfafv23 ): used by dffv4 6872 (the previous "df-fv"), which now is only used in mathboxes (csbfv12gALTVD 44871), by shftval 15091 (itself used in 11 proofs), by dffv5 35888 (mathbox) and by fvco2 6975 (-> afv2co2 47234). * fvopab5 7018: used only by ajval 30788 (not used) and by adjval 31817, which is used in adjval2 31818 (not used) and in adjbdln 32010 (used in 7 proofs). * zsum 15732: used (via isum 15733, sum0 15735, sumss 15738 and fsumsers 15742) in 76 proofs. * isumshft 15853: used in pserdv2 26390 (used in logtayl 26619, binomcxplemdvsum 44327) , eftlub 16125 (used in 4 proofs), binomcxplemnotnn0 44328 (used in binomcxp 44329 only) and logtayl 26619 (used in 4 proofs). * ovtpos 8238: used in 16 proofs. * zprod 15951: used in 3 proofs: iprod 15952, zprodn0 15953 and prodss 15961 * iprodclim3 16014: not used! As a result of this analysis we can say that the current definition of a function value is crucial for Metamath and cannot be exchanged easily with an alternative definition. While fv2 6870, dffv3 6871, fvopab5 7018, zsum 15732, isumshft 15853, ovtpos 8238 and zprod 15951 are not critical or are, hopefully, also valid for the alternative definition, fvex 6888, fvres 6894 and tz6.12-2 6863 (and the theorems based on them) are essential for the current definition of function values. | ||
| Syntax | cafv2 47185 | Extend the definition of a class to include the alternate function value. Read: "the value of 𝐹 at 𝐴 " or "𝐹 of 𝐴". For using several apostrophes as a symbol see comment for cafv 47094. |
| class (𝐹''''𝐴) | ||
| Definition | df-afv2 47186* | Alternate definition of the value of a function, (𝐹''''𝐴), also known as function application (and called "alternate function value" in the following). In contrast to (𝐹‘𝐴) = ∅ (see comment of df-fv 6538, and especially ndmfv 6910), (𝐹''''𝐴) is guaranteed not to be in the range of 𝐹 if 𝐹 is not defined at 𝐴 (whereas ∅ can be a member of ran 𝐹). (Contributed by AV, 2-Sep-2022.) |
| ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | ||
| Theorem | dfatafv2iota 47187* | If a function is defined at a class 𝐴 the alternate function value at 𝐴 is the unique value assigned to 𝐴 by the function (analogously to (𝐹‘𝐴)). (Contributed by AV, 2-Sep-2022.) |
| ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) | ||
| Theorem | ndfatafv2 47188 | The alternate function value at a class 𝐴 if the function is not defined at this set 𝐴. (Contributed by AV, 2-Sep-2022.) |
| ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) | ||
| Theorem | ndfatafv2undef 47189 | The alternate function value at a class 𝐴 is undefined if the function, whose range is a set, is not defined at 𝐴. (Contributed by AV, 2-Sep-2022.) |
| ⊢ ((ran 𝐹 ∈ 𝑉 ∧ ¬ 𝐹 defAt 𝐴) → (𝐹''''𝐴) = (Undef‘ran 𝐹)) | ||
| Theorem | dfatafv2ex 47190 | The alternate function value at a class 𝐴 is always a set if the function/class 𝐹 is defined at 𝐴. (Contributed by AV, 6-Sep-2022.) |
| ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V) | ||
| Theorem | afv2ex 47191 | The alternate function value is always a set if the range of the function is a set. (Contributed by AV, 2-Sep-2022.) |
| ⊢ (ran 𝐹 ∈ 𝑉 → (𝐹''''𝐴) ∈ V) | ||
| Theorem | afv2eq12d 47192 | Equality deduction for function value, analogous to fveq12d 6882. (Contributed by AV, 4-Sep-2022.) |
| ⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹''''𝐴) = (𝐺''''𝐵)) | ||
| Theorem | afv2eq1 47193 | Equality theorem for function value, analogous to fveq1 6874. (Contributed by AV, 4-Sep-2022.) |
| ⊢ (𝐹 = 𝐺 → (𝐹''''𝐴) = (𝐺''''𝐴)) | ||
| Theorem | afv2eq2 47194 | Equality theorem for function value, analogous to fveq2 6875. (Contributed by AV, 4-Sep-2022.) |
| ⊢ (𝐴 = 𝐵 → (𝐹''''𝐴) = (𝐹''''𝐵)) | ||
| Theorem | nfafv2 47195 | Bound-variable hypothesis builder for function value, analogous to nffv 6885. To prove a deduction version of this analogous to nffvd 6887 is not easily possible because a deduction version of nfdfat 47104 cannot be shown easily. (Contributed by AV, 4-Sep-2022.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥(𝐹''''𝐴) | ||
| Theorem | csbafv212g 47196 | Move class substitution in and out of a function value, analogous to csbfv12 6923, with a direct proof proposed by Mario Carneiro, analogous to csbov123 7447. (Contributed by AV, 4-Sep-2022.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹''''𝐵) = (⦋𝐴 / 𝑥⦌𝐹''''⦋𝐴 / 𝑥⦌𝐵)) | ||
| Theorem | fexafv2ex 47197 | The alternate function value is always a set if the function (resp. the domain of the function) is a set. (Contributed by AV, 3-Sep-2022.) |
| ⊢ (𝐹 ∈ 𝑉 → (𝐹''''𝐴) ∈ V) | ||
| Theorem | ndfatafv2nrn 47198 | The alternate function value at a class 𝐴 at which the function is not defined is undefined, i.e., not in the range of the function. (Contributed by AV, 2-Sep-2022.) |
| ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹) | ||
| Theorem | ndmafv2nrn 47199 | The value of a class outside its domain is not in the range, compare with ndmfv 6910. (Contributed by AV, 2-Sep-2022.) |
| ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹''''𝐴) ∉ ran 𝐹) | ||
| Theorem | funressndmafv2rn 47200 | The alternate function value at a class 𝐴 is defined, i.e., in the range of the function if the function is defined at 𝐴. (Contributed by AV, 2-Sep-2022.) |
| ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |