Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincop Structured version   Visualization version   GIF version

Theorem lincop 47659
Description: A linear combination as operation. (Contributed by AV, 30-Mar-2019.)
Assertion
Ref Expression
lincop (𝑀𝑋 → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))))
Distinct variable groups:   𝑀,𝑠,𝑣,𝑥   𝑣,𝑋
Allowed substitution hints:   𝑋(𝑥,𝑠)

Proof of Theorem lincop
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 df-linc 47657 . 2 linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑚)𝑥)))))
2 2fveq3 6901 . . . 4 (𝑚 = 𝑀 → (Base‘(Scalar‘𝑚)) = (Base‘(Scalar‘𝑀)))
32oveq1d 7434 . . 3 (𝑚 = 𝑀 → ((Base‘(Scalar‘𝑚)) ↑m 𝑣) = ((Base‘(Scalar‘𝑀)) ↑m 𝑣))
4 fveq2 6896 . . . 4 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
54pweqd 4621 . . 3 (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 (Base‘𝑀))
6 id 22 . . . 4 (𝑚 = 𝑀𝑚 = 𝑀)
7 fveq2 6896 . . . . . 6 (𝑚 = 𝑀 → ( ·𝑠𝑚) = ( ·𝑠𝑀))
87oveqd 7436 . . . . 5 (𝑚 = 𝑀 → ((𝑠𝑥)( ·𝑠𝑚)𝑥) = ((𝑠𝑥)( ·𝑠𝑀)𝑥))
98mpteq2dv 5251 . . . 4 (𝑚 = 𝑀 → (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑚)𝑥)) = (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))
106, 9oveq12d 7437 . . 3 (𝑚 = 𝑀 → (𝑚 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑚)𝑥))) = (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))
113, 5, 10mpoeq123dv 7495 . 2 (𝑚 = 𝑀 → (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑚)𝑥)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))))
12 elex 3480 . 2 (𝑀𝑋𝑀 ∈ V)
13 fvex 6909 . . . 4 (Base‘𝑀) ∈ V
1413pwex 5380 . . 3 𝒫 (Base‘𝑀) ∈ V
15 ovexd 7454 . . . 4 (𝑀𝑋 → ((Base‘(Scalar‘𝑀)) ↑m 𝑣) ∈ V)
1615ralrimivw 3139 . . 3 (𝑀𝑋 → ∀𝑣 ∈ 𝒫 (Base‘𝑀)((Base‘(Scalar‘𝑀)) ↑m 𝑣) ∈ V)
17 eqid 2725 . . . 4 (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))
1817mpoexxg2 47584 . . 3 ((𝒫 (Base‘𝑀) ∈ V ∧ ∀𝑣 ∈ 𝒫 (Base‘𝑀)((Base‘(Scalar‘𝑀)) ↑m 𝑣) ∈ V) → (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))) ∈ V)
1914, 16, 18sylancr 585 . 2 (𝑀𝑋 → (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))) ∈ V)
201, 11, 12, 19fvmptd3 7027 1 (𝑀𝑋 → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wral 3050  Vcvv 3461  𝒫 cpw 4604  cmpt 5232  cfv 6549  (class class class)co 7419  cmpo 7421  m cmap 8845  Basecbs 17183  Scalarcsca 17239   ·𝑠 cvsca 17240   Σg cgsu 17425   linC clinc 47655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-linc 47657
This theorem is referenced by:  lincval  47660
  Copyright terms: Public domain W3C validator