Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincop Structured version   Visualization version   GIF version

Theorem lincop 45749
Description: A linear combination as operation. (Contributed by AV, 30-Mar-2019.)
Assertion
Ref Expression
lincop (𝑀𝑋 → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))))
Distinct variable groups:   𝑀,𝑠,𝑣,𝑥   𝑣,𝑋
Allowed substitution hints:   𝑋(𝑥,𝑠)

Proof of Theorem lincop
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 df-linc 45747 . 2 linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑚)𝑥)))))
2 2fveq3 6779 . . . 4 (𝑚 = 𝑀 → (Base‘(Scalar‘𝑚)) = (Base‘(Scalar‘𝑀)))
32oveq1d 7290 . . 3 (𝑚 = 𝑀 → ((Base‘(Scalar‘𝑚)) ↑m 𝑣) = ((Base‘(Scalar‘𝑀)) ↑m 𝑣))
4 fveq2 6774 . . . 4 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
54pweqd 4552 . . 3 (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 (Base‘𝑀))
6 id 22 . . . 4 (𝑚 = 𝑀𝑚 = 𝑀)
7 fveq2 6774 . . . . . 6 (𝑚 = 𝑀 → ( ·𝑠𝑚) = ( ·𝑠𝑀))
87oveqd 7292 . . . . 5 (𝑚 = 𝑀 → ((𝑠𝑥)( ·𝑠𝑚)𝑥) = ((𝑠𝑥)( ·𝑠𝑀)𝑥))
98mpteq2dv 5176 . . . 4 (𝑚 = 𝑀 → (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑚)𝑥)) = (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))
106, 9oveq12d 7293 . . 3 (𝑚 = 𝑀 → (𝑚 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑚)𝑥))) = (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))
113, 5, 10mpoeq123dv 7350 . 2 (𝑚 = 𝑀 → (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑚)𝑥)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))))
12 elex 3450 . 2 (𝑀𝑋𝑀 ∈ V)
13 fvex 6787 . . . 4 (Base‘𝑀) ∈ V
1413pwex 5303 . . 3 𝒫 (Base‘𝑀) ∈ V
15 ovexd 7310 . . . 4 (𝑀𝑋 → ((Base‘(Scalar‘𝑀)) ↑m 𝑣) ∈ V)
1615ralrimivw 3104 . . 3 (𝑀𝑋 → ∀𝑣 ∈ 𝒫 (Base‘𝑀)((Base‘(Scalar‘𝑀)) ↑m 𝑣) ∈ V)
17 eqid 2738 . . . 4 (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))
1817mpoexxg2 45673 . . 3 ((𝒫 (Base‘𝑀) ∈ V ∧ ∀𝑣 ∈ 𝒫 (Base‘𝑀)((Base‘(Scalar‘𝑀)) ↑m 𝑣) ∈ V) → (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))) ∈ V)
1914, 16, 18sylancr 587 . 2 (𝑀𝑋 → (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))) ∈ V)
201, 11, 12, 19fvmptd3 6898 1 (𝑀𝑋 → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  𝒫 cpw 4533  cmpt 5157  cfv 6433  (class class class)co 7275  cmpo 7277  m cmap 8615  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966   Σg cgsu 17151   linC clinc 45745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-linc 45747
This theorem is referenced by:  lincval  45750
  Copyright terms: Public domain W3C validator