Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincop Structured version   Visualization version   GIF version

Theorem lincop 47137
Description: A linear combination as operation. (Contributed by AV, 30-Mar-2019.)
Assertion
Ref Expression
lincop (𝑀 ∈ 𝑋 β†’ ( linC β€˜π‘€) = (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘€) ↦ (𝑀 Ξ£g (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))))
Distinct variable groups:   𝑀,𝑠,𝑣,π‘₯   𝑣,𝑋
Allowed substitution hints:   𝑋(π‘₯,𝑠)

Proof of Theorem lincop
Dummy variable π‘š is distinct from all other variables.
StepHypRef Expression
1 df-linc 47135 . 2 linC = (π‘š ∈ V ↦ (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘š) ↦ (π‘š Ξ£g (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘š)π‘₯)))))
2 2fveq3 6897 . . . 4 (π‘š = 𝑀 β†’ (Baseβ€˜(Scalarβ€˜π‘š)) = (Baseβ€˜(Scalarβ€˜π‘€)))
32oveq1d 7424 . . 3 (π‘š = 𝑀 β†’ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣) = ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑣))
4 fveq2 6892 . . . 4 (π‘š = 𝑀 β†’ (Baseβ€˜π‘š) = (Baseβ€˜π‘€))
54pweqd 4620 . . 3 (π‘š = 𝑀 β†’ 𝒫 (Baseβ€˜π‘š) = 𝒫 (Baseβ€˜π‘€))
6 id 22 . . . 4 (π‘š = 𝑀 β†’ π‘š = 𝑀)
7 fveq2 6892 . . . . . 6 (π‘š = 𝑀 β†’ ( ·𝑠 β€˜π‘š) = ( ·𝑠 β€˜π‘€))
87oveqd 7426 . . . . 5 (π‘š = 𝑀 β†’ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘š)π‘₯) = ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))
98mpteq2dv 5251 . . . 4 (π‘š = 𝑀 β†’ (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘š)π‘₯)) = (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))
106, 9oveq12d 7427 . . 3 (π‘š = 𝑀 β†’ (π‘š Ξ£g (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘š)π‘₯))) = (𝑀 Ξ£g (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))))
113, 5, 10mpoeq123dv 7484 . 2 (π‘š = 𝑀 β†’ (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘š) ↦ (π‘š Ξ£g (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘š)π‘₯)))) = (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘€) ↦ (𝑀 Ξ£g (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))))
12 elex 3493 . 2 (𝑀 ∈ 𝑋 β†’ 𝑀 ∈ V)
13 fvex 6905 . . . 4 (Baseβ€˜π‘€) ∈ V
1413pwex 5379 . . 3 𝒫 (Baseβ€˜π‘€) ∈ V
15 ovexd 7444 . . . 4 (𝑀 ∈ 𝑋 β†’ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑣) ∈ V)
1615ralrimivw 3151 . . 3 (𝑀 ∈ 𝑋 β†’ βˆ€π‘£ ∈ 𝒫 (Baseβ€˜π‘€)((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑣) ∈ V)
17 eqid 2733 . . . 4 (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘€) ↦ (𝑀 Ξ£g (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))) = (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘€) ↦ (𝑀 Ξ£g (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯))))
1817mpoexxg2 47061 . . 3 ((𝒫 (Baseβ€˜π‘€) ∈ V ∧ βˆ€π‘£ ∈ 𝒫 (Baseβ€˜π‘€)((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑣) ∈ V) β†’ (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘€) ↦ (𝑀 Ξ£g (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))) ∈ V)
1914, 16, 18sylancr 588 . 2 (𝑀 ∈ 𝑋 β†’ (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘€) ↦ (𝑀 Ξ£g (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))) ∈ V)
201, 11, 12, 19fvmptd3 7022 1 (𝑀 ∈ 𝑋 β†’ ( linC β€˜π‘€) = (𝑠 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Baseβ€˜π‘€) ↦ (𝑀 Ξ£g (π‘₯ ∈ 𝑣 ↦ ((π‘ β€˜π‘₯)( ·𝑠 β€˜π‘€)π‘₯)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  Vcvv 3475  π’« cpw 4603   ↦ cmpt 5232  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411   ↑m cmap 8820  Basecbs 17144  Scalarcsca 17200   ·𝑠 cvsca 17201   Ξ£g cgsu 17386   linC clinc 47133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-linc 47135
This theorem is referenced by:  lincval  47138
  Copyright terms: Public domain W3C validator