Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincop Structured version   Visualization version   GIF version

Theorem lincop 48519
Description: A linear combination as operation. (Contributed by AV, 30-Mar-2019.)
Assertion
Ref Expression
lincop (𝑀𝑋 → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))))
Distinct variable groups:   𝑀,𝑠,𝑣,𝑥   𝑣,𝑋
Allowed substitution hints:   𝑋(𝑥,𝑠)

Proof of Theorem lincop
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 df-linc 48517 . 2 linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑚)𝑥)))))
2 2fveq3 6827 . . . 4 (𝑚 = 𝑀 → (Base‘(Scalar‘𝑚)) = (Base‘(Scalar‘𝑀)))
32oveq1d 7361 . . 3 (𝑚 = 𝑀 → ((Base‘(Scalar‘𝑚)) ↑m 𝑣) = ((Base‘(Scalar‘𝑀)) ↑m 𝑣))
4 fveq2 6822 . . . 4 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
54pweqd 4564 . . 3 (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 (Base‘𝑀))
6 id 22 . . . 4 (𝑚 = 𝑀𝑚 = 𝑀)
7 fveq2 6822 . . . . . 6 (𝑚 = 𝑀 → ( ·𝑠𝑚) = ( ·𝑠𝑀))
87oveqd 7363 . . . . 5 (𝑚 = 𝑀 → ((𝑠𝑥)( ·𝑠𝑚)𝑥) = ((𝑠𝑥)( ·𝑠𝑀)𝑥))
98mpteq2dv 5183 . . . 4 (𝑚 = 𝑀 → (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑚)𝑥)) = (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))
106, 9oveq12d 7364 . . 3 (𝑚 = 𝑀 → (𝑚 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑚)𝑥))) = (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))
113, 5, 10mpoeq123dv 7421 . 2 (𝑚 = 𝑀 → (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑚)𝑥)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))))
12 elex 3457 . 2 (𝑀𝑋𝑀 ∈ V)
13 fvex 6835 . . . 4 (Base‘𝑀) ∈ V
1413pwex 5316 . . 3 𝒫 (Base‘𝑀) ∈ V
15 ovexd 7381 . . . 4 (𝑀𝑋 → ((Base‘(Scalar‘𝑀)) ↑m 𝑣) ∈ V)
1615ralrimivw 3128 . . 3 (𝑀𝑋 → ∀𝑣 ∈ 𝒫 (Base‘𝑀)((Base‘(Scalar‘𝑀)) ↑m 𝑣) ∈ V)
17 eqid 2731 . . . 4 (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))
1817mpoexxg2 48448 . . 3 ((𝒫 (Base‘𝑀) ∈ V ∧ ∀𝑣 ∈ 𝒫 (Base‘𝑀)((Base‘(Scalar‘𝑀)) ↑m 𝑣) ∈ V) → (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))) ∈ V)
1914, 16, 18sylancr 587 . 2 (𝑀𝑋 → (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))) ∈ V)
201, 11, 12, 19fvmptd3 6952 1 (𝑀𝑋 → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  𝒫 cpw 4547  cmpt 5170  cfv 6481  (class class class)co 7346  cmpo 7348  m cmap 8750  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165   Σg cgsu 17344   linC clinc 48515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-linc 48517
This theorem is referenced by:  lincval  48520
  Copyright terms: Public domain W3C validator