| Step | Hyp | Ref
| Expression |
| 1 | | df-linc 48362 |
. 2
⊢ linC =
(𝑚 ∈ V ↦ (𝑠 ∈
((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑚)𝑥))))) |
| 2 | | 2fveq3 6886 |
. . . 4
⊢ (𝑚 = 𝑀 → (Base‘(Scalar‘𝑚)) =
(Base‘(Scalar‘𝑀))) |
| 3 | 2 | oveq1d 7425 |
. . 3
⊢ (𝑚 = 𝑀 → ((Base‘(Scalar‘𝑚)) ↑m 𝑣) =
((Base‘(Scalar‘𝑀)) ↑m 𝑣)) |
| 4 | | fveq2 6881 |
. . . 4
⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) |
| 5 | 4 | pweqd 4597 |
. . 3
⊢ (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 (Base‘𝑀)) |
| 6 | | id 22 |
. . . 4
⊢ (𝑚 = 𝑀 → 𝑚 = 𝑀) |
| 7 | | fveq2 6881 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (
·𝑠 ‘𝑚) = ( ·𝑠
‘𝑀)) |
| 8 | 7 | oveqd 7427 |
. . . . 5
⊢ (𝑚 = 𝑀 → ((𝑠‘𝑥)( ·𝑠
‘𝑚)𝑥) = ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥)) |
| 9 | 8 | mpteq2dv 5220 |
. . . 4
⊢ (𝑚 = 𝑀 → (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑚)𝑥)) = (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))) |
| 10 | 6, 9 | oveq12d 7428 |
. . 3
⊢ (𝑚 = 𝑀 → (𝑚 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑚)𝑥))) = (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 11 | 3, 5, 10 | mpoeq123dv 7487 |
. 2
⊢ (𝑚 = 𝑀 → (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑚)𝑥)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))))) |
| 12 | | elex 3485 |
. 2
⊢ (𝑀 ∈ 𝑋 → 𝑀 ∈ V) |
| 13 | | fvex 6894 |
. . . 4
⊢
(Base‘𝑀)
∈ V |
| 14 | 13 | pwex 5355 |
. . 3
⊢ 𝒫
(Base‘𝑀) ∈
V |
| 15 | | ovexd 7445 |
. . . 4
⊢ (𝑀 ∈ 𝑋 → ((Base‘(Scalar‘𝑀)) ↑m 𝑣) ∈ V) |
| 16 | 15 | ralrimivw 3137 |
. . 3
⊢ (𝑀 ∈ 𝑋 → ∀𝑣 ∈ 𝒫 (Base‘𝑀)((Base‘(Scalar‘𝑀)) ↑m 𝑣) ∈ V) |
| 17 | | eqid 2736 |
. . . 4
⊢ (𝑠 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 18 | 17 | mpoexxg2 48293 |
. . 3
⊢
((𝒫 (Base‘𝑀) ∈ V ∧ ∀𝑣 ∈ 𝒫 (Base‘𝑀)((Base‘(Scalar‘𝑀)) ↑m 𝑣) ∈ V) → (𝑠 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥)))) ∈ V) |
| 19 | 14, 16, 18 | sylancr 587 |
. 2
⊢ (𝑀 ∈ 𝑋 → (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥)))) ∈ V) |
| 20 | 1, 11, 12, 19 | fvmptd3 7014 |
1
⊢ (𝑀 ∈ 𝑋 → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑀)𝑥))))) |