Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincop Structured version   Visualization version   GIF version

Theorem lincop 44817
Description: A linear combination as operation. (Contributed by AV, 30-Mar-2019.)
Assertion
Ref Expression
lincop (𝑀𝑋 → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))))
Distinct variable groups:   𝑀,𝑠,𝑣,𝑥   𝑣,𝑋
Allowed substitution hints:   𝑋(𝑥,𝑠)

Proof of Theorem lincop
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 df-linc 44815 . 2 linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑚)𝑥)))))
2 2fveq3 6650 . . . 4 (𝑚 = 𝑀 → (Base‘(Scalar‘𝑚)) = (Base‘(Scalar‘𝑀)))
32oveq1d 7150 . . 3 (𝑚 = 𝑀 → ((Base‘(Scalar‘𝑚)) ↑m 𝑣) = ((Base‘(Scalar‘𝑀)) ↑m 𝑣))
4 fveq2 6645 . . . 4 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
54pweqd 4516 . . 3 (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 (Base‘𝑀))
6 id 22 . . . 4 (𝑚 = 𝑀𝑚 = 𝑀)
7 fveq2 6645 . . . . . 6 (𝑚 = 𝑀 → ( ·𝑠𝑚) = ( ·𝑠𝑀))
87oveqd 7152 . . . . 5 (𝑚 = 𝑀 → ((𝑠𝑥)( ·𝑠𝑚)𝑥) = ((𝑠𝑥)( ·𝑠𝑀)𝑥))
98mpteq2dv 5126 . . . 4 (𝑚 = 𝑀 → (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑚)𝑥)) = (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))
106, 9oveq12d 7153 . . 3 (𝑚 = 𝑀 → (𝑚 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑚)𝑥))) = (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))
113, 5, 10mpoeq123dv 7208 . 2 (𝑚 = 𝑀 → (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑚)𝑥)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))))
12 elex 3459 . 2 (𝑀𝑋𝑀 ∈ V)
13 fvex 6658 . . . 4 (Base‘𝑀) ∈ V
1413pwex 5246 . . 3 𝒫 (Base‘𝑀) ∈ V
15 ovexd 7170 . . . 4 (𝑀𝑋 → ((Base‘(Scalar‘𝑀)) ↑m 𝑣) ∈ V)
1615ralrimivw 3150 . . 3 (𝑀𝑋 → ∀𝑣 ∈ 𝒫 (Base‘𝑀)((Base‘(Scalar‘𝑀)) ↑m 𝑣) ∈ V)
17 eqid 2798 . . . 4 (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥))))
1817mpoexxg2 44739 . . 3 ((𝒫 (Base‘𝑀) ∈ V ∧ ∀𝑣 ∈ 𝒫 (Base‘𝑀)((Base‘(Scalar‘𝑀)) ↑m 𝑣) ∈ V) → (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))) ∈ V)
1914, 16, 18sylancr 590 . 2 (𝑀𝑋 → (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))) ∈ V)
201, 11, 12, 19fvmptd3 6768 1 (𝑀𝑋 → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑀)𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  𝒫 cpw 4497  cmpt 5110  cfv 6324  (class class class)co 7135  cmpo 7137  m cmap 8389  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561   Σg cgsu 16706   linC clinc 44813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-linc 44815
This theorem is referenced by:  lincval  44818
  Copyright terms: Public domain W3C validator