Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-ldual Structured version   Visualization version   GIF version

Definition df-ldual 37138
Description: Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in [Holland95] p. 218. This allows us to reuse our existing collection of left vector space theorems. The restriction on f (+g𝑣) allows it to be a set; see ofmres 7827. Note the operation reversal in the scalar product to allow us to use the original scalar ring instead of the oppr ring, for convenience. (Contributed by NM, 18-Oct-2014.)
Assertion
Ref Expression
df-ldual LDual = (𝑣 ∈ V ↦ ({⟨(Base‘ndx), (LFnl‘𝑣)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑣))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))⟩}))
Distinct variable group:   𝑣,𝑘,𝑓

Detailed syntax breakdown of Definition df-ldual
StepHypRef Expression
1 cld 37137 . 2 class LDual
2 vv . . 3 setvar 𝑣
3 cvv 3432 . . 3 class V
4 cnx 16894 . . . . . . 7 class ndx
5 cbs 16912 . . . . . . 7 class Base
64, 5cfv 6433 . . . . . 6 class (Base‘ndx)
72cv 1538 . . . . . . 7 class 𝑣
8 clfn 37071 . . . . . . 7 class LFnl
97, 8cfv 6433 . . . . . 6 class (LFnl‘𝑣)
106, 9cop 4567 . . . . 5 class ⟨(Base‘ndx), (LFnl‘𝑣)⟩
11 cplusg 16962 . . . . . . 7 class +g
124, 11cfv 6433 . . . . . 6 class (+g‘ndx)
13 csca 16965 . . . . . . . . . 10 class Scalar
147, 13cfv 6433 . . . . . . . . 9 class (Scalar‘𝑣)
1514, 11cfv 6433 . . . . . . . 8 class (+g‘(Scalar‘𝑣))
1615cof 7531 . . . . . . 7 class f (+g‘(Scalar‘𝑣))
179, 9cxp 5587 . . . . . . 7 class ((LFnl‘𝑣) × (LFnl‘𝑣))
1816, 17cres 5591 . . . . . 6 class ( ∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))
1912, 18cop 4567 . . . . 5 class ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))⟩
204, 13cfv 6433 . . . . . 6 class (Scalar‘ndx)
21 coppr 19861 . . . . . . 7 class oppr
2214, 21cfv 6433 . . . . . 6 class (oppr‘(Scalar‘𝑣))
2320, 22cop 4567 . . . . 5 class ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑣))⟩
2410, 19, 23ctp 4565 . . . 4 class {⟨(Base‘ndx), (LFnl‘𝑣)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑣))⟩}
25 cvsca 16966 . . . . . . 7 class ·𝑠
264, 25cfv 6433 . . . . . 6 class ( ·𝑠 ‘ndx)
27 vk . . . . . . 7 setvar 𝑘
28 vf . . . . . . 7 setvar 𝑓
2914, 5cfv 6433 . . . . . . 7 class (Base‘(Scalar‘𝑣))
3028cv 1538 . . . . . . . 8 class 𝑓
317, 5cfv 6433 . . . . . . . . 9 class (Base‘𝑣)
3227cv 1538 . . . . . . . . . 10 class 𝑘
3332csn 4561 . . . . . . . . 9 class {𝑘}
3431, 33cxp 5587 . . . . . . . 8 class ((Base‘𝑣) × {𝑘})
35 cmulr 16963 . . . . . . . . . 10 class .r
3614, 35cfv 6433 . . . . . . . . 9 class (.r‘(Scalar‘𝑣))
3736cof 7531 . . . . . . . 8 class f (.r‘(Scalar‘𝑣))
3830, 34, 37co 7275 . . . . . . 7 class (𝑓f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘}))
3927, 28, 29, 9, 38cmpo 7277 . . . . . 6 class (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))
4026, 39cop 4567 . . . . 5 class ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))⟩
4140csn 4561 . . . 4 class {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))⟩}
4224, 41cun 3885 . . 3 class ({⟨(Base‘ndx), (LFnl‘𝑣)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑣))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))⟩})
432, 3, 42cmpt 5157 . 2 class (𝑣 ∈ V ↦ ({⟨(Base‘ndx), (LFnl‘𝑣)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑣))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))⟩}))
441, 43wceq 1539 1 wff LDual = (𝑣 ∈ V ↦ ({⟨(Base‘ndx), (LFnl‘𝑣)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑣))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))⟩}))
Colors of variables: wff setvar class
This definition is referenced by:  ldualset  37139
  Copyright terms: Public domain W3C validator