Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-ldual Structured version   Visualization version   GIF version

Definition df-ldual 37065
Description: Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in [Holland95] p. 218. This allows us to reuse our existing collection of left vector space theorems. The restriction on f (+g𝑣) allows it to be a set; see ofmres 7800. Note the operation reversal in the scalar product to allow us to use the original scalar ring instead of the oppr ring, for convenience. (Contributed by NM, 18-Oct-2014.)
Assertion
Ref Expression
df-ldual LDual = (𝑣 ∈ V ↦ ({⟨(Base‘ndx), (LFnl‘𝑣)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑣))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))⟩}))
Distinct variable group:   𝑣,𝑘,𝑓

Detailed syntax breakdown of Definition df-ldual
StepHypRef Expression
1 cld 37064 . 2 class LDual
2 vv . . 3 setvar 𝑣
3 cvv 3422 . . 3 class V
4 cnx 16822 . . . . . . 7 class ndx
5 cbs 16840 . . . . . . 7 class Base
64, 5cfv 6418 . . . . . 6 class (Base‘ndx)
72cv 1538 . . . . . . 7 class 𝑣
8 clfn 36998 . . . . . . 7 class LFnl
97, 8cfv 6418 . . . . . 6 class (LFnl‘𝑣)
106, 9cop 4564 . . . . 5 class ⟨(Base‘ndx), (LFnl‘𝑣)⟩
11 cplusg 16888 . . . . . . 7 class +g
124, 11cfv 6418 . . . . . 6 class (+g‘ndx)
13 csca 16891 . . . . . . . . . 10 class Scalar
147, 13cfv 6418 . . . . . . . . 9 class (Scalar‘𝑣)
1514, 11cfv 6418 . . . . . . . 8 class (+g‘(Scalar‘𝑣))
1615cof 7509 . . . . . . 7 class f (+g‘(Scalar‘𝑣))
179, 9cxp 5578 . . . . . . 7 class ((LFnl‘𝑣) × (LFnl‘𝑣))
1816, 17cres 5582 . . . . . 6 class ( ∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))
1912, 18cop 4564 . . . . 5 class ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))⟩
204, 13cfv 6418 . . . . . 6 class (Scalar‘ndx)
21 coppr 19776 . . . . . . 7 class oppr
2214, 21cfv 6418 . . . . . 6 class (oppr‘(Scalar‘𝑣))
2320, 22cop 4564 . . . . 5 class ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑣))⟩
2410, 19, 23ctp 4562 . . . 4 class {⟨(Base‘ndx), (LFnl‘𝑣)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑣))⟩}
25 cvsca 16892 . . . . . . 7 class ·𝑠
264, 25cfv 6418 . . . . . 6 class ( ·𝑠 ‘ndx)
27 vk . . . . . . 7 setvar 𝑘
28 vf . . . . . . 7 setvar 𝑓
2914, 5cfv 6418 . . . . . . 7 class (Base‘(Scalar‘𝑣))
3028cv 1538 . . . . . . . 8 class 𝑓
317, 5cfv 6418 . . . . . . . . 9 class (Base‘𝑣)
3227cv 1538 . . . . . . . . . 10 class 𝑘
3332csn 4558 . . . . . . . . 9 class {𝑘}
3431, 33cxp 5578 . . . . . . . 8 class ((Base‘𝑣) × {𝑘})
35 cmulr 16889 . . . . . . . . . 10 class .r
3614, 35cfv 6418 . . . . . . . . 9 class (.r‘(Scalar‘𝑣))
3736cof 7509 . . . . . . . 8 class f (.r‘(Scalar‘𝑣))
3830, 34, 37co 7255 . . . . . . 7 class (𝑓f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘}))
3927, 28, 29, 9, 38cmpo 7257 . . . . . 6 class (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))
4026, 39cop 4564 . . . . 5 class ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))⟩
4140csn 4558 . . . 4 class {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))⟩}
4224, 41cun 3881 . . 3 class ({⟨(Base‘ndx), (LFnl‘𝑣)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑣))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))⟩})
432, 3, 42cmpt 5153 . 2 class (𝑣 ∈ V ↦ ({⟨(Base‘ndx), (LFnl‘𝑣)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑣))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))⟩}))
441, 43wceq 1539 1 wff LDual = (𝑣 ∈ V ↦ ({⟨(Base‘ndx), (LFnl‘𝑣)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑣))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))⟩}))
Colors of variables: wff setvar class
This definition is referenced by:  ldualset  37066
  Copyright terms: Public domain W3C validator