Detailed syntax breakdown of Definition df-ldual
Step | Hyp | Ref
| Expression |
1 | | cld 37137 |
. 2
class
LDual |
2 | | vv |
. . 3
setvar 𝑣 |
3 | | cvv 3432 |
. . 3
class
V |
4 | | cnx 16894 |
. . . . . . 7
class
ndx |
5 | | cbs 16912 |
. . . . . . 7
class
Base |
6 | 4, 5 | cfv 6433 |
. . . . . 6
class
(Base‘ndx) |
7 | 2 | cv 1538 |
. . . . . . 7
class 𝑣 |
8 | | clfn 37071 |
. . . . . . 7
class
LFnl |
9 | 7, 8 | cfv 6433 |
. . . . . 6
class
(LFnl‘𝑣) |
10 | 6, 9 | cop 4567 |
. . . . 5
class
〈(Base‘ndx), (LFnl‘𝑣)〉 |
11 | | cplusg 16962 |
. . . . . . 7
class
+g |
12 | 4, 11 | cfv 6433 |
. . . . . 6
class
(+g‘ndx) |
13 | | csca 16965 |
. . . . . . . . . 10
class
Scalar |
14 | 7, 13 | cfv 6433 |
. . . . . . . . 9
class
(Scalar‘𝑣) |
15 | 14, 11 | cfv 6433 |
. . . . . . . 8
class
(+g‘(Scalar‘𝑣)) |
16 | 15 | cof 7531 |
. . . . . . 7
class
∘f (+g‘(Scalar‘𝑣)) |
17 | 9, 9 | cxp 5587 |
. . . . . . 7
class
((LFnl‘𝑣)
× (LFnl‘𝑣)) |
18 | 16, 17 | cres 5591 |
. . . . . 6
class (
∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣))) |
19 | 12, 18 | cop 4567 |
. . . . 5
class
〈(+g‘ndx), ( ∘f
(+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))〉 |
20 | 4, 13 | cfv 6433 |
. . . . . 6
class
(Scalar‘ndx) |
21 | | coppr 19861 |
. . . . . . 7
class
oppr |
22 | 14, 21 | cfv 6433 |
. . . . . 6
class
(oppr‘(Scalar‘𝑣)) |
23 | 20, 22 | cop 4567 |
. . . . 5
class
〈(Scalar‘ndx),
(oppr‘(Scalar‘𝑣))〉 |
24 | 10, 19, 23 | ctp 4565 |
. . . 4
class
{〈(Base‘ndx), (LFnl‘𝑣)〉, 〈(+g‘ndx), (
∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))〉, 〈(Scalar‘ndx),
(oppr‘(Scalar‘𝑣))〉} |
25 | | cvsca 16966 |
. . . . . . 7
class
·𝑠 |
26 | 4, 25 | cfv 6433 |
. . . . . 6
class (
·𝑠 ‘ndx) |
27 | | vk |
. . . . . . 7
setvar 𝑘 |
28 | | vf |
. . . . . . 7
setvar 𝑓 |
29 | 14, 5 | cfv 6433 |
. . . . . . 7
class
(Base‘(Scalar‘𝑣)) |
30 | 28 | cv 1538 |
. . . . . . . 8
class 𝑓 |
31 | 7, 5 | cfv 6433 |
. . . . . . . . 9
class
(Base‘𝑣) |
32 | 27 | cv 1538 |
. . . . . . . . . 10
class 𝑘 |
33 | 32 | csn 4561 |
. . . . . . . . 9
class {𝑘} |
34 | 31, 33 | cxp 5587 |
. . . . . . . 8
class
((Base‘𝑣)
× {𝑘}) |
35 | | cmulr 16963 |
. . . . . . . . . 10
class
.r |
36 | 14, 35 | cfv 6433 |
. . . . . . . . 9
class
(.r‘(Scalar‘𝑣)) |
37 | 36 | cof 7531 |
. . . . . . . 8
class
∘f (.r‘(Scalar‘𝑣)) |
38 | 30, 34, 37 | co 7275 |
. . . . . . 7
class (𝑓 ∘f
(.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})) |
39 | 27, 28, 29, 9, 38 | cmpo 7277 |
. . . . . 6
class (𝑘 ∈
(Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓 ∘f
(.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘}))) |
40 | 26, 39 | cop 4567 |
. . . . 5
class 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓 ∘f
(.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))〉 |
41 | 40 | csn 4561 |
. . . 4
class {〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓 ∘f
(.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))〉} |
42 | 24, 41 | cun 3885 |
. . 3
class
({〈(Base‘ndx), (LFnl‘𝑣)〉, 〈(+g‘ndx), (
∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))〉, 〈(Scalar‘ndx),
(oppr‘(Scalar‘𝑣))〉} ∪ {〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓 ∘f
(.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))〉}) |
43 | 2, 3, 42 | cmpt 5157 |
. 2
class (𝑣 ∈ V ↦
({〈(Base‘ndx), (LFnl‘𝑣)〉, 〈(+g‘ndx), (
∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))〉, 〈(Scalar‘ndx),
(oppr‘(Scalar‘𝑣))〉} ∪ {〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓 ∘f
(.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))〉})) |
44 | 1, 43 | wceq 1539 |
1
wff LDual =
(𝑣 ∈ V ↦
({〈(Base‘ndx), (LFnl‘𝑣)〉, 〈(+g‘ndx), (
∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))〉, 〈(Scalar‘ndx),
(oppr‘(Scalar‘𝑣))〉} ∪ {〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓 ∘f
(.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))〉})) |