Detailed syntax breakdown of Definition df-ldual
| Step | Hyp | Ref
| Expression |
| 1 | | cld 39146 |
. 2
class
LDual |
| 2 | | vv |
. . 3
setvar 𝑣 |
| 3 | | cvv 3464 |
. . 3
class
V |
| 4 | | cnx 17217 |
. . . . . . 7
class
ndx |
| 5 | | cbs 17233 |
. . . . . . 7
class
Base |
| 6 | 4, 5 | cfv 6536 |
. . . . . 6
class
(Base‘ndx) |
| 7 | 2 | cv 1539 |
. . . . . . 7
class 𝑣 |
| 8 | | clfn 39080 |
. . . . . . 7
class
LFnl |
| 9 | 7, 8 | cfv 6536 |
. . . . . 6
class
(LFnl‘𝑣) |
| 10 | 6, 9 | cop 4612 |
. . . . 5
class
〈(Base‘ndx), (LFnl‘𝑣)〉 |
| 11 | | cplusg 17276 |
. . . . . . 7
class
+g |
| 12 | 4, 11 | cfv 6536 |
. . . . . 6
class
(+g‘ndx) |
| 13 | | csca 17279 |
. . . . . . . . . 10
class
Scalar |
| 14 | 7, 13 | cfv 6536 |
. . . . . . . . 9
class
(Scalar‘𝑣) |
| 15 | 14, 11 | cfv 6536 |
. . . . . . . 8
class
(+g‘(Scalar‘𝑣)) |
| 16 | 15 | cof 7674 |
. . . . . . 7
class
∘f (+g‘(Scalar‘𝑣)) |
| 17 | 9, 9 | cxp 5657 |
. . . . . . 7
class
((LFnl‘𝑣)
× (LFnl‘𝑣)) |
| 18 | 16, 17 | cres 5661 |
. . . . . 6
class (
∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣))) |
| 19 | 12, 18 | cop 4612 |
. . . . 5
class
〈(+g‘ndx), ( ∘f
(+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))〉 |
| 20 | 4, 13 | cfv 6536 |
. . . . . 6
class
(Scalar‘ndx) |
| 21 | | coppr 20301 |
. . . . . . 7
class
oppr |
| 22 | 14, 21 | cfv 6536 |
. . . . . 6
class
(oppr‘(Scalar‘𝑣)) |
| 23 | 20, 22 | cop 4612 |
. . . . 5
class
〈(Scalar‘ndx),
(oppr‘(Scalar‘𝑣))〉 |
| 24 | 10, 19, 23 | ctp 4610 |
. . . 4
class
{〈(Base‘ndx), (LFnl‘𝑣)〉, 〈(+g‘ndx), (
∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))〉, 〈(Scalar‘ndx),
(oppr‘(Scalar‘𝑣))〉} |
| 25 | | cvsca 17280 |
. . . . . . 7
class
·𝑠 |
| 26 | 4, 25 | cfv 6536 |
. . . . . 6
class (
·𝑠 ‘ndx) |
| 27 | | vk |
. . . . . . 7
setvar 𝑘 |
| 28 | | vf |
. . . . . . 7
setvar 𝑓 |
| 29 | 14, 5 | cfv 6536 |
. . . . . . 7
class
(Base‘(Scalar‘𝑣)) |
| 30 | 28 | cv 1539 |
. . . . . . . 8
class 𝑓 |
| 31 | 7, 5 | cfv 6536 |
. . . . . . . . 9
class
(Base‘𝑣) |
| 32 | 27 | cv 1539 |
. . . . . . . . . 10
class 𝑘 |
| 33 | 32 | csn 4606 |
. . . . . . . . 9
class {𝑘} |
| 34 | 31, 33 | cxp 5657 |
. . . . . . . 8
class
((Base‘𝑣)
× {𝑘}) |
| 35 | | cmulr 17277 |
. . . . . . . . . 10
class
.r |
| 36 | 14, 35 | cfv 6536 |
. . . . . . . . 9
class
(.r‘(Scalar‘𝑣)) |
| 37 | 36 | cof 7674 |
. . . . . . . 8
class
∘f (.r‘(Scalar‘𝑣)) |
| 38 | 30, 34, 37 | co 7410 |
. . . . . . 7
class (𝑓 ∘f
(.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})) |
| 39 | 27, 28, 29, 9, 38 | cmpo 7412 |
. . . . . 6
class (𝑘 ∈
(Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓 ∘f
(.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘}))) |
| 40 | 26, 39 | cop 4612 |
. . . . 5
class 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓 ∘f
(.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))〉 |
| 41 | 40 | csn 4606 |
. . . 4
class {〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓 ∘f
(.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))〉} |
| 42 | 24, 41 | cun 3929 |
. . 3
class
({〈(Base‘ndx), (LFnl‘𝑣)〉, 〈(+g‘ndx), (
∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))〉, 〈(Scalar‘ndx),
(oppr‘(Scalar‘𝑣))〉} ∪ {〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓 ∘f
(.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))〉}) |
| 43 | 2, 3, 42 | cmpt 5206 |
. 2
class (𝑣 ∈ V ↦
({〈(Base‘ndx), (LFnl‘𝑣)〉, 〈(+g‘ndx), (
∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))〉, 〈(Scalar‘ndx),
(oppr‘(Scalar‘𝑣))〉} ∪ {〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓 ∘f
(.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))〉})) |
| 44 | 1, 43 | wceq 1540 |
1
wff LDual =
(𝑣 ∈ V ↦
({〈(Base‘ndx), (LFnl‘𝑣)〉, 〈(+g‘ndx), (
∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))〉, 〈(Scalar‘ndx),
(oppr‘(Scalar‘𝑣))〉} ∪ {〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓 ∘f
(.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))〉})) |