Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualset Structured version   Visualization version   GIF version

Theorem ldualset 39081
Description: Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in [Holland95] p. 218. This allows to reuse our existing collection of left vector space theorems. Note the operation reversal in the scalar product to allow to use the original scalar ring instead of the oppr ring, for convenience. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualset.v 𝑉 = (Base‘𝑊)
ldualset.a + = (+g𝑅)
ldualset.p = ( ∘f + ↾ (𝐹 × 𝐹))
ldualset.f 𝐹 = (LFnl‘𝑊)
ldualset.d 𝐷 = (LDual‘𝑊)
ldualset.r 𝑅 = (Scalar‘𝑊)
ldualset.k 𝐾 = (Base‘𝑅)
ldualset.t · = (.r𝑅)
ldualset.o 𝑂 = (oppr𝑅)
ldualset.s = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f · (𝑉 × {𝑘})))
ldualset.w (𝜑𝑊𝑋)
Assertion
Ref Expression
ldualset (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
Distinct variable group:   𝑓,𝑘,𝑊
Allowed substitution hints:   𝜑(𝑓,𝑘)   𝐷(𝑓,𝑘)   + (𝑓,𝑘)   (𝑓,𝑘)   𝑅(𝑓,𝑘)   (𝑓,𝑘)   · (𝑓,𝑘)   𝐹(𝑓,𝑘)   𝐾(𝑓,𝑘)   𝑂(𝑓,𝑘)   𝑉(𝑓,𝑘)   𝑋(𝑓,𝑘)

Proof of Theorem ldualset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ldualset.w . 2 (𝜑𝑊𝑋)
2 elex 3509 . 2 (𝑊𝑋𝑊 ∈ V)
3 ldualset.d . . 3 𝐷 = (LDual‘𝑊)
4 fveq2 6920 . . . . . . . 8 (𝑤 = 𝑊 → (LFnl‘𝑤) = (LFnl‘𝑊))
5 ldualset.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
64, 5eqtr4di 2798 . . . . . . 7 (𝑤 = 𝑊 → (LFnl‘𝑤) = 𝐹)
76opeq2d 4904 . . . . . 6 (𝑤 = 𝑊 → ⟨(Base‘ndx), (LFnl‘𝑤)⟩ = ⟨(Base‘ndx), 𝐹⟩)
8 fveq2 6920 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
9 ldualset.r . . . . . . . . . . . . 13 𝑅 = (Scalar‘𝑊)
108, 9eqtr4di 2798 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝑅)
1110fveq2d 6924 . . . . . . . . . . 11 (𝑤 = 𝑊 → (+g‘(Scalar‘𝑤)) = (+g𝑅))
12 ldualset.a . . . . . . . . . . 11 + = (+g𝑅)
1311, 12eqtr4di 2798 . . . . . . . . . 10 (𝑤 = 𝑊 → (+g‘(Scalar‘𝑤)) = + )
1413ofeqd 7716 . . . . . . . . 9 (𝑤 = 𝑊 → ∘f (+g‘(Scalar‘𝑤)) = ∘f + )
156sqxpeqd 5732 . . . . . . . . 9 (𝑤 = 𝑊 → ((LFnl‘𝑤) × (LFnl‘𝑤)) = (𝐹 × 𝐹))
1614, 15reseq12d 6010 . . . . . . . 8 (𝑤 = 𝑊 → ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤))) = ( ∘f + ↾ (𝐹 × 𝐹)))
17 ldualset.p . . . . . . . 8 = ( ∘f + ↾ (𝐹 × 𝐹))
1816, 17eqtr4di 2798 . . . . . . 7 (𝑤 = 𝑊 → ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤))) = )
1918opeq2d 4904 . . . . . 6 (𝑤 = 𝑊 → ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤)))⟩ = ⟨(+g‘ndx), ⟩)
2010fveq2d 6924 . . . . . . . 8 (𝑤 = 𝑊 → (oppr‘(Scalar‘𝑤)) = (oppr𝑅))
21 ldualset.o . . . . . . . 8 𝑂 = (oppr𝑅)
2220, 21eqtr4di 2798 . . . . . . 7 (𝑤 = 𝑊 → (oppr‘(Scalar‘𝑤)) = 𝑂)
2322opeq2d 4904 . . . . . 6 (𝑤 = 𝑊 → ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑤))⟩ = ⟨(Scalar‘ndx), 𝑂⟩)
247, 19, 23tpeq123d 4773 . . . . 5 (𝑤 = 𝑊 → {⟨(Base‘ndx), (LFnl‘𝑤)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑤))⟩} = {⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩})
2510fveq2d 6924 . . . . . . . . . 10 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝑅))
26 ldualset.k . . . . . . . . . 10 𝐾 = (Base‘𝑅)
2725, 26eqtr4di 2798 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾)
2810fveq2d 6924 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (.r‘(Scalar‘𝑤)) = (.r𝑅))
29 ldualset.t . . . . . . . . . . . 12 · = (.r𝑅)
3028, 29eqtr4di 2798 . . . . . . . . . . 11 (𝑤 = 𝑊 → (.r‘(Scalar‘𝑤)) = · )
3130ofeqd 7716 . . . . . . . . . 10 (𝑤 = 𝑊 → ∘f (.r‘(Scalar‘𝑤)) = ∘f · )
32 eqidd 2741 . . . . . . . . . 10 (𝑤 = 𝑊𝑓 = 𝑓)
33 fveq2 6920 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
34 ldualset.v . . . . . . . . . . . 12 𝑉 = (Base‘𝑊)
3533, 34eqtr4di 2798 . . . . . . . . . . 11 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
3635xpeq1d 5729 . . . . . . . . . 10 (𝑤 = 𝑊 → ((Base‘𝑤) × {𝑘}) = (𝑉 × {𝑘}))
3731, 32, 36oveq123d 7469 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})) = (𝑓f · (𝑉 × {𝑘})))
3827, 6, 37mpoeq123dv 7525 . . . . . . . 8 (𝑤 = 𝑊 → (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘}))) = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f · (𝑉 × {𝑘}))))
39 ldualset.s . . . . . . . 8 = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f · (𝑉 × {𝑘})))
4038, 39eqtr4di 2798 . . . . . . 7 (𝑤 = 𝑊 → (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘}))) = )
4140opeq2d 4904 . . . . . 6 (𝑤 = 𝑊 → ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})))⟩ = ⟨( ·𝑠 ‘ndx), ⟩)
4241sneqd 4660 . . . . 5 (𝑤 = 𝑊 → {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})))⟩} = {⟨( ·𝑠 ‘ndx), ⟩})
4324, 42uneq12d 4192 . . . 4 (𝑤 = 𝑊 → ({⟨(Base‘ndx), (LFnl‘𝑤)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑤))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
44 df-ldual 39080 . . . 4 LDual = (𝑤 ∈ V ↦ ({⟨(Base‘ndx), (LFnl‘𝑤)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑤))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})))⟩}))
45 tpex 7781 . . . . 5 {⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∈ V
46 snex 5451 . . . . 5 {⟨( ·𝑠 ‘ndx), ⟩} ∈ V
4745, 46unex 7779 . . . 4 ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}) ∈ V
4843, 44, 47fvmpt 7029 . . 3 (𝑊 ∈ V → (LDual‘𝑊) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
493, 48eqtrid 2792 . 2 (𝑊 ∈ V → 𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
501, 2, 493syl 18 1 (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  {csn 4648  {ctp 4652  cop 4654   × cxp 5698  cres 5702  cfv 6573  (class class class)co 7448  cmpo 7450  f cof 7712  ndxcnx 17240  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  opprcoppr 20359  LFnlclfn 39013  LDualcld 39079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ldual 39080
This theorem is referenced by:  ldualvbase  39082  ldualfvadd  39084  ldualsca  39088  ldualfvs  39092
  Copyright terms: Public domain W3C validator