Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualset Structured version   Visualization version   GIF version

Theorem ldualset 39244
Description: Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in [Holland95] p. 218. This allows to reuse our existing collection of left vector space theorems. Note the operation reversal in the scalar product to allow to use the original scalar ring instead of the oppr ring, for convenience. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualset.v 𝑉 = (Base‘𝑊)
ldualset.a + = (+g𝑅)
ldualset.p = ( ∘f + ↾ (𝐹 × 𝐹))
ldualset.f 𝐹 = (LFnl‘𝑊)
ldualset.d 𝐷 = (LDual‘𝑊)
ldualset.r 𝑅 = (Scalar‘𝑊)
ldualset.k 𝐾 = (Base‘𝑅)
ldualset.t · = (.r𝑅)
ldualset.o 𝑂 = (oppr𝑅)
ldualset.s = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f · (𝑉 × {𝑘})))
ldualset.w (𝜑𝑊𝑋)
Assertion
Ref Expression
ldualset (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
Distinct variable group:   𝑓,𝑘,𝑊
Allowed substitution hints:   𝜑(𝑓,𝑘)   𝐷(𝑓,𝑘)   + (𝑓,𝑘)   (𝑓,𝑘)   𝑅(𝑓,𝑘)   (𝑓,𝑘)   · (𝑓,𝑘)   𝐹(𝑓,𝑘)   𝐾(𝑓,𝑘)   𝑂(𝑓,𝑘)   𝑉(𝑓,𝑘)   𝑋(𝑓,𝑘)

Proof of Theorem ldualset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ldualset.w . 2 (𝜑𝑊𝑋)
2 elex 3458 . 2 (𝑊𝑋𝑊 ∈ V)
3 ldualset.d . . 3 𝐷 = (LDual‘𝑊)
4 fveq2 6828 . . . . . . . 8 (𝑤 = 𝑊 → (LFnl‘𝑤) = (LFnl‘𝑊))
5 ldualset.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
64, 5eqtr4di 2786 . . . . . . 7 (𝑤 = 𝑊 → (LFnl‘𝑤) = 𝐹)
76opeq2d 4831 . . . . . 6 (𝑤 = 𝑊 → ⟨(Base‘ndx), (LFnl‘𝑤)⟩ = ⟨(Base‘ndx), 𝐹⟩)
8 fveq2 6828 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
9 ldualset.r . . . . . . . . . . . . 13 𝑅 = (Scalar‘𝑊)
108, 9eqtr4di 2786 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝑅)
1110fveq2d 6832 . . . . . . . . . . 11 (𝑤 = 𝑊 → (+g‘(Scalar‘𝑤)) = (+g𝑅))
12 ldualset.a . . . . . . . . . . 11 + = (+g𝑅)
1311, 12eqtr4di 2786 . . . . . . . . . 10 (𝑤 = 𝑊 → (+g‘(Scalar‘𝑤)) = + )
1413ofeqd 7618 . . . . . . . . 9 (𝑤 = 𝑊 → ∘f (+g‘(Scalar‘𝑤)) = ∘f + )
156sqxpeqd 5651 . . . . . . . . 9 (𝑤 = 𝑊 → ((LFnl‘𝑤) × (LFnl‘𝑤)) = (𝐹 × 𝐹))
1614, 15reseq12d 5933 . . . . . . . 8 (𝑤 = 𝑊 → ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤))) = ( ∘f + ↾ (𝐹 × 𝐹)))
17 ldualset.p . . . . . . . 8 = ( ∘f + ↾ (𝐹 × 𝐹))
1816, 17eqtr4di 2786 . . . . . . 7 (𝑤 = 𝑊 → ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤))) = )
1918opeq2d 4831 . . . . . 6 (𝑤 = 𝑊 → ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤)))⟩ = ⟨(+g‘ndx), ⟩)
2010fveq2d 6832 . . . . . . . 8 (𝑤 = 𝑊 → (oppr‘(Scalar‘𝑤)) = (oppr𝑅))
21 ldualset.o . . . . . . . 8 𝑂 = (oppr𝑅)
2220, 21eqtr4di 2786 . . . . . . 7 (𝑤 = 𝑊 → (oppr‘(Scalar‘𝑤)) = 𝑂)
2322opeq2d 4831 . . . . . 6 (𝑤 = 𝑊 → ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑤))⟩ = ⟨(Scalar‘ndx), 𝑂⟩)
247, 19, 23tpeq123d 4700 . . . . 5 (𝑤 = 𝑊 → {⟨(Base‘ndx), (LFnl‘𝑤)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑤))⟩} = {⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩})
2510fveq2d 6832 . . . . . . . . . 10 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝑅))
26 ldualset.k . . . . . . . . . 10 𝐾 = (Base‘𝑅)
2725, 26eqtr4di 2786 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾)
2810fveq2d 6832 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (.r‘(Scalar‘𝑤)) = (.r𝑅))
29 ldualset.t . . . . . . . . . . . 12 · = (.r𝑅)
3028, 29eqtr4di 2786 . . . . . . . . . . 11 (𝑤 = 𝑊 → (.r‘(Scalar‘𝑤)) = · )
3130ofeqd 7618 . . . . . . . . . 10 (𝑤 = 𝑊 → ∘f (.r‘(Scalar‘𝑤)) = ∘f · )
32 eqidd 2734 . . . . . . . . . 10 (𝑤 = 𝑊𝑓 = 𝑓)
33 fveq2 6828 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
34 ldualset.v . . . . . . . . . . . 12 𝑉 = (Base‘𝑊)
3533, 34eqtr4di 2786 . . . . . . . . . . 11 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
3635xpeq1d 5648 . . . . . . . . . 10 (𝑤 = 𝑊 → ((Base‘𝑤) × {𝑘}) = (𝑉 × {𝑘}))
3731, 32, 36oveq123d 7373 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})) = (𝑓f · (𝑉 × {𝑘})))
3827, 6, 37mpoeq123dv 7427 . . . . . . . 8 (𝑤 = 𝑊 → (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘}))) = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f · (𝑉 × {𝑘}))))
39 ldualset.s . . . . . . . 8 = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f · (𝑉 × {𝑘})))
4038, 39eqtr4di 2786 . . . . . . 7 (𝑤 = 𝑊 → (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘}))) = )
4140opeq2d 4831 . . . . . 6 (𝑤 = 𝑊 → ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})))⟩ = ⟨( ·𝑠 ‘ndx), ⟩)
4241sneqd 4587 . . . . 5 (𝑤 = 𝑊 → {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})))⟩} = {⟨( ·𝑠 ‘ndx), ⟩})
4324, 42uneq12d 4118 . . . 4 (𝑤 = 𝑊 → ({⟨(Base‘ndx), (LFnl‘𝑤)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑤))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
44 df-ldual 39243 . . . 4 LDual = (𝑤 ∈ V ↦ ({⟨(Base‘ndx), (LFnl‘𝑤)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑤))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})))⟩}))
45 tpex 7685 . . . . 5 {⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∈ V
46 snex 5376 . . . . 5 {⟨( ·𝑠 ‘ndx), ⟩} ∈ V
4745, 46unex 7683 . . . 4 ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}) ∈ V
4843, 44, 47fvmpt 6935 . . 3 (𝑊 ∈ V → (LDual‘𝑊) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
493, 48eqtrid 2780 . 2 (𝑊 ∈ V → 𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
501, 2, 493syl 18 1 (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cun 3896  {csn 4575  {ctp 4579  cop 4581   × cxp 5617  cres 5621  cfv 6486  (class class class)co 7352  cmpo 7354  f cof 7614  ndxcnx 17106  Basecbs 17122  +gcplusg 17163  .rcmulr 17164  Scalarcsca 17166   ·𝑠 cvsca 17167  opprcoppr 20256  LFnlclfn 39176  LDualcld 39242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ldual 39243
This theorem is referenced by:  ldualvbase  39245  ldualfvadd  39247  ldualsca  39251  ldualfvs  39255
  Copyright terms: Public domain W3C validator