Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualset Structured version   Visualization version   GIF version

Theorem ldualset 39126
Description: Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in [Holland95] p. 218. This allows to reuse our existing collection of left vector space theorems. Note the operation reversal in the scalar product to allow to use the original scalar ring instead of the oppr ring, for convenience. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualset.v 𝑉 = (Base‘𝑊)
ldualset.a + = (+g𝑅)
ldualset.p = ( ∘f + ↾ (𝐹 × 𝐹))
ldualset.f 𝐹 = (LFnl‘𝑊)
ldualset.d 𝐷 = (LDual‘𝑊)
ldualset.r 𝑅 = (Scalar‘𝑊)
ldualset.k 𝐾 = (Base‘𝑅)
ldualset.t · = (.r𝑅)
ldualset.o 𝑂 = (oppr𝑅)
ldualset.s = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f · (𝑉 × {𝑘})))
ldualset.w (𝜑𝑊𝑋)
Assertion
Ref Expression
ldualset (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
Distinct variable group:   𝑓,𝑘,𝑊
Allowed substitution hints:   𝜑(𝑓,𝑘)   𝐷(𝑓,𝑘)   + (𝑓,𝑘)   (𝑓,𝑘)   𝑅(𝑓,𝑘)   (𝑓,𝑘)   · (𝑓,𝑘)   𝐹(𝑓,𝑘)   𝐾(𝑓,𝑘)   𝑂(𝑓,𝑘)   𝑉(𝑓,𝑘)   𝑋(𝑓,𝑘)

Proof of Theorem ldualset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ldualset.w . 2 (𝜑𝑊𝑋)
2 elex 3501 . 2 (𝑊𝑋𝑊 ∈ V)
3 ldualset.d . . 3 𝐷 = (LDual‘𝑊)
4 fveq2 6906 . . . . . . . 8 (𝑤 = 𝑊 → (LFnl‘𝑤) = (LFnl‘𝑊))
5 ldualset.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
64, 5eqtr4di 2795 . . . . . . 7 (𝑤 = 𝑊 → (LFnl‘𝑤) = 𝐹)
76opeq2d 4880 . . . . . 6 (𝑤 = 𝑊 → ⟨(Base‘ndx), (LFnl‘𝑤)⟩ = ⟨(Base‘ndx), 𝐹⟩)
8 fveq2 6906 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
9 ldualset.r . . . . . . . . . . . . 13 𝑅 = (Scalar‘𝑊)
108, 9eqtr4di 2795 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝑅)
1110fveq2d 6910 . . . . . . . . . . 11 (𝑤 = 𝑊 → (+g‘(Scalar‘𝑤)) = (+g𝑅))
12 ldualset.a . . . . . . . . . . 11 + = (+g𝑅)
1311, 12eqtr4di 2795 . . . . . . . . . 10 (𝑤 = 𝑊 → (+g‘(Scalar‘𝑤)) = + )
1413ofeqd 7699 . . . . . . . . 9 (𝑤 = 𝑊 → ∘f (+g‘(Scalar‘𝑤)) = ∘f + )
156sqxpeqd 5717 . . . . . . . . 9 (𝑤 = 𝑊 → ((LFnl‘𝑤) × (LFnl‘𝑤)) = (𝐹 × 𝐹))
1614, 15reseq12d 5998 . . . . . . . 8 (𝑤 = 𝑊 → ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤))) = ( ∘f + ↾ (𝐹 × 𝐹)))
17 ldualset.p . . . . . . . 8 = ( ∘f + ↾ (𝐹 × 𝐹))
1816, 17eqtr4di 2795 . . . . . . 7 (𝑤 = 𝑊 → ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤))) = )
1918opeq2d 4880 . . . . . 6 (𝑤 = 𝑊 → ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤)))⟩ = ⟨(+g‘ndx), ⟩)
2010fveq2d 6910 . . . . . . . 8 (𝑤 = 𝑊 → (oppr‘(Scalar‘𝑤)) = (oppr𝑅))
21 ldualset.o . . . . . . . 8 𝑂 = (oppr𝑅)
2220, 21eqtr4di 2795 . . . . . . 7 (𝑤 = 𝑊 → (oppr‘(Scalar‘𝑤)) = 𝑂)
2322opeq2d 4880 . . . . . 6 (𝑤 = 𝑊 → ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑤))⟩ = ⟨(Scalar‘ndx), 𝑂⟩)
247, 19, 23tpeq123d 4748 . . . . 5 (𝑤 = 𝑊 → {⟨(Base‘ndx), (LFnl‘𝑤)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑤))⟩} = {⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩})
2510fveq2d 6910 . . . . . . . . . 10 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝑅))
26 ldualset.k . . . . . . . . . 10 𝐾 = (Base‘𝑅)
2725, 26eqtr4di 2795 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾)
2810fveq2d 6910 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (.r‘(Scalar‘𝑤)) = (.r𝑅))
29 ldualset.t . . . . . . . . . . . 12 · = (.r𝑅)
3028, 29eqtr4di 2795 . . . . . . . . . . 11 (𝑤 = 𝑊 → (.r‘(Scalar‘𝑤)) = · )
3130ofeqd 7699 . . . . . . . . . 10 (𝑤 = 𝑊 → ∘f (.r‘(Scalar‘𝑤)) = ∘f · )
32 eqidd 2738 . . . . . . . . . 10 (𝑤 = 𝑊𝑓 = 𝑓)
33 fveq2 6906 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
34 ldualset.v . . . . . . . . . . . 12 𝑉 = (Base‘𝑊)
3533, 34eqtr4di 2795 . . . . . . . . . . 11 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
3635xpeq1d 5714 . . . . . . . . . 10 (𝑤 = 𝑊 → ((Base‘𝑤) × {𝑘}) = (𝑉 × {𝑘}))
3731, 32, 36oveq123d 7452 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})) = (𝑓f · (𝑉 × {𝑘})))
3827, 6, 37mpoeq123dv 7508 . . . . . . . 8 (𝑤 = 𝑊 → (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘}))) = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f · (𝑉 × {𝑘}))))
39 ldualset.s . . . . . . . 8 = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f · (𝑉 × {𝑘})))
4038, 39eqtr4di 2795 . . . . . . 7 (𝑤 = 𝑊 → (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘}))) = )
4140opeq2d 4880 . . . . . 6 (𝑤 = 𝑊 → ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})))⟩ = ⟨( ·𝑠 ‘ndx), ⟩)
4241sneqd 4638 . . . . 5 (𝑤 = 𝑊 → {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})))⟩} = {⟨( ·𝑠 ‘ndx), ⟩})
4324, 42uneq12d 4169 . . . 4 (𝑤 = 𝑊 → ({⟨(Base‘ndx), (LFnl‘𝑤)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑤))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
44 df-ldual 39125 . . . 4 LDual = (𝑤 ∈ V ↦ ({⟨(Base‘ndx), (LFnl‘𝑤)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑤))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})))⟩}))
45 tpex 7766 . . . . 5 {⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∈ V
46 snex 5436 . . . . 5 {⟨( ·𝑠 ‘ndx), ⟩} ∈ V
4745, 46unex 7764 . . . 4 ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}) ∈ V
4843, 44, 47fvmpt 7016 . . 3 (𝑊 ∈ V → (LDual‘𝑊) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
493, 48eqtrid 2789 . 2 (𝑊 ∈ V → 𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
501, 2, 493syl 18 1 (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3480  cun 3949  {csn 4626  {ctp 4630  cop 4632   × cxp 5683  cres 5687  cfv 6561  (class class class)co 7431  cmpo 7433  f cof 7695  ndxcnx 17230  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  Scalarcsca 17300   ·𝑠 cvsca 17301  opprcoppr 20333  LFnlclfn 39058  LDualcld 39124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-res 5697  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ldual 39125
This theorem is referenced by:  ldualvbase  39127  ldualfvadd  39129  ldualsca  39133  ldualfvs  39137
  Copyright terms: Public domain W3C validator