Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualset Structured version   Visualization version   GIF version

Theorem ldualset 39103
Description: Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in [Holland95] p. 218. This allows to reuse our existing collection of left vector space theorems. Note the operation reversal in the scalar product to allow to use the original scalar ring instead of the oppr ring, for convenience. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualset.v 𝑉 = (Base‘𝑊)
ldualset.a + = (+g𝑅)
ldualset.p = ( ∘f + ↾ (𝐹 × 𝐹))
ldualset.f 𝐹 = (LFnl‘𝑊)
ldualset.d 𝐷 = (LDual‘𝑊)
ldualset.r 𝑅 = (Scalar‘𝑊)
ldualset.k 𝐾 = (Base‘𝑅)
ldualset.t · = (.r𝑅)
ldualset.o 𝑂 = (oppr𝑅)
ldualset.s = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f · (𝑉 × {𝑘})))
ldualset.w (𝜑𝑊𝑋)
Assertion
Ref Expression
ldualset (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
Distinct variable group:   𝑓,𝑘,𝑊
Allowed substitution hints:   𝜑(𝑓,𝑘)   𝐷(𝑓,𝑘)   + (𝑓,𝑘)   (𝑓,𝑘)   𝑅(𝑓,𝑘)   (𝑓,𝑘)   · (𝑓,𝑘)   𝐹(𝑓,𝑘)   𝐾(𝑓,𝑘)   𝑂(𝑓,𝑘)   𝑉(𝑓,𝑘)   𝑋(𝑓,𝑘)

Proof of Theorem ldualset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ldualset.w . 2 (𝜑𝑊𝑋)
2 elex 3459 . 2 (𝑊𝑋𝑊 ∈ V)
3 ldualset.d . . 3 𝐷 = (LDual‘𝑊)
4 fveq2 6826 . . . . . . . 8 (𝑤 = 𝑊 → (LFnl‘𝑤) = (LFnl‘𝑊))
5 ldualset.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
64, 5eqtr4di 2782 . . . . . . 7 (𝑤 = 𝑊 → (LFnl‘𝑤) = 𝐹)
76opeq2d 4834 . . . . . 6 (𝑤 = 𝑊 → ⟨(Base‘ndx), (LFnl‘𝑤)⟩ = ⟨(Base‘ndx), 𝐹⟩)
8 fveq2 6826 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
9 ldualset.r . . . . . . . . . . . . 13 𝑅 = (Scalar‘𝑊)
108, 9eqtr4di 2782 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝑅)
1110fveq2d 6830 . . . . . . . . . . 11 (𝑤 = 𝑊 → (+g‘(Scalar‘𝑤)) = (+g𝑅))
12 ldualset.a . . . . . . . . . . 11 + = (+g𝑅)
1311, 12eqtr4di 2782 . . . . . . . . . 10 (𝑤 = 𝑊 → (+g‘(Scalar‘𝑤)) = + )
1413ofeqd 7619 . . . . . . . . 9 (𝑤 = 𝑊 → ∘f (+g‘(Scalar‘𝑤)) = ∘f + )
156sqxpeqd 5655 . . . . . . . . 9 (𝑤 = 𝑊 → ((LFnl‘𝑤) × (LFnl‘𝑤)) = (𝐹 × 𝐹))
1614, 15reseq12d 5935 . . . . . . . 8 (𝑤 = 𝑊 → ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤))) = ( ∘f + ↾ (𝐹 × 𝐹)))
17 ldualset.p . . . . . . . 8 = ( ∘f + ↾ (𝐹 × 𝐹))
1816, 17eqtr4di 2782 . . . . . . 7 (𝑤 = 𝑊 → ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤))) = )
1918opeq2d 4834 . . . . . 6 (𝑤 = 𝑊 → ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤)))⟩ = ⟨(+g‘ndx), ⟩)
2010fveq2d 6830 . . . . . . . 8 (𝑤 = 𝑊 → (oppr‘(Scalar‘𝑤)) = (oppr𝑅))
21 ldualset.o . . . . . . . 8 𝑂 = (oppr𝑅)
2220, 21eqtr4di 2782 . . . . . . 7 (𝑤 = 𝑊 → (oppr‘(Scalar‘𝑤)) = 𝑂)
2322opeq2d 4834 . . . . . 6 (𝑤 = 𝑊 → ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑤))⟩ = ⟨(Scalar‘ndx), 𝑂⟩)
247, 19, 23tpeq123d 4702 . . . . 5 (𝑤 = 𝑊 → {⟨(Base‘ndx), (LFnl‘𝑤)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑤))⟩} = {⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩})
2510fveq2d 6830 . . . . . . . . . 10 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝑅))
26 ldualset.k . . . . . . . . . 10 𝐾 = (Base‘𝑅)
2725, 26eqtr4di 2782 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾)
2810fveq2d 6830 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (.r‘(Scalar‘𝑤)) = (.r𝑅))
29 ldualset.t . . . . . . . . . . . 12 · = (.r𝑅)
3028, 29eqtr4di 2782 . . . . . . . . . . 11 (𝑤 = 𝑊 → (.r‘(Scalar‘𝑤)) = · )
3130ofeqd 7619 . . . . . . . . . 10 (𝑤 = 𝑊 → ∘f (.r‘(Scalar‘𝑤)) = ∘f · )
32 eqidd 2730 . . . . . . . . . 10 (𝑤 = 𝑊𝑓 = 𝑓)
33 fveq2 6826 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
34 ldualset.v . . . . . . . . . . . 12 𝑉 = (Base‘𝑊)
3533, 34eqtr4di 2782 . . . . . . . . . . 11 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
3635xpeq1d 5652 . . . . . . . . . 10 (𝑤 = 𝑊 → ((Base‘𝑤) × {𝑘}) = (𝑉 × {𝑘}))
3731, 32, 36oveq123d 7374 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})) = (𝑓f · (𝑉 × {𝑘})))
3827, 6, 37mpoeq123dv 7428 . . . . . . . 8 (𝑤 = 𝑊 → (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘}))) = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f · (𝑉 × {𝑘}))))
39 ldualset.s . . . . . . . 8 = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f · (𝑉 × {𝑘})))
4038, 39eqtr4di 2782 . . . . . . 7 (𝑤 = 𝑊 → (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘}))) = )
4140opeq2d 4834 . . . . . 6 (𝑤 = 𝑊 → ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})))⟩ = ⟨( ·𝑠 ‘ndx), ⟩)
4241sneqd 4591 . . . . 5 (𝑤 = 𝑊 → {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})))⟩} = {⟨( ·𝑠 ‘ndx), ⟩})
4324, 42uneq12d 4122 . . . 4 (𝑤 = 𝑊 → ({⟨(Base‘ndx), (LFnl‘𝑤)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑤))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
44 df-ldual 39102 . . . 4 LDual = (𝑤 ∈ V ↦ ({⟨(Base‘ndx), (LFnl‘𝑤)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑤))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})))⟩}))
45 tpex 7686 . . . . 5 {⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∈ V
46 snex 5378 . . . . 5 {⟨( ·𝑠 ‘ndx), ⟩} ∈ V
4745, 46unex 7684 . . . 4 ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}) ∈ V
4843, 44, 47fvmpt 6934 . . 3 (𝑊 ∈ V → (LDual‘𝑊) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
493, 48eqtrid 2776 . 2 (𝑊 ∈ V → 𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
501, 2, 493syl 18 1 (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  cun 3903  {csn 4579  {ctp 4583  cop 4585   × cxp 5621  cres 5625  cfv 6486  (class class class)co 7353  cmpo 7355  f cof 7615  ndxcnx 17122  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  Scalarcsca 17182   ·𝑠 cvsca 17183  opprcoppr 20239  LFnlclfn 39035  LDualcld 39101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-res 5635  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ldual 39102
This theorem is referenced by:  ldualvbase  39104  ldualfvadd  39106  ldualsca  39110  ldualfvs  39114
  Copyright terms: Public domain W3C validator