Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualset Structured version   Visualization version   GIF version

Theorem ldualset 37066
Description: Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in [Holland95] p. 218. This allows us to reuse our existing collection of left vector space theorems. Note the operation reversal in the scalar product to allow us to use the original scalar ring instead of the oppr ring, for convenience. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualset.v 𝑉 = (Base‘𝑊)
ldualset.a + = (+g𝑅)
ldualset.p = ( ∘f + ↾ (𝐹 × 𝐹))
ldualset.f 𝐹 = (LFnl‘𝑊)
ldualset.d 𝐷 = (LDual‘𝑊)
ldualset.r 𝑅 = (Scalar‘𝑊)
ldualset.k 𝐾 = (Base‘𝑅)
ldualset.t · = (.r𝑅)
ldualset.o 𝑂 = (oppr𝑅)
ldualset.s = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f · (𝑉 × {𝑘})))
ldualset.w (𝜑𝑊𝑋)
Assertion
Ref Expression
ldualset (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
Distinct variable group:   𝑓,𝑘,𝑊
Allowed substitution hints:   𝜑(𝑓,𝑘)   𝐷(𝑓,𝑘)   + (𝑓,𝑘)   (𝑓,𝑘)   𝑅(𝑓,𝑘)   (𝑓,𝑘)   · (𝑓,𝑘)   𝐹(𝑓,𝑘)   𝐾(𝑓,𝑘)   𝑂(𝑓,𝑘)   𝑉(𝑓,𝑘)   𝑋(𝑓,𝑘)

Proof of Theorem ldualset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ldualset.w . 2 (𝜑𝑊𝑋)
2 elex 3440 . 2 (𝑊𝑋𝑊 ∈ V)
3 ldualset.d . . 3 𝐷 = (LDual‘𝑊)
4 fveq2 6756 . . . . . . . 8 (𝑤 = 𝑊 → (LFnl‘𝑤) = (LFnl‘𝑊))
5 ldualset.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
64, 5eqtr4di 2797 . . . . . . 7 (𝑤 = 𝑊 → (LFnl‘𝑤) = 𝐹)
76opeq2d 4808 . . . . . 6 (𝑤 = 𝑊 → ⟨(Base‘ndx), (LFnl‘𝑤)⟩ = ⟨(Base‘ndx), 𝐹⟩)
8 fveq2 6756 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
9 ldualset.r . . . . . . . . . . . . 13 𝑅 = (Scalar‘𝑊)
108, 9eqtr4di 2797 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝑅)
1110fveq2d 6760 . . . . . . . . . . 11 (𝑤 = 𝑊 → (+g‘(Scalar‘𝑤)) = (+g𝑅))
12 ldualset.a . . . . . . . . . . 11 + = (+g𝑅)
1311, 12eqtr4di 2797 . . . . . . . . . 10 (𝑤 = 𝑊 → (+g‘(Scalar‘𝑤)) = + )
1413ofeqd 7513 . . . . . . . . 9 (𝑤 = 𝑊 → ∘f (+g‘(Scalar‘𝑤)) = ∘f + )
156sqxpeqd 5612 . . . . . . . . 9 (𝑤 = 𝑊 → ((LFnl‘𝑤) × (LFnl‘𝑤)) = (𝐹 × 𝐹))
1614, 15reseq12d 5881 . . . . . . . 8 (𝑤 = 𝑊 → ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤))) = ( ∘f + ↾ (𝐹 × 𝐹)))
17 ldualset.p . . . . . . . 8 = ( ∘f + ↾ (𝐹 × 𝐹))
1816, 17eqtr4di 2797 . . . . . . 7 (𝑤 = 𝑊 → ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤))) = )
1918opeq2d 4808 . . . . . 6 (𝑤 = 𝑊 → ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤)))⟩ = ⟨(+g‘ndx), ⟩)
2010fveq2d 6760 . . . . . . . 8 (𝑤 = 𝑊 → (oppr‘(Scalar‘𝑤)) = (oppr𝑅))
21 ldualset.o . . . . . . . 8 𝑂 = (oppr𝑅)
2220, 21eqtr4di 2797 . . . . . . 7 (𝑤 = 𝑊 → (oppr‘(Scalar‘𝑤)) = 𝑂)
2322opeq2d 4808 . . . . . 6 (𝑤 = 𝑊 → ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑤))⟩ = ⟨(Scalar‘ndx), 𝑂⟩)
247, 19, 23tpeq123d 4681 . . . . 5 (𝑤 = 𝑊 → {⟨(Base‘ndx), (LFnl‘𝑤)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑤))⟩} = {⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩})
2510fveq2d 6760 . . . . . . . . . 10 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝑅))
26 ldualset.k . . . . . . . . . 10 𝐾 = (Base‘𝑅)
2725, 26eqtr4di 2797 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾)
2810fveq2d 6760 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (.r‘(Scalar‘𝑤)) = (.r𝑅))
29 ldualset.t . . . . . . . . . . . 12 · = (.r𝑅)
3028, 29eqtr4di 2797 . . . . . . . . . . 11 (𝑤 = 𝑊 → (.r‘(Scalar‘𝑤)) = · )
3130ofeqd 7513 . . . . . . . . . 10 (𝑤 = 𝑊 → ∘f (.r‘(Scalar‘𝑤)) = ∘f · )
32 eqidd 2739 . . . . . . . . . 10 (𝑤 = 𝑊𝑓 = 𝑓)
33 fveq2 6756 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
34 ldualset.v . . . . . . . . . . . 12 𝑉 = (Base‘𝑊)
3533, 34eqtr4di 2797 . . . . . . . . . . 11 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
3635xpeq1d 5609 . . . . . . . . . 10 (𝑤 = 𝑊 → ((Base‘𝑤) × {𝑘}) = (𝑉 × {𝑘}))
3731, 32, 36oveq123d 7276 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})) = (𝑓f · (𝑉 × {𝑘})))
3827, 6, 37mpoeq123dv 7328 . . . . . . . 8 (𝑤 = 𝑊 → (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘}))) = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f · (𝑉 × {𝑘}))))
39 ldualset.s . . . . . . . 8 = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f · (𝑉 × {𝑘})))
4038, 39eqtr4di 2797 . . . . . . 7 (𝑤 = 𝑊 → (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘}))) = )
4140opeq2d 4808 . . . . . 6 (𝑤 = 𝑊 → ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})))⟩ = ⟨( ·𝑠 ‘ndx), ⟩)
4241sneqd 4570 . . . . 5 (𝑤 = 𝑊 → {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})))⟩} = {⟨( ·𝑠 ‘ndx), ⟩})
4324, 42uneq12d 4094 . . . 4 (𝑤 = 𝑊 → ({⟨(Base‘ndx), (LFnl‘𝑤)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑤))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
44 df-ldual 37065 . . . 4 LDual = (𝑤 ∈ V ↦ ({⟨(Base‘ndx), (LFnl‘𝑤)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑤)) ↾ ((LFnl‘𝑤) × (LFnl‘𝑤)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑤))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑤)), 𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓f (.r‘(Scalar‘𝑤))((Base‘𝑤) × {𝑘})))⟩}))
45 tpex 7575 . . . . 5 {⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∈ V
46 snex 5349 . . . . 5 {⟨( ·𝑠 ‘ndx), ⟩} ∈ V
4745, 46unex 7574 . . . 4 ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}) ∈ V
4843, 44, 47fvmpt 6857 . . 3 (𝑊 ∈ V → (LDual‘𝑊) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
493, 48syl5eq 2791 . 2 (𝑊 ∈ V → 𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
501, 2, 493syl 18 1 (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), ⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  {csn 4558  {ctp 4562  cop 4564   × cxp 5578  cres 5582  cfv 6418  (class class class)co 7255  cmpo 7257  f cof 7509  ndxcnx 16822  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  opprcoppr 19776  LFnlclfn 36998  LDualcld 37064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ldual 37065
This theorem is referenced by:  ldualvbase  37067  ldualfvadd  37069  ldualsca  37073  ldualfvs  37077
  Copyright terms: Public domain W3C validator