![]() |
Metamath
Proof Explorer Theorem List (p. 383 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30439) |
![]() (30440-31962) |
![]() (31963-47940) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | lcvnbtwn2 38201 | The covers relation implies no in-betweenness. (cvnbtwn2 31808 analog.) (Contributed by NM, 7-Jan-2015.) |
β’ π = (LSubSpβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π πΆπ) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β π = π) | ||
Theorem | lcvnbtwn3 38202 | The covers relation implies no in-betweenness. (cvnbtwn3 31809 analog.) (Contributed by NM, 7-Jan-2015.) |
β’ π = (LSubSpβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π πΆπ) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β π = π ) | ||
Theorem | lsmcv2 38203 | Subspace sum has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of [Kalmbach] p. 153. (spansncv2 31814 analog.) (Contributed by NM, 10-Jan-2015.) |
β’ π = (Baseβπ) & β’ π = (LSubSpβπ) & β’ π = (LSpanβπ) & β’ β = (LSSumβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β Β¬ (πβ{π}) β π) β β’ (π β ππΆ(π β (πβ{π}))) | ||
Theorem | lcvat 38204* | If a subspace covers another, it equals the other joined with some atom. This is a consequence of relative atomicity. (cvati 31887 analog.) (Contributed by NM, 11-Jan-2015.) |
β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β LMod) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β ππΆπ) β β’ (π β βπ β π΄ (π β π) = π) | ||
Theorem | lsatcv0 38205 | An atom covers the zero subspace. (atcv0 31863 analog.) (Contributed by NM, 7-Jan-2015.) |
β’ 0 = (0gβπ) & β’ π΄ = (LSAtomsβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β LVec) & β’ (π β π β π΄) β β’ (π β { 0 }πΆπ) | ||
Theorem | lsatcveq0 38206 | A subspace covered by an atom must be the zero subspace. (atcveq0 31869 analog.) (Contributed by NM, 7-Jan-2015.) |
β’ 0 = (0gβπ) & β’ π = (LSubSpβπ) & β’ π΄ = (LSAtomsβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β π β π΄) β β’ (π β (ππΆπ β π = { 0 })) | ||
Theorem | lsat0cv 38207 | A subspace is an atom iff it covers the zero subspace. This could serve as an alternate definition of an atom. TODO: this is a quick-and-dirty proof that could probably be more efficient. (Contributed by NM, 14-Mar-2015.) |
β’ 0 = (0gβπ) & β’ π = (LSubSpβπ) & β’ π΄ = (LSAtomsβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β LVec) & β’ (π β π β π) β β’ (π β (π β π΄ β { 0 }πΆπ)) | ||
Theorem | lcvexchlem1 38208 | Lemma for lcvexch 38213. (Contributed by NM, 10-Jan-2015.) |
β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β LMod) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π β (π β π) β (π β© π) β π)) | ||
Theorem | lcvexchlem2 38209 | Lemma for lcvexch 38213. (Contributed by NM, 10-Jan-2015.) |
β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β LMod) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π β© π) β π ) & β’ (π β π β π) β β’ (π β ((π β π) β© π) = π ) | ||
Theorem | lcvexchlem3 38210 | Lemma for lcvexch 38213. (Contributed by NM, 10-Jan-2015.) |
β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β LMod) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π ) & β’ (π β π β (π β π)) β β’ (π β ((π β© π) β π) = π ) | ||
Theorem | lcvexchlem4 38211 | Lemma for lcvexch 38213. (Contributed by NM, 10-Jan-2015.) |
β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β LMod) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β ππΆ(π β π)) β β’ (π β (π β© π)πΆπ) | ||
Theorem | lcvexchlem5 38212 | Lemma for lcvexch 38213. (Contributed by NM, 10-Jan-2015.) |
β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β LMod) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π β© π)πΆπ) β β’ (π β ππΆ(π β π)) | ||
Theorem | lcvexch 38213 | Subspaces satisfy the exchange axiom. Lemma 7.5 of [MaedaMaeda] p. 31. (cvexchi 31890 analog.) TODO: combine some lemmas. (Contributed by NM, 10-Jan-2015.) |
β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β LMod) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β ((π β© π)πΆπ β ππΆ(π β π))) | ||
Theorem | lcvp 38214 | Covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (cvp 31896 analog.) (Contributed by NM, 10-Jan-2015.) |
β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ 0 = (0gβπ) & β’ π΄ = (LSAtomsβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β π β π΄) β β’ (π β ((π β© π) = { 0 } β ππΆ(π β π))) | ||
Theorem | lcv1 38215 | Covering property of a subspace plus an atom. (chcv1 31876 analog.) (Contributed by NM, 10-Jan-2015.) |
β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β π β π΄) β β’ (π β (Β¬ π β π β ππΆ(π β π))) | ||
Theorem | lcv2 38216 | Covering property of a subspace plus an atom. (chcv2 31877 analog.) (Contributed by NM, 10-Jan-2015.) |
β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β π β π΄) β β’ (π β (π β (π β π) β ππΆ(π β π))) | ||
Theorem | lsatexch 38217 | The atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem was originally proved by Hermann Grassmann in 1862. (atexch 31902 analog.) (Contributed by NM, 10-Jan-2015.) |
β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ 0 = (0gβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ (π β π β (π β π )) & β’ (π β (π β© π) = { 0 }) β β’ (π β π β (π β π)) | ||
Theorem | lsatnle 38218 | The meet of a subspace and an incomparable atom is the zero subspace. (atnssm0 31897 analog.) (Contributed by NM, 10-Jan-2015.) |
β’ 0 = (0gβπ) & β’ π = (LSubSpβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β π β π΄) β β’ (π β (Β¬ π β π β (π β© π) = { 0 })) | ||
Theorem | lsatnem0 38219 | The meet of distinct atoms is the zero subspace. (atnemeq0 31898 analog.) (Contributed by NM, 10-Jan-2015.) |
β’ 0 = (0gβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β π β LVec) & β’ (π β π β π΄) & β’ (π β π β π΄) β β’ (π β (π β π β (π β© π ) = { 0 })) | ||
Theorem | lsatexch1 38220 | The atom exch1ange property. (hlatexch1 38570 analog.) (Contributed by NM, 14-Jan-2015.) |
β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β π β LVec) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ (π β π β (π β π )) & β’ (π β π β π) β β’ (π β π β (π β π)) | ||
Theorem | lsatcv0eq 38221 | If the sum of two atoms cover the zero subspace, they are equal. (atcv0eq 31900 analog.) (Contributed by NM, 10-Jan-2015.) |
β’ 0 = (0gβπ) & β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β LVec) & β’ (π β π β π΄) & β’ (π β π β π΄) β β’ (π β ({ 0 }πΆ(π β π ) β π = π )) | ||
Theorem | lsatcv1 38222 | Two atoms covering the zero subspace are equal. (atcv1 31901 analog.) (Contributed by NM, 10-Jan-2015.) |
β’ 0 = (0gβπ) & β’ β = (LSSumβπ) & β’ π = (LSubSpβπ) & β’ π΄ = (LSAtomsβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ (π β ππΆ(π β π )) β β’ (π β (π = { 0 } β π = π )) | ||
Theorem | lsatcvatlem 38223 | Lemma for lsatcvat 38224. (Contributed by NM, 10-Jan-2015.) |
β’ 0 = (0gβπ) & β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ (π β π β { 0 }) & β’ (π β π β (π β π )) & β’ (π β Β¬ π β π) β β’ (π β π β π΄) | ||
Theorem | lsatcvat 38224 | A nonzero subspace less than the sum of two atoms is an atom. (atcvati 31907 analog.) (Contributed by NM, 10-Jan-2015.) |
β’ 0 = (0gβπ) & β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ (π β π β { 0 }) & β’ (π β π β (π β π )) β β’ (π β π β π΄) | ||
Theorem | lsatcvat2 38225 | A subspace covered by the sum of two distinct atoms is an atom. (atcvat2i 31908 analog.) (Contributed by NM, 10-Jan-2015.) |
β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ (π β π β π ) & β’ (π β ππΆ(π β π )) β β’ (π β π β π΄) | ||
Theorem | lsatcvat3 38226 | A condition implying that a certain subspace is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 31917 analog.) (Contributed by NM, 11-Jan-2015.) |
β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ (π β π β π ) & β’ (π β Β¬ π β π) & β’ (π β π β (π β π )) β β’ (π β (π β© (π β π )) β π΄) | ||
Theorem | islshpcv 38227 | Hyperplane properties expressed with covers relation. (Contributed by NM, 11-Jan-2015.) |
β’ π = (Baseβπ) & β’ π = (LSubSpβπ) & β’ π» = (LSHypβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β LVec) β β’ (π β (π β π» β (π β π β§ ππΆπ))) | ||
Theorem | l1cvpat 38228 | A subspace covered by the set of all vectors, when summed with an atom not under it, equals the set of all vectors. (1cvrjat 38650 analog.) (Contributed by NM, 11-Jan-2015.) |
β’ π = (Baseβπ) & β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β π β π΄) & β’ (π β ππΆπ) & β’ (π β Β¬ π β π) β β’ (π β (π β π) = π) | ||
Theorem | l1cvat 38229 | Create an atom under an element covered by the lattice unity. Part of proof of Lemma B in [Crawley] p. 112. (1cvrat 38651 analog.) (Contributed by NM, 11-Jan-2015.) |
β’ π = (Baseβπ) & β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ πΆ = ( βL βπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ (π β π β π ) & β’ (π β ππΆπ) & β’ (π β Β¬ π β π) β β’ (π β ((π β π ) β© π) β π΄) | ||
Theorem | lshpat 38230 | Create an atom under a hyperplane. Part of proof of Lemma B in [Crawley] p. 112. (lhpat 39218 analog.) TODO: This changes ππΆπ in l1cvpat 38228 and l1cvat 38229 to π β π», which in turn change π β π» in islshpcv 38227 to ππΆπ, with a couple of conversions of span to atom. Seems convoluted. Would a direct proof be better? (Contributed by NM, 11-Jan-2015.) |
β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ π» = (LSHypβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β π β LVec) & β’ (π β π β π») & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ (π β π β π ) & β’ (π β Β¬ π β π) β β’ (π β ((π β π ) β© π) β π΄) | ||
Syntax | clfn 38231 | Extend class notation with all linear functionals of a left module or left vector space. |
class LFnl | ||
Definition | df-lfl 38232* | Define the set of all linear functionals (maps from vectors to the ring) of a left module or left vector space. (Contributed by NM, 15-Apr-2014.) |
β’ LFnl = (π€ β V β¦ {π β ((Baseβ(Scalarβπ€)) βm (Baseβπ€)) β£ βπ β (Baseβ(Scalarβπ€))βπ₯ β (Baseβπ€)βπ¦ β (Baseβπ€)(πβ((π( Β·π βπ€)π₯)(+gβπ€)π¦)) = ((π(.rβ(Scalarβπ€))(πβπ₯))(+gβ(Scalarβπ€))(πβπ¦))}) | ||
Theorem | lflset 38233* | The set of linear functionals in a left module or left vector space. (Contributed by NM, 15-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ π· = (Scalarβπ) & β’ Β· = ( Β·π βπ) & β’ πΎ = (Baseβπ·) & ⒠⨣ = (+gβπ·) & β’ Γ = (.rβπ·) & β’ πΉ = (LFnlβπ) β β’ (π β π β πΉ = {π β (πΎ βm π) β£ βπ β πΎ βπ₯ β π βπ¦ β π (πβ((π Β· π₯) + π¦)) = ((π Γ (πβπ₯)) ⨣ (πβπ¦))}) | ||
Theorem | islfl 38234* | The predicate "is a linear functional". (Contributed by NM, 15-Apr-2014.) |
β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ π· = (Scalarβπ) & β’ Β· = ( Β·π βπ) & β’ πΎ = (Baseβπ·) & ⒠⨣ = (+gβπ·) & β’ Γ = (.rβπ·) & β’ πΉ = (LFnlβπ) β β’ (π β π β (πΊ β πΉ β (πΊ:πβΆπΎ β§ βπ β πΎ βπ₯ β π βπ¦ β π (πΊβ((π Β· π₯) + π¦)) = ((π Γ (πΊβπ₯)) ⨣ (πΊβπ¦))))) | ||
Theorem | lfli 38235 | Property of a linear functional. (lnfnli 31561 analog.) (Contributed by NM, 16-Apr-2014.) |
β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ π· = (Scalarβπ) & β’ Β· = ( Β·π βπ) & β’ πΎ = (Baseβπ·) & ⒠⨣ = (+gβπ·) & β’ Γ = (.rβπ·) & β’ πΉ = (LFnlβπ) β β’ ((π β π β§ πΊ β πΉ β§ (π β πΎ β§ π β π β§ π β π)) β (πΊβ((π Β· π) + π)) = ((π Γ (πΊβπ)) ⨣ (πΊβπ))) | ||
Theorem | islfld 38236* | Properties that determine a linear functional. TODO: use this in place of islfl 38234 when it shortens the proof. (Contributed by NM, 19-Oct-2014.) |
β’ (π β π = (Baseβπ)) & β’ (π β + = (+gβπ)) & β’ (π β π· = (Scalarβπ)) & β’ (π β Β· = ( Β·π βπ)) & β’ (π β πΎ = (Baseβπ·)) & β’ (π β ⨣ = (+gβπ·)) & β’ (π β Γ = (.rβπ·)) & β’ (π β πΉ = (LFnlβπ)) & β’ (π β πΊ:πβΆπΎ) & β’ ((π β§ (π β πΎ β§ π₯ β π β§ π¦ β π)) β (πΊβ((π Β· π₯) + π¦)) = ((π Γ (πΊβπ₯)) ⨣ (πΊβπ¦))) & β’ (π β π β π) β β’ (π β πΊ β πΉ) | ||
Theorem | lflf 38237 | A linear functional is a function from vectors to scalars. (lnfnfi 31562 analog.) (Contributed by NM, 15-Apr-2014.) |
β’ π· = (Scalarβπ) & β’ πΎ = (Baseβπ·) & β’ π = (Baseβπ) & β’ πΉ = (LFnlβπ) β β’ ((π β π β§ πΊ β πΉ) β πΊ:πβΆπΎ) | ||
Theorem | lflcl 38238 | A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014.) |
β’ π· = (Scalarβπ) & β’ πΎ = (Baseβπ·) & β’ π = (Baseβπ) & β’ πΉ = (LFnlβπ) β β’ ((π β π β§ πΊ β πΉ β§ π β π) β (πΊβπ) β πΎ) | ||
Theorem | lfl0 38239 | A linear functional is zero at the zero vector. (lnfn0i 31563 analog.) (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
β’ π· = (Scalarβπ) & β’ 0 = (0gβπ·) & β’ π = (0gβπ) & β’ πΉ = (LFnlβπ) β β’ ((π β LMod β§ πΊ β πΉ) β (πΊβπ) = 0 ) | ||
Theorem | lfladd 38240 | Property of a linear functional. (lnfnaddi 31564 analog.) (Contributed by NM, 18-Apr-2014.) |
β’ π· = (Scalarβπ) & ⒠⨣ = (+gβπ·) & β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ πΉ = (LFnlβπ) β β’ ((π β LMod β§ πΊ β πΉ β§ (π β π β§ π β π)) β (πΊβ(π + π)) = ((πΊβπ) ⨣ (πΊβπ))) | ||
Theorem | lflsub 38241 | Property of a linear functional. (lnfnaddi 31564 analog.) (Contributed by NM, 18-Apr-2014.) |
β’ π· = (Scalarβπ) & β’ π = (-gβπ·) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ πΉ = (LFnlβπ) β β’ ((π β LMod β§ πΊ β πΉ β§ (π β π β§ π β π)) β (πΊβ(π β π)) = ((πΊβπ)π(πΊβπ))) | ||
Theorem | lflmul 38242 | Property of a linear functional. (lnfnmuli 31565 analog.) (Contributed by NM, 16-Apr-2014.) |
β’ π· = (Scalarβπ) & β’ πΎ = (Baseβπ·) & β’ Γ = (.rβπ·) & β’ π = (Baseβπ) & β’ Β· = ( Β·π βπ) & β’ πΉ = (LFnlβπ) β β’ ((π β LMod β§ πΊ β πΉ β§ (π β πΎ β§ π β π)) β (πΊβ(π Β· π)) = (π Γ (πΊβπ))) | ||
Theorem | lfl0f 38243 | The zero function is a functional. (Contributed by NM, 16-Apr-2014.) |
β’ π· = (Scalarβπ) & β’ 0 = (0gβπ·) & β’ π = (Baseβπ) & β’ πΉ = (LFnlβπ) β β’ (π β LMod β (π Γ { 0 }) β πΉ) | ||
Theorem | lfl1 38244* | A nonzero functional has a value of 1 at some argument. (Contributed by NM, 16-Apr-2014.) |
β’ π· = (Scalarβπ) & β’ 0 = (0gβπ·) & β’ 1 = (1rβπ·) & β’ π = (Baseβπ) & β’ πΉ = (LFnlβπ) β β’ ((π β LVec β§ πΊ β πΉ β§ πΊ β (π Γ { 0 })) β βπ₯ β π (πΊβπ₯) = 1 ) | ||
Theorem | lfladdcl 38245 | Closure of addition of two functionals. (Contributed by NM, 19-Oct-2014.) |
β’ π = (Scalarβπ) & β’ + = (+gβπ ) & β’ πΉ = (LFnlβπ) & β’ (π β π β LMod) & β’ (π β πΊ β πΉ) & β’ (π β π» β πΉ) β β’ (π β (πΊ βf + π») β πΉ) | ||
Theorem | lfladdcom 38246 | Commutativity of functional addition. (Contributed by NM, 19-Oct-2014.) |
β’ π = (Scalarβπ) & β’ + = (+gβπ ) & β’ πΉ = (LFnlβπ) & β’ (π β π β LMod) & β’ (π β πΊ β πΉ) & β’ (π β π» β πΉ) β β’ (π β (πΊ βf + π») = (π» βf + πΊ)) | ||
Theorem | lfladdass 38247 | Associativity of functional addition. (Contributed by NM, 19-Oct-2014.) |
β’ π = (Scalarβπ) & β’ + = (+gβπ ) & β’ πΉ = (LFnlβπ) & β’ (π β π β LMod) & β’ (π β πΊ β πΉ) & β’ (π β π» β πΉ) & β’ (π β πΌ β πΉ) β β’ (π β ((πΊ βf + π») βf + πΌ) = (πΊ βf + (π» βf + πΌ))) | ||
Theorem | lfladd0l 38248 | Functional addition with the zero functional. (Contributed by NM, 21-Oct-2014.) |
β’ π = (Baseβπ) & β’ π = (Scalarβπ) & β’ + = (+gβπ ) & β’ 0 = (0gβπ ) & β’ πΉ = (LFnlβπ) & β’ (π β π β LMod) & β’ (π β πΊ β πΉ) β β’ (π β ((π Γ { 0 }) βf + πΊ) = πΊ) | ||
Theorem | lflnegcl 38249* | Closure of the negative of a functional. (This is specialized for the purpose of proving ldualgrp 38320, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.) |
β’ π = (Baseβπ) & β’ π = (Scalarβπ) & β’ πΌ = (invgβπ ) & β’ π = (π₯ β π β¦ (πΌβ(πΊβπ₯))) & β’ πΉ = (LFnlβπ) & β’ (π β π β LMod) & β’ (π β πΊ β πΉ) β β’ (π β π β πΉ) | ||
Theorem | lflnegl 38250* | A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp 38320, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.) |
β’ π = (Baseβπ) & β’ π = (Scalarβπ) & β’ πΌ = (invgβπ ) & β’ π = (π₯ β π β¦ (πΌβ(πΊβπ₯))) & β’ πΉ = (LFnlβπ) & β’ (π β π β LMod) & β’ (π β πΊ β πΉ) & β’ + = (+gβπ ) & β’ 0 = (0gβπ ) β β’ (π β (π βf + πΊ) = (π Γ { 0 })) | ||
Theorem | lflvscl 38251 | Closure of a scalar product with a functional. Note that this is the scalar product for a right vector space with the scalar after the vector; reversing these fails closure. (Contributed by NM, 9-Oct-2014.) (Revised by Mario Carneiro, 22-Apr-2015.) |
β’ π = (Baseβπ) & β’ π· = (Scalarβπ) & β’ πΎ = (Baseβπ·) & β’ Β· = (.rβπ·) & β’ πΉ = (LFnlβπ) & β’ (π β π β LMod) & β’ (π β πΊ β πΉ) & β’ (π β π β πΎ) β β’ (π β (πΊ βf Β· (π Γ {π })) β πΉ) | ||
Theorem | lflvsdi1 38252 | Distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
β’ π = (Baseβπ) & β’ π = (Scalarβπ) & β’ πΎ = (Baseβπ ) & β’ + = (+gβπ ) & β’ Β· = (.rβπ ) & β’ πΉ = (LFnlβπ) & β’ (π β π β LMod) & β’ (π β π β πΎ) & β’ (π β πΊ β πΉ) & β’ (π β π» β πΉ) β β’ (π β ((πΊ βf + π») βf Β· (π Γ {π})) = ((πΊ βf Β· (π Γ {π})) βf + (π» βf Β· (π Γ {π})))) | ||
Theorem | lflvsdi2 38253 | Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
β’ π = (Baseβπ) & β’ π = (Scalarβπ) & β’ πΎ = (Baseβπ ) & β’ + = (+gβπ ) & β’ Β· = (.rβπ ) & β’ πΉ = (LFnlβπ) & β’ (π β π β LMod) & β’ (π β π β πΎ) & β’ (π β π β πΎ) & β’ (π β πΊ β πΉ) β β’ (π β (πΊ βf Β· ((π Γ {π}) βf + (π Γ {π}))) = ((πΊ βf Β· (π Γ {π})) βf + (πΊ βf Β· (π Γ {π})))) | ||
Theorem | lflvsdi2a 38254 | Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 21-Oct-2014.) |
β’ π = (Baseβπ) & β’ π = (Scalarβπ) & β’ πΎ = (Baseβπ ) & β’ + = (+gβπ ) & β’ Β· = (.rβπ ) & β’ πΉ = (LFnlβπ) & β’ (π β π β LMod) & β’ (π β π β πΎ) & β’ (π β π β πΎ) & β’ (π β πΊ β πΉ) β β’ (π β (πΊ βf Β· (π Γ {(π + π)})) = ((πΊ βf Β· (π Γ {π})) βf + (πΊ βf Β· (π Γ {π})))) | ||
Theorem | lflvsass 38255 | Associative law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
β’ π = (Baseβπ) & β’ π = (Scalarβπ) & β’ πΎ = (Baseβπ ) & β’ Β· = (.rβπ ) & β’ πΉ = (LFnlβπ) & β’ (π β π β LMod) & β’ (π β π β πΎ) & β’ (π β π β πΎ) & β’ (π β πΊ β πΉ) β β’ (π β (πΊ βf Β· (π Γ {(π Β· π)})) = ((πΊ βf Β· (π Γ {π})) βf Β· (π Γ {π}))) | ||
Theorem | lfl0sc 38256 | The (right vector space) scalar product of a functional with zero is the zero functional. Note that the first occurrence of (π Γ { 0 }) represents the zero scalar, and the second is the zero functional. (Contributed by NM, 7-Oct-2014.) |
β’ π = (Baseβπ) & β’ π· = (Scalarβπ) & β’ πΉ = (LFnlβπ) & β’ πΎ = (Baseβπ·) & β’ Β· = (.rβπ·) & β’ 0 = (0gβπ·) & β’ (π β π β LMod) & β’ (π β πΊ β πΉ) β β’ (π β (πΊ βf Β· (π Γ { 0 })) = (π Γ { 0 })) | ||
Theorem | lflsc0N 38257 | The scalar product with the zero functional is the zero functional. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.) |
β’ π = (Baseβπ) & β’ π· = (Scalarβπ) & β’ πΎ = (Baseβπ·) & β’ Β· = (.rβπ·) & β’ 0 = (0gβπ·) & β’ (π β π β LMod) & β’ (π β π β πΎ) β β’ (π β ((π Γ { 0 }) βf Β· (π Γ {π})) = (π Γ { 0 })) | ||
Theorem | lfl1sc 38258 | The (right vector space) scalar product of a functional with one is the functional. (Contributed by NM, 21-Oct-2014.) |
β’ π = (Baseβπ) & β’ π· = (Scalarβπ) & β’ πΉ = (LFnlβπ) & β’ πΎ = (Baseβπ·) & β’ Β· = (.rβπ·) & β’ 1 = (1rβπ·) & β’ (π β π β LMod) & β’ (π β πΊ β πΉ) β β’ (π β (πΊ βf Β· (π Γ { 1 })) = πΊ) | ||
Syntax | clk 38259 | Extend class notation with the kernel of a functional (set of vectors whose functional value is zero) on a left module or left vector space. |
class LKer | ||
Definition | df-lkr 38260* | Define the kernel of a functional (set of vectors whose functional value is zero) on a left module or left vector space. (Contributed by NM, 15-Apr-2014.) |
β’ LKer = (π€ β V β¦ (π β (LFnlβπ€) β¦ (β‘π β {(0gβ(Scalarβπ€))}))) | ||
Theorem | lkrfval 38261* | The kernel of a functional. (Contributed by NM, 15-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
β’ π· = (Scalarβπ) & β’ 0 = (0gβπ·) & β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) β β’ (π β π β πΎ = (π β πΉ β¦ (β‘π β { 0 }))) | ||
Theorem | lkrval 38262 | Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.) |
β’ π· = (Scalarβπ) & β’ 0 = (0gβπ·) & β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) β β’ ((π β π β§ πΊ β πΉ) β (πΎβπΊ) = (β‘πΊ β { 0 })) | ||
Theorem | ellkr 38263 | Membership in the kernel of a functional. (elnlfn 31449 analog.) (Contributed by NM, 16-Apr-2014.) |
β’ π = (Baseβπ) & β’ π· = (Scalarβπ) & β’ 0 = (0gβπ·) & β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) β β’ ((π β π β§ πΊ β πΉ) β (π β (πΎβπΊ) β (π β π β§ (πΊβπ) = 0 ))) | ||
Theorem | lkrval2 38264* | Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.) |
β’ π = (Baseβπ) & β’ π· = (Scalarβπ) & β’ 0 = (0gβπ·) & β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) β β’ ((π β π β§ πΊ β πΉ) β (πΎβπΊ) = {π₯ β π β£ (πΊβπ₯) = 0 }) | ||
Theorem | ellkr2 38265 | Membership in the kernel of a functional. (Contributed by NM, 12-Jan-2015.) |
β’ π = (Baseβπ) & β’ π· = (Scalarβπ) & β’ 0 = (0gβπ·) & β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) & β’ (π β π β π) & β’ (π β πΊ β πΉ) & β’ (π β π β π) β β’ (π β (π β (πΎβπΊ) β (πΊβπ) = 0 )) | ||
Theorem | lkrcl 38266 | A member of the kernel of a functional is a vector. (Contributed by NM, 16-Apr-2014.) |
β’ π = (Baseβπ) & β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) β β’ ((π β π β§ πΊ β πΉ β§ π β (πΎβπΊ)) β π β π) | ||
Theorem | lkrf0 38267 | The value of a functional at a member of its kernel is zero. (Contributed by NM, 16-Apr-2014.) |
β’ π· = (Scalarβπ) & β’ 0 = (0gβπ·) & β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) β β’ ((π β π β§ πΊ β πΉ β§ π β (πΎβπΊ)) β (πΊβπ) = 0 ) | ||
Theorem | lkr0f 38268 | The kernel of the zero functional is the set of all vectors. (Contributed by NM, 17-Apr-2014.) |
β’ π· = (Scalarβπ) & β’ 0 = (0gβπ·) & β’ π = (Baseβπ) & β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) β β’ ((π β LMod β§ πΊ β πΉ) β ((πΎβπΊ) = π β πΊ = (π Γ { 0 }))) | ||
Theorem | lkrlss 38269 | The kernel of a linear functional is a subspace. (nlelshi 31581 analog.) (Contributed by NM, 16-Apr-2014.) |
β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) & β’ π = (LSubSpβπ) β β’ ((π β LMod β§ πΊ β πΉ) β (πΎβπΊ) β π) | ||
Theorem | lkrssv 38270 | The kernel of a linear functional is a set of vectors. (Contributed by NM, 1-Jan-2015.) |
β’ π = (Baseβπ) & β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) & β’ (π β π β LMod) & β’ (π β πΊ β πΉ) β β’ (π β (πΎβπΊ) β π) | ||
Theorem | lkrsc 38271 | The kernel of a nonzero scalar product of a functional equals the kernel of the functional. (Contributed by NM, 9-Oct-2014.) |
β’ π = (Baseβπ) & β’ π· = (Scalarβπ) & β’ πΎ = (Baseβπ·) & β’ Β· = (.rβπ·) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β π β LVec) & β’ (π β πΊ β πΉ) & β’ (π β π β πΎ) & β’ 0 = (0gβπ·) & β’ (π β π β 0 ) β β’ (π β (πΏβ(πΊ βf Β· (π Γ {π }))) = (πΏβπΊ)) | ||
Theorem | lkrscss 38272 | The kernel of a scalar product of a functional includes the kernel of the functional. (The inclusion is proper for the zero product and equality otherwise.) (Contributed by NM, 9-Oct-2014.) |
β’ π = (Baseβπ) & β’ π· = (Scalarβπ) & β’ πΎ = (Baseβπ·) & β’ Β· = (.rβπ·) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β π β LVec) & β’ (π β πΊ β πΉ) & β’ (π β π β πΎ) β β’ (π β (πΏβπΊ) β (πΏβ(πΊ βf Β· (π Γ {π })))) | ||
Theorem | eqlkr 38273* | Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 18-Apr-2014.) |
β’ π· = (Scalarβπ) & β’ πΎ = (Baseβπ·) & β’ Β· = (.rβπ·) & β’ π = (Baseβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) β β’ ((π β LVec β§ (πΊ β πΉ β§ π» β πΉ) β§ (πΏβπΊ) = (πΏβπ»)) β βπ β πΎ βπ₯ β π (π»βπ₯) = ((πΊβπ₯) Β· π)) | ||
Theorem | eqlkr2 38274* | Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 10-Oct-2014.) |
β’ π· = (Scalarβπ) & β’ πΎ = (Baseβπ·) & β’ Β· = (.rβπ·) & β’ π = (Baseβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) β β’ ((π β LVec β§ (πΊ β πΉ β§ π» β πΉ) β§ (πΏβπΊ) = (πΏβπ»)) β βπ β πΎ π» = (πΊ βf Β· (π Γ {π}))) | ||
Theorem | eqlkr3 38275 | Two functionals with the same kernel are equal if they are equal at any nonzero value. (Contributed by NM, 2-Jan-2015.) |
β’ π = (Baseβπ) & β’ π = (Scalarβπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) & β’ (π β π β LVec) & β’ (π β π β π) & β’ (π β πΊ β πΉ) & β’ (π β π» β πΉ) & β’ (π β (πΎβπΊ) = (πΎβπ»)) & β’ (π β (πΊβπ) = (π»βπ)) & β’ (π β (πΊβπ) β 0 ) β β’ (π β πΊ = π») | ||
Theorem | lkrlsp 38276 | The subspace sum of a kernel and the span of a vector not in the kernel (by ellkr 38263) is the whole vector space. (Contributed by NM, 19-Apr-2014.) |
β’ π· = (Scalarβπ) & β’ 0 = (0gβπ·) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ β = (LSSumβπ) & β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) β β’ ((π β LVec β§ (π β π β§ πΊ β πΉ) β§ (πΊβπ) β 0 ) β ((πΎβπΊ) β (πβ{π})) = π) | ||
Theorem | lkrlsp2 38277 | The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 12-May-2014.) |
β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ β = (LSSumβπ) & β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) β β’ ((π β LVec β§ (π β π β§ πΊ β πΉ) β§ Β¬ π β (πΎβπΊ)) β ((πΎβπΊ) β (πβ{π})) = π) | ||
Theorem | lkrlsp3 38278 | The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 29-Jun-2014.) |
β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) β β’ ((π β LVec β§ (π β π β§ πΊ β πΉ) β§ Β¬ π β (πΎβπΊ)) β (πβ((πΎβπΊ) βͺ {π})) = π) | ||
Theorem | lkrshp 38279 | The kernel of a nonzero functional is a hyperplane. (Contributed by NM, 29-Jun-2014.) |
β’ π = (Baseβπ) & β’ π· = (Scalarβπ) & β’ 0 = (0gβπ·) & β’ π» = (LSHypβπ) & β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) β β’ ((π β LVec β§ πΊ β πΉ β§ πΊ β (π Γ { 0 })) β (πΎβπΊ) β π») | ||
Theorem | lkrshp3 38280 | The kernels of nonzero functionals are hyperplanes. (Contributed by NM, 17-Jul-2014.) |
β’ π = (Baseβπ) & β’ π· = (Scalarβπ) & β’ 0 = (0gβπ·) & β’ π» = (LSHypβπ) & β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) & β’ (π β π β LVec) & β’ (π β πΊ β πΉ) β β’ (π β ((πΎβπΊ) β π» β πΊ β (π Γ { 0 }))) | ||
Theorem | lkrshpor 38281 | The kernel of a functional is either a hyperplane or the full vector space. (Contributed by NM, 7-Oct-2014.) |
β’ π = (Baseβπ) & β’ π» = (LSHypβπ) & β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) & β’ (π β π β LVec) & β’ (π β πΊ β πΉ) β β’ (π β ((πΎβπΊ) β π» β¨ (πΎβπΊ) = π)) | ||
Theorem | lkrshp4 38282 | A kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014.) |
β’ π = (Baseβπ) & β’ π» = (LSHypβπ) & β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) & β’ (π β π β LVec) & β’ (π β πΊ β πΉ) β β’ (π β ((πΎβπΊ) β π β (πΎβπΊ) β π»)) | ||
Theorem | lshpsmreu 38283* | Lemma for lshpkrex 38292. Show uniqueness of ring multiplier π when a vector π is broken down into components, one in a hyperplane and the other outside of it . TODO: do we need the cbvrexv 3360 for π to π? (Contributed by NM, 4-Jan-2015.) |
β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ π = (LSpanβπ) & β’ β = (LSSumβπ) & β’ π» = (LSHypβπ) & β’ (π β π β LVec) & β’ (π β π β π») & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π β (πβ{π})) = π) & β’ π· = (Scalarβπ) & β’ πΎ = (Baseβπ·) & β’ Β· = ( Β·π βπ) β β’ (π β β!π β πΎ βπ¦ β π π = (π¦ + (π Β· π))) | ||
Theorem | lshpkrlem1 38284* | Lemma for lshpkrex 38292. The value of tentative functional πΊ is zero iff its argument belongs to hyperplane π. (Contributed by NM, 14-Jul-2014.) |
β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ π = (LSpanβπ) & β’ β = (LSSumβπ) & β’ π» = (LSHypβπ) & β’ (π β π β LVec) & β’ (π β π β π») & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π β (πβ{π})) = π) & β’ π· = (Scalarβπ) & β’ πΎ = (Baseβπ·) & β’ Β· = ( Β·π βπ) & β’ 0 = (0gβπ·) & β’ πΊ = (π₯ β π β¦ (β©π β πΎ βπ¦ β π π₯ = (π¦ + (π Β· π)))) β β’ (π β (π β π β (πΊβπ) = 0 )) | ||
Theorem | lshpkrlem2 38285* | Lemma for lshpkrex 38292. The value of tentative functional πΊ is a scalar. (Contributed by NM, 16-Jul-2014.) |
β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ π = (LSpanβπ) & β’ β = (LSSumβπ) & β’ π» = (LSHypβπ) & β’ (π β π β LVec) & β’ (π β π β π») & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π β (πβ{π})) = π) & β’ π· = (Scalarβπ) & β’ πΎ = (Baseβπ·) & β’ Β· = ( Β·π βπ) & β’ 0 = (0gβπ·) & β’ πΊ = (π₯ β π β¦ (β©π β πΎ βπ¦ β π π₯ = (π¦ + (π Β· π)))) β β’ (π β (πΊβπ) β πΎ) | ||
Theorem | lshpkrlem3 38286* | Lemma for lshpkrex 38292. Defining property of πΊβπ. (Contributed by NM, 15-Jul-2014.) |
β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ π = (LSpanβπ) & β’ β = (LSSumβπ) & β’ π» = (LSHypβπ) & β’ (π β π β LVec) & β’ (π β π β π») & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π β (πβ{π})) = π) & β’ π· = (Scalarβπ) & β’ πΎ = (Baseβπ·) & β’ Β· = ( Β·π βπ) & β’ 0 = (0gβπ·) & β’ πΊ = (π₯ β π β¦ (β©π β πΎ βπ¦ β π π₯ = (π¦ + (π Β· π)))) β β’ (π β βπ§ β π π = (π§ + ((πΊβπ) Β· π))) | ||
Theorem | lshpkrlem4 38287* | Lemma for lshpkrex 38292. Part of showing linearity of πΊ. (Contributed by NM, 16-Jul-2014.) |
β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ π = (LSpanβπ) & β’ β = (LSSumβπ) & β’ π» = (LSHypβπ) & β’ (π β π β LVec) & β’ (π β π β π») & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π β (πβ{π})) = π) & β’ π· = (Scalarβπ) & β’ πΎ = (Baseβπ·) & β’ Β· = ( Β·π βπ) & β’ 0 = (0gβπ·) & β’ πΊ = (π₯ β π β¦ (β©π β πΎ βπ¦ β π π₯ = (π¦ + (π Β· π)))) β β’ (((π β§ π β πΎ β§ π’ β π) β§ (π£ β π β§ π β π β§ π β π) β§ (π’ = (π + ((πΊβπ’) Β· π)) β§ π£ = (π + ((πΊβπ£) Β· π)))) β ((π Β· π’) + π£) = (((π Β· π) + π ) + (((π(.rβπ·)(πΊβπ’))(+gβπ·)(πΊβπ£)) Β· π))) | ||
Theorem | lshpkrlem5 38288* | Lemma for lshpkrex 38292. Part of showing linearity of πΊ. (Contributed by NM, 16-Jul-2014.) |
β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ π = (LSpanβπ) & β’ β = (LSSumβπ) & β’ π» = (LSHypβπ) & β’ (π β π β LVec) & β’ (π β π β π») & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π β (πβ{π})) = π) & β’ π· = (Scalarβπ) & β’ πΎ = (Baseβπ·) & β’ Β· = ( Β·π βπ) & β’ 0 = (0gβπ·) & β’ πΊ = (π₯ β π β¦ (β©π β πΎ βπ¦ β π π₯ = (π¦ + (π Β· π)))) β β’ (((π β§ π β πΎ β§ π’ β π) β§ (π£ β π β§ π β π β§ (π β π β§ π§ β π)) β§ (π’ = (π + ((πΊβπ’) Β· π)) β§ π£ = (π + ((πΊβπ£) Β· π)) β§ ((π Β· π’) + π£) = (π§ + ((πΊβ((π Β· π’) + π£)) Β· π)))) β (πΊβ((π Β· π’) + π£)) = ((π(.rβπ·)(πΊβπ’))(+gβπ·)(πΊβπ£))) | ||
Theorem | lshpkrlem6 38289* | Lemma for lshpkrex 38292. Show linearlity of πΊ. (Contributed by NM, 17-Jul-2014.) |
β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ π = (LSpanβπ) & β’ β = (LSSumβπ) & β’ π» = (LSHypβπ) & β’ (π β π β LVec) & β’ (π β π β π») & β’ (π β π β π) & β’ (π β π β π) & β’ (π β (π β (πβ{π})) = π) & β’ π· = (Scalarβπ) & β’ πΎ = (Baseβπ·) & β’ Β· = ( Β·π βπ) & β’ 0 = (0gβπ·) & β’ πΊ = (π₯ β π β¦ (β©π β πΎ βπ¦ β π π₯ = (π¦ + (π Β· π)))) β β’ ((π β§ (π β πΎ β§ π’ β π β§ π£ β π)) β (πΊβ((π Β· π’) + π£)) = ((π(.rβπ·)(πΊβπ’))(+gβπ·)(πΊβπ£))) | ||
Theorem | lshpkrcl 38290* | The set πΊ defined by hyperplane π is a linear functional. (Contributed by NM, 17-Jul-2014.) |
β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ π = (LSpanβπ) & β’ β = (LSSumβπ) & β’ π» = (LSHypβπ) & β’ (π β π β LVec) & β’ (π β π β π») & β’ (π β π β π) & β’ (π β (π β (πβ{π})) = π) & β’ π· = (Scalarβπ) & β’ πΎ = (Baseβπ·) & β’ Β· = ( Β·π βπ) & β’ πΊ = (π₯ β π β¦ (β©π β πΎ βπ¦ β π π₯ = (π¦ + (π Β· π)))) & β’ πΉ = (LFnlβπ) β β’ (π β πΊ β πΉ) | ||
Theorem | lshpkr 38291* | The kernel of functional πΊ is the hyperplane defining it. (Contributed by NM, 17-Jul-2014.) |
β’ π = (Baseβπ) & β’ + = (+gβπ) & β’ π = (LSpanβπ) & β’ β = (LSSumβπ) & β’ π» = (LSHypβπ) & β’ (π β π β LVec) & β’ (π β π β π») & β’ (π β π β π) & β’ (π β (π β (πβ{π})) = π) & β’ π· = (Scalarβπ) & β’ πΎ = (Baseβπ·) & β’ Β· = ( Β·π βπ) & β’ πΊ = (π₯ β π β¦ (β©π β πΎ βπ¦ β π π₯ = (π¦ + (π Β· π)))) & β’ πΏ = (LKerβπ) β β’ (π β (πΏβπΊ) = π) | ||
Theorem | lshpkrex 38292* | There exists a functional whose kernel equals a given hyperplane. Part of Th. 1.27 of Barbu and Precupanu, Convexity and Optimization in Banach Spaces. (Contributed by NM, 17-Jul-2014.) |
β’ π» = (LSHypβπ) & β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) β β’ ((π β LVec β§ π β π») β βπ β πΉ (πΎβπ) = π) | ||
Theorem | lshpset2N 38293* | The set of all hyperplanes of a left module or left vector space equals the set of all kernels of nonzero functionals. (Contributed by NM, 17-Jul-2014.) (New usage is discouraged.) |
β’ π = (Baseβπ) & β’ π· = (Scalarβπ) & β’ 0 = (0gβπ·) & β’ π» = (LSHypβπ) & β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) β β’ (π β LVec β π» = {π β£ βπ β πΉ (π β (π Γ { 0 }) β§ π = (πΎβπ))}) | ||
Theorem | islshpkrN 38294* | The predicate "is a hyperplane" (of a left module or left vector space). TODO: should it be π = (πΎβπ) or (πΎβπ) = π as in lshpkrex 38292? Both standards seem to be used randomly throughout set.mm; we should decide on a preferred one. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.) |
β’ π = (Baseβπ) & β’ π· = (Scalarβπ) & β’ 0 = (0gβπ·) & β’ π» = (LSHypβπ) & β’ πΉ = (LFnlβπ) & β’ πΎ = (LKerβπ) β β’ (π β LVec β (π β π» β βπ β πΉ (π β (π Γ { 0 }) β§ π = (πΎβπ)))) | ||
Theorem | lfl1dim 38295* | Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.) |
β’ π = (Baseβπ) & β’ π· = (Scalarβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ πΎ = (Baseβπ·) & β’ Β· = (.rβπ·) & β’ (π β π β LVec) & β’ (π β πΊ β πΉ) β β’ (π β {π β πΉ β£ (πΏβπΊ) β (πΏβπ)} = {π β£ βπ β πΎ π = (πΊ βf Β· (π Γ {π}))}) | ||
Theorem | lfl1dim2N 38296* | Equivalent expressions for a 1-dim subspace (ray) of functionals. TODO: delete this if not useful; lfl1dim 38295 may be more compatible with lspsn 20758. (Contributed by NM, 24-Oct-2014.) (New usage is discouraged.) |
β’ π = (Baseβπ) & β’ π· = (Scalarβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ πΎ = (Baseβπ·) & β’ Β· = (.rβπ·) & β’ (π β π β LVec) & β’ (π β πΊ β πΉ) β β’ (π β {π β πΉ β£ (πΏβπΊ) β (πΏβπ)} = {π β πΉ β£ βπ β πΎ π = (πΊ βf Β· (π Γ {π}))}) | ||
Syntax | cld 38297 | Extend class notation with left dualvector space. |
class LDual | ||
Definition | df-ldual 38298* | Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in [Holland95] p. 218. This allows to reuse our existing collection of left vector space theorems. The restriction on βf (+gβπ£) allows it to be a set; see ofmres 7975. Note the operation reversal in the scalar product to allow to use the original scalar ring instead of the oppr ring, for convenience. (Contributed by NM, 18-Oct-2014.) |
β’ LDual = (π£ β V β¦ ({β¨(Baseβndx), (LFnlβπ£)β©, β¨(+gβndx), ( βf (+gβ(Scalarβπ£)) βΎ ((LFnlβπ£) Γ (LFnlβπ£)))β©, β¨(Scalarβndx), (opprβ(Scalarβπ£))β©} βͺ {β¨( Β·π βndx), (π β (Baseβ(Scalarβπ£)), π β (LFnlβπ£) β¦ (π βf (.rβ(Scalarβπ£))((Baseβπ£) Γ {π})))β©})) | ||
Theorem | ldualset 38299* | Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in [Holland95] p. 218. This allows to reuse our existing collection of left vector space theorems. Note the operation reversal in the scalar product to allow to use the original scalar ring instead of the oppr ring, for convenience. (Contributed by NM, 18-Oct-2014.) |
β’ π = (Baseβπ) & β’ + = (+gβπ ) & β’ β = ( βf + βΎ (πΉ Γ πΉ)) & β’ πΉ = (LFnlβπ) & β’ π· = (LDualβπ) & β’ π = (Scalarβπ) & β’ πΎ = (Baseβπ ) & β’ Β· = (.rβπ ) & β’ π = (opprβπ ) & β’ β = (π β πΎ, π β πΉ β¦ (π βf Β· (π Γ {π}))) & β’ (π β π β π) β β’ (π β π· = ({β¨(Baseβndx), πΉβ©, β¨(+gβndx), β β©, β¨(Scalarβndx), πβ©} βͺ {β¨( Β·π βndx), β β©})) | ||
Theorem | ldualvbase 38300 | The vectors of a dual space are functionals of the original space. (Contributed by NM, 18-Oct-2014.) |
β’ πΉ = (LFnlβπ) & β’ π· = (LDualβπ) & β’ π = (Baseβπ·) & β’ (π β π β π) β β’ (π β π = πΉ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |