![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofmres | Structured version Visualization version GIF version |
Description: Equivalent expressions for a restriction of the function operation map. Unlike ∘f 𝑅 which is a proper class, ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) can be a set by ofmresex 7968, allowing it to be used as a function or structure argument. By ofmresval 7682, the restricted operation map values are the same as the original values, allowing theorems for ∘f 𝑅 to be reused. (Contributed by NM, 20-Oct-2014.) |
Ref | Expression |
---|---|
ofmres | ⊢ ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘f 𝑅𝑔)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 4005 | . . 3 ⊢ 𝐴 ⊆ V | |
2 | ssv 4005 | . . 3 ⊢ 𝐵 ⊆ V | |
3 | resmpo 7524 | . . 3 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))))) | |
4 | 1, 2, 3 | mp2an 690 | . 2 ⊢ ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
5 | df-of 7666 | . . 3 ⊢ ∘f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
6 | 5 | reseq1i 5975 | . 2 ⊢ ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) = ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) ↾ (𝐴 × 𝐵)) |
7 | eqid 2732 | . . 3 ⊢ 𝐴 = 𝐴 | |
8 | eqid 2732 | . . 3 ⊢ 𝐵 = 𝐵 | |
9 | vex 3478 | . . . 4 ⊢ 𝑓 ∈ V | |
10 | vex 3478 | . . . 4 ⊢ 𝑔 ∈ V | |
11 | 9 | dmex 7898 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
12 | 11 | inex1 5316 | . . . . 5 ⊢ (dom 𝑓 ∩ dom 𝑔) ∈ V |
13 | 12 | mptex 7221 | . . . 4 ⊢ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) ∈ V |
14 | 5 | ovmpt4g 7551 | . . . 4 ⊢ ((𝑓 ∈ V ∧ 𝑔 ∈ V ∧ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) ∈ V) → (𝑓 ∘f 𝑅𝑔) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
15 | 9, 10, 13, 14 | mp3an 1461 | . . 3 ⊢ (𝑓 ∘f 𝑅𝑔) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) |
16 | 7, 8, 15 | mpoeq123i 7481 | . 2 ⊢ (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘f 𝑅𝑔)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
17 | 4, 6, 16 | 3eqtr4i 2770 | 1 ⊢ ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘f 𝑅𝑔)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∩ cin 3946 ⊆ wss 3947 ↦ cmpt 5230 × cxp 5673 dom cdm 5675 ↾ cres 5677 ‘cfv 6540 (class class class)co 7405 ∈ cmpo 7407 ∘f cof 7664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 |
This theorem is referenced by: mplsubrglem 21554 psrplusgpropd 21749 ofoafg 42089 naddcnff 42097 |
Copyright terms: Public domain | W3C validator |