| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofmres | Structured version Visualization version GIF version | ||
| Description: Equivalent expressions for a restriction of the function operation map. Unlike ∘f 𝑅 which is a proper class, ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) can be a set by ofmresex 7992, allowing it to be used as a function or structure argument. By ofmresval 7695, the restricted operation map values are the same as the original values, allowing theorems for ∘f 𝑅 to be reused. (Contributed by NM, 20-Oct-2014.) |
| Ref | Expression |
|---|---|
| ofmres | ⊢ ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘f 𝑅𝑔)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3988 | . . 3 ⊢ 𝐴 ⊆ V | |
| 2 | ssv 3988 | . . 3 ⊢ 𝐵 ⊆ V | |
| 3 | resmpo 7535 | . . 3 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))))) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
| 5 | df-of 7679 | . . 3 ⊢ ∘f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
| 6 | 5 | reseq1i 5973 | . 2 ⊢ ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) = ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) ↾ (𝐴 × 𝐵)) |
| 7 | eqid 2734 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 8 | eqid 2734 | . . 3 ⊢ 𝐵 = 𝐵 | |
| 9 | vex 3467 | . . . 4 ⊢ 𝑓 ∈ V | |
| 10 | vex 3467 | . . . 4 ⊢ 𝑔 ∈ V | |
| 11 | 9 | dmex 7913 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
| 12 | 11 | inex1 5297 | . . . . 5 ⊢ (dom 𝑓 ∩ dom 𝑔) ∈ V |
| 13 | 12 | mptex 7225 | . . . 4 ⊢ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) ∈ V |
| 14 | 5 | ovmpt4g 7562 | . . . 4 ⊢ ((𝑓 ∈ V ∧ 𝑔 ∈ V ∧ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) ∈ V) → (𝑓 ∘f 𝑅𝑔) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
| 15 | 9, 10, 13, 14 | mp3an 1462 | . . 3 ⊢ (𝑓 ∘f 𝑅𝑔) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) |
| 16 | 7, 8, 15 | mpoeq123i 7491 | . 2 ⊢ (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘f 𝑅𝑔)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
| 17 | 4, 6, 16 | 3eqtr4i 2767 | 1 ⊢ ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘f 𝑅𝑔)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∩ cin 3930 ⊆ wss 3931 ↦ cmpt 5205 × cxp 5663 dom cdm 5665 ↾ cres 5667 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 ∘f cof 7677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 |
| This theorem is referenced by: mplsubrglem 21978 psrplusgpropd 22185 ofoafg 43329 naddcnff 43337 |
| Copyright terms: Public domain | W3C validator |