MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofmres Structured version   Visualization version   GIF version

Theorem ofmres 7687
Description: Equivalent expressions for a restriction of the function operation map. Unlike f 𝑅 which is a proper class, ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) can be a set by ofmresex 7688, allowing it to be used as a function or structure argument. By ofmresval 7424, the restricted operation map values are the same as the original values, allowing theorems for f 𝑅 to be reused. (Contributed by NM, 20-Oct-2014.)
Assertion
Ref Expression
ofmres ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑓f 𝑅𝑔))
Distinct variable groups:   𝑓,𝑔,𝐴   𝐵,𝑓,𝑔   𝑅,𝑓,𝑔

Proof of Theorem ofmres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssv 3993 . . 3 𝐴 ⊆ V
2 ssv 3993 . . 3 𝐵 ⊆ V
3 resmpo 7274 . . 3 ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))))
41, 2, 3mp2an 690 . 2 ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
5 df-of 7411 . . 3 f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
65reseq1i 5851 . 2 ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) = ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) ↾ (𝐴 × 𝐵))
7 eqid 2823 . . 3 𝐴 = 𝐴
8 eqid 2823 . . 3 𝐵 = 𝐵
9 vex 3499 . . . 4 𝑓 ∈ V
10 vex 3499 . . . 4 𝑔 ∈ V
119dmex 7618 . . . . . 6 dom 𝑓 ∈ V
1211inex1 5223 . . . . 5 (dom 𝑓 ∩ dom 𝑔) ∈ V
1312mptex 6988 . . . 4 (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) ∈ V
145ovmpt4g 7299 . . . 4 ((𝑓 ∈ V ∧ 𝑔 ∈ V ∧ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) ∈ V) → (𝑓f 𝑅𝑔) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
159, 10, 13, 14mp3an 1457 . . 3 (𝑓f 𝑅𝑔) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))
167, 8, 15mpoeq123i 7232 . 2 (𝑓𝐴, 𝑔𝐵 ↦ (𝑓f 𝑅𝑔)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
174, 6, 163eqtr4i 2856 1 ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑓f 𝑅𝑔))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2114  Vcvv 3496  cin 3937  wss 3938  cmpt 5148   × cxp 5555  dom cdm 5557  cres 5559  cfv 6357  (class class class)co 7158  cmpo 7160  f cof 7409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411
This theorem is referenced by:  mplsubrglem  20221  psrplusgpropd  20406
  Copyright terms: Public domain W3C validator