Step | Hyp | Ref
| Expression |
1 | | cleg 27822 |
. 2
class
β€G |
2 | | vg |
. . 3
setvar π |
3 | | cvv 3474 |
. . 3
class
V |
4 | | vf |
. . . . . . . . . . . 12
setvar π |
5 | 4 | cv 1540 |
. . . . . . . . . . 11
class π |
6 | | vx |
. . . . . . . . . . . . 13
setvar π₯ |
7 | 6 | cv 1540 |
. . . . . . . . . . . 12
class π₯ |
8 | | vy |
. . . . . . . . . . . . 13
setvar π¦ |
9 | 8 | cv 1540 |
. . . . . . . . . . . 12
class π¦ |
10 | | vd |
. . . . . . . . . . . . 13
setvar π |
11 | 10 | cv 1540 |
. . . . . . . . . . . 12
class π |
12 | 7, 9, 11 | co 7405 |
. . . . . . . . . . 11
class (π₯ππ¦) |
13 | 5, 12 | wceq 1541 |
. . . . . . . . . 10
wff π = (π₯ππ¦) |
14 | | vz |
. . . . . . . . . . . . . 14
setvar π§ |
15 | 14 | cv 1540 |
. . . . . . . . . . . . 13
class π§ |
16 | | vi |
. . . . . . . . . . . . . . 15
setvar π |
17 | 16 | cv 1540 |
. . . . . . . . . . . . . 14
class π |
18 | 7, 9, 17 | co 7405 |
. . . . . . . . . . . . 13
class (π₯ππ¦) |
19 | 15, 18 | wcel 2106 |
. . . . . . . . . . . 12
wff π§ β (π₯ππ¦) |
20 | | ve |
. . . . . . . . . . . . . 14
setvar π |
21 | 20 | cv 1540 |
. . . . . . . . . . . . 13
class π |
22 | 7, 15, 11 | co 7405 |
. . . . . . . . . . . . 13
class (π₯ππ§) |
23 | 21, 22 | wceq 1541 |
. . . . . . . . . . . 12
wff π = (π₯ππ§) |
24 | 19, 23 | wa 396 |
. . . . . . . . . . 11
wff (π§ β (π₯ππ¦) β§ π = (π₯ππ§)) |
25 | | vp |
. . . . . . . . . . . 12
setvar π |
26 | 25 | cv 1540 |
. . . . . . . . . . 11
class π |
27 | 24, 14, 26 | wrex 3070 |
. . . . . . . . . 10
wff
βπ§ β
π (π§ β (π₯ππ¦) β§ π = (π₯ππ§)) |
28 | 13, 27 | wa 396 |
. . . . . . . . 9
wff (π = (π₯ππ¦) β§ βπ§ β π (π§ β (π₯ππ¦) β§ π = (π₯ππ§))) |
29 | 28, 8, 26 | wrex 3070 |
. . . . . . . 8
wff
βπ¦ β
π (π = (π₯ππ¦) β§ βπ§ β π (π§ β (π₯ππ¦) β§ π = (π₯ππ§))) |
30 | 29, 6, 26 | wrex 3070 |
. . . . . . 7
wff
βπ₯ β
π βπ¦ β π (π = (π₯ππ¦) β§ βπ§ β π (π§ β (π₯ππ¦) β§ π = (π₯ππ§))) |
31 | 2 | cv 1540 |
. . . . . . . 8
class π |
32 | | citv 27673 |
. . . . . . . 8
class
Itv |
33 | 31, 32 | cfv 6540 |
. . . . . . 7
class
(Itvβπ) |
34 | 30, 16, 33 | wsbc 3776 |
. . . . . 6
wff
[(Itvβπ) / π]βπ₯ β π βπ¦ β π (π = (π₯ππ¦) β§ βπ§ β π (π§ β (π₯ππ¦) β§ π = (π₯ππ§))) |
35 | | cds 17202 |
. . . . . . 7
class
dist |
36 | 31, 35 | cfv 6540 |
. . . . . 6
class
(distβπ) |
37 | 34, 10, 36 | wsbc 3776 |
. . . . 5
wff
[(distβπ) / π][(Itvβπ) / π]βπ₯ β π βπ¦ β π (π = (π₯ππ¦) β§ βπ§ β π (π§ β (π₯ππ¦) β§ π = (π₯ππ§))) |
38 | | cbs 17140 |
. . . . . 6
class
Base |
39 | 31, 38 | cfv 6540 |
. . . . 5
class
(Baseβπ) |
40 | 37, 25, 39 | wsbc 3776 |
. . . 4
wff
[(Baseβπ) / π][(distβπ) / π][(Itvβπ) / π]βπ₯ β π βπ¦ β π (π = (π₯ππ¦) β§ βπ§ β π (π§ β (π₯ππ¦) β§ π = (π₯ππ§))) |
41 | 40, 20, 4 | copab 5209 |
. . 3
class
{β¨π, πβ© β£
[(Baseβπ) /
π][(distβπ) / π][(Itvβπ) / π]βπ₯ β π βπ¦ β π (π = (π₯ππ¦) β§ βπ§ β π (π§ β (π₯ππ¦) β§ π = (π₯ππ§)))} |
42 | 2, 3, 41 | cmpt 5230 |
. 2
class (π β V β¦ {β¨π, πβ© β£ [(Baseβπ) / π][(distβπ) / π][(Itvβπ) / π]βπ₯ β π βπ¦ β π (π = (π₯ππ¦) β§ βπ§ β π (π§ β (π₯ππ¦) β§ π = (π₯ππ§)))}) |
43 | 1, 42 | wceq 1541 |
1
wff β€G =
(π β V β¦
{β¨π, πβ© β£
[(Baseβπ) /
π][(distβπ) / π][(Itvβπ) / π]βπ₯ β π βπ¦ β π (π = (π₯ππ¦) β§ βπ§ β π (π§ β (π₯ππ¦) β§ π = (π₯ππ§)))}) |