Detailed syntax breakdown of Definition df-leg
| Step | Hyp | Ref
| Expression |
| 1 | | cleg 28590 |
. 2
class
≤G |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vf |
. . . . . . . . . . . 12
setvar 𝑓 |
| 5 | 4 | cv 1539 |
. . . . . . . . . . 11
class 𝑓 |
| 6 | | vx |
. . . . . . . . . . . . 13
setvar 𝑥 |
| 7 | 6 | cv 1539 |
. . . . . . . . . . . 12
class 𝑥 |
| 8 | | vy |
. . . . . . . . . . . . 13
setvar 𝑦 |
| 9 | 8 | cv 1539 |
. . . . . . . . . . . 12
class 𝑦 |
| 10 | | vd |
. . . . . . . . . . . . 13
setvar 𝑑 |
| 11 | 10 | cv 1539 |
. . . . . . . . . . . 12
class 𝑑 |
| 12 | 7, 9, 11 | co 7431 |
. . . . . . . . . . 11
class (𝑥𝑑𝑦) |
| 13 | 5, 12 | wceq 1540 |
. . . . . . . . . 10
wff 𝑓 = (𝑥𝑑𝑦) |
| 14 | | vz |
. . . . . . . . . . . . . 14
setvar 𝑧 |
| 15 | 14 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑧 |
| 16 | | vi |
. . . . . . . . . . . . . . 15
setvar 𝑖 |
| 17 | 16 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑖 |
| 18 | 7, 9, 17 | co 7431 |
. . . . . . . . . . . . 13
class (𝑥𝑖𝑦) |
| 19 | 15, 18 | wcel 2108 |
. . . . . . . . . . . 12
wff 𝑧 ∈ (𝑥𝑖𝑦) |
| 20 | | ve |
. . . . . . . . . . . . . 14
setvar 𝑒 |
| 21 | 20 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑒 |
| 22 | 7, 15, 11 | co 7431 |
. . . . . . . . . . . . 13
class (𝑥𝑑𝑧) |
| 23 | 21, 22 | wceq 1540 |
. . . . . . . . . . . 12
wff 𝑒 = (𝑥𝑑𝑧) |
| 24 | 19, 23 | wa 395 |
. . . . . . . . . . 11
wff (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧)) |
| 25 | | vp |
. . . . . . . . . . . 12
setvar 𝑝 |
| 26 | 25 | cv 1539 |
. . . . . . . . . . 11
class 𝑝 |
| 27 | 24, 14, 26 | wrex 3070 |
. . . . . . . . . 10
wff
∃𝑧 ∈
𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧)) |
| 28 | 13, 27 | wa 395 |
. . . . . . . . 9
wff (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧 ∈ 𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧))) |
| 29 | 28, 8, 26 | wrex 3070 |
. . . . . . . 8
wff
∃𝑦 ∈
𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧 ∈ 𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧))) |
| 30 | 29, 6, 26 | wrex 3070 |
. . . . . . 7
wff
∃𝑥 ∈
𝑝 ∃𝑦 ∈ 𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧 ∈ 𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧))) |
| 31 | 2 | cv 1539 |
. . . . . . . 8
class 𝑔 |
| 32 | | citv 28441 |
. . . . . . . 8
class
Itv |
| 33 | 31, 32 | cfv 6561 |
. . . . . . 7
class
(Itv‘𝑔) |
| 34 | 30, 16, 33 | wsbc 3788 |
. . . . . 6
wff
[(Itv‘𝑔) / 𝑖]∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧 ∈ 𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧))) |
| 35 | | cds 17306 |
. . . . . . 7
class
dist |
| 36 | 31, 35 | cfv 6561 |
. . . . . 6
class
(dist‘𝑔) |
| 37 | 34, 10, 36 | wsbc 3788 |
. . . . 5
wff
[(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧 ∈ 𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧))) |
| 38 | | cbs 17247 |
. . . . . 6
class
Base |
| 39 | 31, 38 | cfv 6561 |
. . . . 5
class
(Base‘𝑔) |
| 40 | 37, 25, 39 | wsbc 3788 |
. . . 4
wff
[(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧 ∈ 𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧))) |
| 41 | 40, 20, 4 | copab 5205 |
. . 3
class
{〈𝑒, 𝑓〉 ∣
[(Base‘𝑔) /
𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧 ∈ 𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧)))} |
| 42 | 2, 3, 41 | cmpt 5225 |
. 2
class (𝑔 ∈ V ↦ {〈𝑒, 𝑓〉 ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧 ∈ 𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧)))}) |
| 43 | 1, 42 | wceq 1540 |
1
wff ≤G =
(𝑔 ∈ V ↦
{〈𝑒, 𝑓〉 ∣
[(Base‘𝑔) /
𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧 ∈ 𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧)))}) |