MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-leg Structured version   Visualization version   GIF version

Definition df-leg 27823
Description: Define the less-than relationship between geometric distance congruence classes. See legval 27824. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Assertion
Ref Expression
df-leg ≀G = (𝑔 ∈ V ↦ {βŸ¨π‘’, π‘“βŸ© ∣ [(Baseβ€˜π‘”) / 𝑝][(distβ€˜π‘”) / 𝑑][(Itvβ€˜π‘”) / 𝑖]βˆƒπ‘₯ ∈ 𝑝 βˆƒπ‘¦ ∈ 𝑝 (𝑓 = (π‘₯𝑑𝑦) ∧ βˆƒπ‘§ ∈ 𝑝 (𝑧 ∈ (π‘₯𝑖𝑦) ∧ 𝑒 = (π‘₯𝑑𝑧)))})
Distinct variable group:   𝑒,𝑑,𝑓,𝑔,𝑖,𝑝,π‘₯,𝑦,𝑧

Detailed syntax breakdown of Definition df-leg
StepHypRef Expression
1 cleg 27822 . 2 class ≀G
2 vg . . 3 setvar 𝑔
3 cvv 3474 . . 3 class V
4 vf . . . . . . . . . . . 12 setvar 𝑓
54cv 1540 . . . . . . . . . . 11 class 𝑓
6 vx . . . . . . . . . . . . 13 setvar π‘₯
76cv 1540 . . . . . . . . . . . 12 class π‘₯
8 vy . . . . . . . . . . . . 13 setvar 𝑦
98cv 1540 . . . . . . . . . . . 12 class 𝑦
10 vd . . . . . . . . . . . . 13 setvar 𝑑
1110cv 1540 . . . . . . . . . . . 12 class 𝑑
127, 9, 11co 7405 . . . . . . . . . . 11 class (π‘₯𝑑𝑦)
135, 12wceq 1541 . . . . . . . . . 10 wff 𝑓 = (π‘₯𝑑𝑦)
14 vz . . . . . . . . . . . . . 14 setvar 𝑧
1514cv 1540 . . . . . . . . . . . . 13 class 𝑧
16 vi . . . . . . . . . . . . . . 15 setvar 𝑖
1716cv 1540 . . . . . . . . . . . . . 14 class 𝑖
187, 9, 17co 7405 . . . . . . . . . . . . 13 class (π‘₯𝑖𝑦)
1915, 18wcel 2106 . . . . . . . . . . . 12 wff 𝑧 ∈ (π‘₯𝑖𝑦)
20 ve . . . . . . . . . . . . . 14 setvar 𝑒
2120cv 1540 . . . . . . . . . . . . 13 class 𝑒
227, 15, 11co 7405 . . . . . . . . . . . . 13 class (π‘₯𝑑𝑧)
2321, 22wceq 1541 . . . . . . . . . . . 12 wff 𝑒 = (π‘₯𝑑𝑧)
2419, 23wa 396 . . . . . . . . . . 11 wff (𝑧 ∈ (π‘₯𝑖𝑦) ∧ 𝑒 = (π‘₯𝑑𝑧))
25 vp . . . . . . . . . . . 12 setvar 𝑝
2625cv 1540 . . . . . . . . . . 11 class 𝑝
2724, 14, 26wrex 3070 . . . . . . . . . 10 wff βˆƒπ‘§ ∈ 𝑝 (𝑧 ∈ (π‘₯𝑖𝑦) ∧ 𝑒 = (π‘₯𝑑𝑧))
2813, 27wa 396 . . . . . . . . 9 wff (𝑓 = (π‘₯𝑑𝑦) ∧ βˆƒπ‘§ ∈ 𝑝 (𝑧 ∈ (π‘₯𝑖𝑦) ∧ 𝑒 = (π‘₯𝑑𝑧)))
2928, 8, 26wrex 3070 . . . . . . . 8 wff βˆƒπ‘¦ ∈ 𝑝 (𝑓 = (π‘₯𝑑𝑦) ∧ βˆƒπ‘§ ∈ 𝑝 (𝑧 ∈ (π‘₯𝑖𝑦) ∧ 𝑒 = (π‘₯𝑑𝑧)))
3029, 6, 26wrex 3070 . . . . . . 7 wff βˆƒπ‘₯ ∈ 𝑝 βˆƒπ‘¦ ∈ 𝑝 (𝑓 = (π‘₯𝑑𝑦) ∧ βˆƒπ‘§ ∈ 𝑝 (𝑧 ∈ (π‘₯𝑖𝑦) ∧ 𝑒 = (π‘₯𝑑𝑧)))
312cv 1540 . . . . . . . 8 class 𝑔
32 citv 27673 . . . . . . . 8 class Itv
3331, 32cfv 6540 . . . . . . 7 class (Itvβ€˜π‘”)
3430, 16, 33wsbc 3776 . . . . . 6 wff [(Itvβ€˜π‘”) / 𝑖]βˆƒπ‘₯ ∈ 𝑝 βˆƒπ‘¦ ∈ 𝑝 (𝑓 = (π‘₯𝑑𝑦) ∧ βˆƒπ‘§ ∈ 𝑝 (𝑧 ∈ (π‘₯𝑖𝑦) ∧ 𝑒 = (π‘₯𝑑𝑧)))
35 cds 17202 . . . . . . 7 class dist
3631, 35cfv 6540 . . . . . 6 class (distβ€˜π‘”)
3734, 10, 36wsbc 3776 . . . . 5 wff [(distβ€˜π‘”) / 𝑑][(Itvβ€˜π‘”) / 𝑖]βˆƒπ‘₯ ∈ 𝑝 βˆƒπ‘¦ ∈ 𝑝 (𝑓 = (π‘₯𝑑𝑦) ∧ βˆƒπ‘§ ∈ 𝑝 (𝑧 ∈ (π‘₯𝑖𝑦) ∧ 𝑒 = (π‘₯𝑑𝑧)))
38 cbs 17140 . . . . . 6 class Base
3931, 38cfv 6540 . . . . 5 class (Baseβ€˜π‘”)
4037, 25, 39wsbc 3776 . . . 4 wff [(Baseβ€˜π‘”) / 𝑝][(distβ€˜π‘”) / 𝑑][(Itvβ€˜π‘”) / 𝑖]βˆƒπ‘₯ ∈ 𝑝 βˆƒπ‘¦ ∈ 𝑝 (𝑓 = (π‘₯𝑑𝑦) ∧ βˆƒπ‘§ ∈ 𝑝 (𝑧 ∈ (π‘₯𝑖𝑦) ∧ 𝑒 = (π‘₯𝑑𝑧)))
4140, 20, 4copab 5209 . . 3 class {βŸ¨π‘’, π‘“βŸ© ∣ [(Baseβ€˜π‘”) / 𝑝][(distβ€˜π‘”) / 𝑑][(Itvβ€˜π‘”) / 𝑖]βˆƒπ‘₯ ∈ 𝑝 βˆƒπ‘¦ ∈ 𝑝 (𝑓 = (π‘₯𝑑𝑦) ∧ βˆƒπ‘§ ∈ 𝑝 (𝑧 ∈ (π‘₯𝑖𝑦) ∧ 𝑒 = (π‘₯𝑑𝑧)))}
422, 3, 41cmpt 5230 . 2 class (𝑔 ∈ V ↦ {βŸ¨π‘’, π‘“βŸ© ∣ [(Baseβ€˜π‘”) / 𝑝][(distβ€˜π‘”) / 𝑑][(Itvβ€˜π‘”) / 𝑖]βˆƒπ‘₯ ∈ 𝑝 βˆƒπ‘¦ ∈ 𝑝 (𝑓 = (π‘₯𝑑𝑦) ∧ βˆƒπ‘§ ∈ 𝑝 (𝑧 ∈ (π‘₯𝑖𝑦) ∧ 𝑒 = (π‘₯𝑑𝑧)))})
431, 42wceq 1541 1 wff ≀G = (𝑔 ∈ V ↦ {βŸ¨π‘’, π‘“βŸ© ∣ [(Baseβ€˜π‘”) / 𝑝][(distβ€˜π‘”) / 𝑑][(Itvβ€˜π‘”) / 𝑖]βˆƒπ‘₯ ∈ 𝑝 βˆƒπ‘¦ ∈ 𝑝 (𝑓 = (π‘₯𝑑𝑦) ∧ βˆƒπ‘§ ∈ 𝑝 (𝑧 ∈ (π‘₯𝑖𝑦) ∧ 𝑒 = (π‘₯𝑑𝑧)))})
Colors of variables: wff setvar class
This definition is referenced by:  legval  27824
  Copyright terms: Public domain W3C validator