Step | Hyp | Ref
| Expression |
1 | | legval.l |
. 2
⊢ ≤ =
(≤G‘𝐺) |
2 | | legval.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
3 | | elex 3428 |
. . 3
⊢ (𝐺 ∈ TarskiG → 𝐺 ∈ V) |
4 | | legval.p |
. . . . . 6
⊢ 𝑃 = (Base‘𝐺) |
5 | | legval.d |
. . . . . 6
⊢ − =
(dist‘𝐺) |
6 | | legval.i |
. . . . . 6
⊢ 𝐼 = (Itv‘𝐺) |
7 | | simp1 1133 |
. . . . . . . 8
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → 𝑝 = 𝑃) |
8 | 7 | eqcomd 2764 |
. . . . . . 7
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → 𝑃 = 𝑝) |
9 | | simp2 1134 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → 𝑑 = − ) |
10 | 9 | eqcomd 2764 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → − = 𝑑) |
11 | 10 | oveqd 7173 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑥 − 𝑦) = (𝑥𝑑𝑦)) |
12 | 11 | eqeq2d 2769 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑓 = (𝑥 − 𝑦) ↔ 𝑓 = (𝑥𝑑𝑦))) |
13 | | simp3 1135 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → 𝑖 = 𝐼) |
14 | 13 | eqcomd 2764 |
. . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → 𝐼 = 𝑖) |
15 | 14 | oveqd 7173 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑥𝐼𝑦) = (𝑥𝑖𝑦)) |
16 | 15 | eleq2d 2837 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑥𝑖𝑦))) |
17 | 10 | oveqd 7173 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑥 − 𝑧) = (𝑥𝑑𝑧)) |
18 | 17 | eqeq2d 2769 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑒 = (𝑥 − 𝑧) ↔ 𝑒 = (𝑥𝑑𝑧))) |
19 | 16, 18 | anbi12d 633 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → ((𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)) ↔ (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧)))) |
20 | 8, 19 | rexeqbidv 3320 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)) ↔ ∃𝑧 ∈ 𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧)))) |
21 | 12, 20 | anbi12d 633 |
. . . . . . . 8
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → ((𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧))) ↔ (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧 ∈ 𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧))))) |
22 | 8, 21 | rexeqbidv 3320 |
. . . . . . 7
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (∃𝑦 ∈ 𝑃 (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧))) ↔ ∃𝑦 ∈ 𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧 ∈ 𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧))))) |
23 | 8, 22 | rexeqbidv 3320 |
. . . . . 6
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧))) ↔ ∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧 ∈ 𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧))))) |
24 | 4, 5, 6, 23 | sbcie3s 16612 |
. . . . 5
⊢ (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧 ∈ 𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧))) ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧))))) |
25 | 24 | opabbidv 5102 |
. . . 4
⊢ (𝑔 = 𝐺 → {〈𝑒, 𝑓〉 ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧 ∈ 𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧)))} = {〈𝑒, 𝑓〉 ∣ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))}) |
26 | | df-leg 26489 |
. . . 4
⊢ ≤G =
(𝑔 ∈ V ↦
{〈𝑒, 𝑓〉 ∣
[(Base‘𝑔) /
𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧 ∈ 𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧)))}) |
27 | 5 | fvexi 6677 |
. . . . . . . . 9
⊢ − ∈
V |
28 | 27 | imaex 7632 |
. . . . . . . 8
⊢ ( − “
(𝑃 × 𝑃)) ∈ V |
29 | | p0ex 5257 |
. . . . . . . 8
⊢ {∅}
∈ V |
30 | 28, 29 | unex 7473 |
. . . . . . 7
⊢ (( − “
(𝑃 × 𝑃)) ∪ {∅}) ∈
V |
31 | 30 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (( − “ (𝑃 × 𝑃)) ∪ {∅}) ∈
V) |
32 | | simprr 772 |
. . . . . . . . . . . . 13
⊢
(((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))) ∧ 𝑑 ∈ 𝑃) ∧ (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑑))) → 𝑒 = (𝑥 − 𝑑)) |
33 | | ovima0 7329 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝑃 ∧ 𝑑 ∈ 𝑃) → (𝑥 − 𝑑) ∈ (( − “ (𝑃 × 𝑃)) ∪ {∅})) |
34 | 33 | ad5ant14 757 |
. . . . . . . . . . . . 13
⊢
(((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))) ∧ 𝑑 ∈ 𝑃) ∧ (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑑))) → (𝑥 − 𝑑) ∈ (( − “ (𝑃 × 𝑃)) ∪ {∅})) |
35 | 32, 34 | eqeltrd 2852 |
. . . . . . . . . . . 12
⊢
(((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))) ∧ 𝑑 ∈ 𝑃) ∧ (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑑))) → 𝑒 ∈ (( − “ (𝑃 × 𝑃)) ∪ {∅})) |
36 | | simpllr 775 |
. . . . . . . . . . . . . 14
⊢
(((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))) ∧ 𝑑 ∈ 𝑃) ∧ (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑑))) → (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))) |
37 | 36 | simpld 498 |
. . . . . . . . . . . . 13
⊢
(((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))) ∧ 𝑑 ∈ 𝑃) ∧ (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑑))) → 𝑓 = (𝑥 − 𝑦)) |
38 | | ovima0 7329 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) → (𝑥 − 𝑦) ∈ (( − “ (𝑃 × 𝑃)) ∪ {∅})) |
39 | 38 | ad3antrrr 729 |
. . . . . . . . . . . . 13
⊢
(((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))) ∧ 𝑑 ∈ 𝑃) ∧ (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑑))) → (𝑥 − 𝑦) ∈ (( − “ (𝑃 × 𝑃)) ∪ {∅})) |
40 | 37, 39 | eqeltrd 2852 |
. . . . . . . . . . . 12
⊢
(((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))) ∧ 𝑑 ∈ 𝑃) ∧ (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑑))) → 𝑓 ∈ (( − “ (𝑃 × 𝑃)) ∪ {∅})) |
41 | 35, 40 | jca 515 |
. . . . . . . . . . 11
⊢
(((((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))) ∧ 𝑑 ∈ 𝑃) ∧ (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑑))) → (𝑒 ∈ (( − “ (𝑃 × 𝑃)) ∪ {∅}) ∧ 𝑓 ∈ (( − “ (𝑃 × 𝑃)) ∪ {∅}))) |
42 | | simprr 772 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))) → ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧))) |
43 | | eleq1w 2834 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑑 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑑 ∈ (𝑥𝐼𝑦))) |
44 | | oveq2 7164 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑑 → (𝑥 − 𝑧) = (𝑥 − 𝑑)) |
45 | 44 | eqeq2d 2769 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑑 → (𝑒 = (𝑥 − 𝑧) ↔ 𝑒 = (𝑥 − 𝑑))) |
46 | 43, 45 | anbi12d 633 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑑 → ((𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)) ↔ (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑑)))) |
47 | 46 | cbvrexvw 3362 |
. . . . . . . . . . . 12
⊢
(∃𝑧 ∈
𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)) ↔ ∃𝑑 ∈ 𝑃 (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑑))) |
48 | 42, 47 | sylib 221 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))) → ∃𝑑 ∈ 𝑃 (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑑))) |
49 | 41, 48 | r19.29a 3213 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) ∧ (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))) → (𝑒 ∈ (( − “ (𝑃 × 𝑃)) ∪ {∅}) ∧ 𝑓 ∈ (( − “ (𝑃 × 𝑃)) ∪ {∅}))) |
50 | 49 | ex 416 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃) → ((𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧))) → (𝑒 ∈ (( − “ (𝑃 × 𝑃)) ∪ {∅}) ∧ 𝑓 ∈ (( − “ (𝑃 × 𝑃)) ∪ {∅})))) |
51 | 50 | rexlimivv 3216 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝑃 ∃𝑦 ∈ 𝑃 (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧))) → (𝑒 ∈ (( − “ (𝑃 × 𝑃)) ∪ {∅}) ∧ 𝑓 ∈ (( − “ (𝑃 × 𝑃)) ∪ {∅}))) |
52 | 51 | adantl 485 |
. . . . . . 7
⊢
((⊤ ∧ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))) → (𝑒 ∈ (( − “ (𝑃 × 𝑃)) ∪ {∅}) ∧ 𝑓 ∈ (( − “ (𝑃 × 𝑃)) ∪ {∅}))) |
53 | 52 | simpld 498 |
. . . . . 6
⊢
((⊤ ∧ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))) → 𝑒 ∈ (( − “ (𝑃 × 𝑃)) ∪ {∅})) |
54 | 52 | simprd 499 |
. . . . . 6
⊢
((⊤ ∧ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))) → 𝑓 ∈ (( − “ (𝑃 × 𝑃)) ∪ {∅})) |
55 | 31, 31, 53, 54 | opabex2 7765 |
. . . . 5
⊢ (⊤
→ {〈𝑒, 𝑓〉 ∣ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))} ∈ V) |
56 | 55 | mptru 1545 |
. . . 4
⊢
{〈𝑒, 𝑓〉 ∣ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))} ∈ V |
57 | 25, 26, 56 | fvmpt 6764 |
. . 3
⊢ (𝐺 ∈ V →
(≤G‘𝐺) =
{〈𝑒, 𝑓〉 ∣ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))}) |
58 | 2, 3, 57 | 3syl 18 |
. 2
⊢ (𝜑 → (≤G‘𝐺) = {〈𝑒, 𝑓〉 ∣ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))}) |
59 | 1, 58 | syl5eq 2805 |
1
⊢ (𝜑 → ≤ = {〈𝑒, 𝑓〉 ∣ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝑓 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ 𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 − 𝑧)))}) |