Detailed syntax breakdown of Definition df-lfl
Step | Hyp | Ref
| Expression |
1 | | clfn 37078 |
. 2
class
LFnl |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | cvv 3433 |
. . 3
class
V |
4 | | vr |
. . . . . . . . . . . 12
setvar 𝑟 |
5 | 4 | cv 1538 |
. . . . . . . . . . 11
class 𝑟 |
6 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
7 | 6 | cv 1538 |
. . . . . . . . . . 11
class 𝑥 |
8 | 2 | cv 1538 |
. . . . . . . . . . . 12
class 𝑤 |
9 | | cvsca 16975 |
. . . . . . . . . . . 12
class
·𝑠 |
10 | 8, 9 | cfv 6437 |
. . . . . . . . . . 11
class (
·𝑠 ‘𝑤) |
11 | 5, 7, 10 | co 7284 |
. . . . . . . . . 10
class (𝑟(
·𝑠 ‘𝑤)𝑥) |
12 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
13 | 12 | cv 1538 |
. . . . . . . . . 10
class 𝑦 |
14 | | cplusg 16971 |
. . . . . . . . . . 11
class
+g |
15 | 8, 14 | cfv 6437 |
. . . . . . . . . 10
class
(+g‘𝑤) |
16 | 11, 13, 15 | co 7284 |
. . . . . . . . 9
class ((𝑟(
·𝑠 ‘𝑤)𝑥)(+g‘𝑤)𝑦) |
17 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
18 | 17 | cv 1538 |
. . . . . . . . 9
class 𝑓 |
19 | 16, 18 | cfv 6437 |
. . . . . . . 8
class (𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) |
20 | 7, 18 | cfv 6437 |
. . . . . . . . . 10
class (𝑓‘𝑥) |
21 | | csca 16974 |
. . . . . . . . . . . 12
class
Scalar |
22 | 8, 21 | cfv 6437 |
. . . . . . . . . . 11
class
(Scalar‘𝑤) |
23 | | cmulr 16972 |
. . . . . . . . . . 11
class
.r |
24 | 22, 23 | cfv 6437 |
. . . . . . . . . 10
class
(.r‘(Scalar‘𝑤)) |
25 | 5, 20, 24 | co 7284 |
. . . . . . . . 9
class (𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥)) |
26 | 13, 18 | cfv 6437 |
. . . . . . . . 9
class (𝑓‘𝑦) |
27 | 22, 14 | cfv 6437 |
. . . . . . . . 9
class
(+g‘(Scalar‘𝑤)) |
28 | 25, 26, 27 | co 7284 |
. . . . . . . 8
class ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦)) |
29 | 19, 28 | wceq 1539 |
. . . . . . 7
wff (𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦)) |
30 | | cbs 16921 |
. . . . . . . 8
class
Base |
31 | 8, 30 | cfv 6437 |
. . . . . . 7
class
(Base‘𝑤) |
32 | 29, 12, 31 | wral 3065 |
. . . . . 6
wff
∀𝑦 ∈
(Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦)) |
33 | 32, 6, 31 | wral 3065 |
. . . . 5
wff
∀𝑥 ∈
(Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦)) |
34 | 22, 30 | cfv 6437 |
. . . . 5
class
(Base‘(Scalar‘𝑤)) |
35 | 33, 4, 34 | wral 3065 |
. . . 4
wff
∀𝑟 ∈
(Base‘(Scalar‘𝑤))∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦)) |
36 | | cmap 8624 |
. . . . 5
class
↑m |
37 | 34, 31, 36 | co 7284 |
. . . 4
class
((Base‘(Scalar‘𝑤)) ↑m (Base‘𝑤)) |
38 | 35, 17, 37 | crab 3069 |
. . 3
class {𝑓 ∈
((Base‘(Scalar‘𝑤)) ↑m (Base‘𝑤)) ∣ ∀𝑟 ∈
(Base‘(Scalar‘𝑤))∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦))} |
39 | 2, 3, 38 | cmpt 5158 |
. 2
class (𝑤 ∈ V ↦ {𝑓 ∈
((Base‘(Scalar‘𝑤)) ↑m (Base‘𝑤)) ∣ ∀𝑟 ∈
(Base‘(Scalar‘𝑤))∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦))}) |
40 | 1, 39 | wceq 1539 |
1
wff LFnl =
(𝑤 ∈ V ↦ {𝑓 ∈
((Base‘(Scalar‘𝑤)) ↑m (Base‘𝑤)) ∣ ∀𝑟 ∈
(Base‘(Scalar‘𝑤))∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦))}) |