HomeHome Metamath Proof Explorer
Theorem List (p. 380 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 37901-38000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremosumcllem5N 37901 Lemma for osumclN 37908. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)    &   𝐶 = (PSubCl‘𝐾)    &   𝑀 = (𝑋 + {𝑝})    &   𝑈 = ( ‘( ‘(𝑋 + 𝑌)))       (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ (𝑟𝑋𝑞𝑌𝑝 (𝑟 𝑞))) → 𝑝 ∈ (𝑋 + 𝑌))
 
Theoremosumcllem6N 37902 Lemma for osumclN 37908. Use atom exchange hlatexch1 37336 to swap 𝑝 and 𝑞. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)    &   𝐶 = (PSubCl‘𝐾)    &   𝑀 = (𝑋 + {𝑝})    &   𝑈 = ( ‘( ‘(𝑋 + 𝑌)))       (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑝𝐴) ∧ (𝑟𝑋𝑞𝑌𝑞 (𝑟 𝑝))) → 𝑝 ∈ (𝑋 + 𝑌))
 
Theoremosumcllem7N 37903* Lemma for osumclN 37908. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)    &   𝐶 = (PSubCl‘𝐾)    &   𝑀 = (𝑋 + {𝑝})    &   𝑈 = ( ‘( ‘(𝑋 + 𝑌)))       (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑝 ∈ (𝑋 + 𝑌))
 
Theoremosumcllem8N 37904 Lemma for osumclN 37908. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)    &   𝐶 = (PSubCl‘𝐾)    &   𝑀 = (𝑋 + {𝑝})    &   𝑈 = ( ‘( ‘(𝑋 + 𝑌)))       (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌𝑀) = ∅)
 
Theoremosumcllem9N 37905 Lemma for osumclN 37908. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)    &   𝐶 = (PSubCl‘𝐾)    &   𝑀 = (𝑋 + {𝑝})    &   𝑈 = ( ‘( ‘(𝑋 + 𝑌)))       (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀 = 𝑋)
 
Theoremosumcllem10N 37906 Lemma for osumclN 37908. Contradict osumcllem9N 37905. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)    &   𝐶 = (PSubCl‘𝐾)    &   𝑀 = (𝑋 + {𝑝})    &   𝑈 = ( ‘( ‘(𝑋 + 𝑌)))       (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀𝑋)
 
Theoremosumcllem11N 37907 Lemma for osumclN 37908. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
+ = (+𝑃𝐾)    &    = (⊥𝑃𝐾)    &   𝐶 = (PSubCl‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))
 
TheoremosumclN 37908 Closure of orthogonal sum. If 𝑋 and 𝑌 are orthogonal closed projective subspaces, then their sum is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
+ = (+𝑃𝐾)    &    = (⊥𝑃𝐾)    &   𝐶 = (PSubCl‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (𝑋 + 𝑌) ∈ 𝐶)
 
TheorempmapojoinN 37909 For orthogonal elements, projective map of join equals projective sum. Compare pmapjoin 37793 where only one direction holds. (Contributed by NM, 11-Apr-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝑀 = (pmap‘𝐾)    &    = (oc‘𝐾)    &    + = (+𝑃𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → (𝑀‘(𝑋 𝑌)) = ((𝑀𝑋) + (𝑀𝑌)))
 
TheorempexmidN 37910 Excluded middle law for closed projective subspaces, which can be shown to be equivalent to (and derivable from) the orthomodular law poml4N 37894. Lemma 3.3(2) in [Holland95] p. 215, which we prove as a special case of osumclN 37908. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) = 𝐴)
 
Theorempexmidlem1N 37911 Lemma for pexmidN 37910. Holland's proof implicitly requires 𝑞𝑟, which we prove here. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)    &   𝑀 = (𝑋 + {𝑝})       (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑞𝑟)
 
Theorempexmidlem2N 37912 Lemma for pexmidN 37910. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)    &   𝑀 = (𝑋 + {𝑝})       (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝑝 ∈ (𝑋 + ( 𝑋)))
 
Theorempexmidlem3N 37913 Lemma for pexmidN 37910. Use atom exchange hlatexch1 37336 to swap 𝑝 and 𝑞. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)    &   𝑀 = (𝑋 + {𝑝})       (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋)) ∧ 𝑞 (𝑟 𝑝)) → 𝑝 ∈ (𝑋 + ( 𝑋)))
 
Theorempexmidlem4N 37914* Lemma for pexmidN 37910. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)    &   𝑀 = (𝑋 + {𝑝})       (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑝 ∈ (𝑋 + ( 𝑋)))
 
Theorempexmidlem5N 37915 Lemma for pexmidN 37910. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)    &   𝑀 = (𝑋 + {𝑝})       (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (( 𝑋) ∩ 𝑀) = ∅)
 
Theorempexmidlem6N 37916 Lemma for pexmidN 37910. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)    &   𝑀 = (𝑋 + {𝑝})       (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑀 = 𝑋)
 
Theorempexmidlem7N 37917 Lemma for pexmidN 37910. Contradict pexmidlem6N 37916. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)    &   𝑀 = (𝑋 + {𝑝})       (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑀𝑋)
 
Theorempexmidlem8N 37918 Lemma for pexmidN 37910. The contradiction of pexmidlem6N 37916 and pexmidlem7N 37917 shows that there can be no atom 𝑝 that is not in 𝑋 + ( 𝑋), which is therefore the whole atom space. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (𝑋 + ( 𝑋)) = 𝐴)
 
TheorempexmidALTN 37919 Excluded middle law for closed projective subspaces, which is equivalent to (and derived from) the orthomodular law poml4N 37894. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables 𝑋, 𝑀, 𝑝, 𝑞, 𝑟 in place of Hollands' l, m, P, Q, L respectively. TODO: should we make this obsolete? (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) = 𝐴)
 
Theorempl42lem1N 37920 Lemma for pl42N 37924. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &    = (oc‘𝐾)    &   𝐹 = (pmap‘𝐾)    &    + = (+𝑃𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊)) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) = (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉))))
 
Theorempl42lem2N 37921 Lemma for pl42N 37924. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &    = (oc‘𝐾)    &   𝐹 = (pmap‘𝐾)    &    + = (+𝑃𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑌)) + (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉)))) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))
 
Theorempl42lem3N 37922 Lemma for pl42N 37924. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &    = (oc‘𝐾)    &   𝐹 = (pmap‘𝐾)    &    + = (+𝑃𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉)) ⊆ ((((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑊)) ∩ (((𝐹𝑋) + (𝐹𝑌)) + (𝐹𝑉))))
 
Theorempl42lem4N 37923 Lemma for pl42N 37924. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &    = (oc‘𝐾)    &   𝐹 = (pmap‘𝐾)    &    + = (+𝑃𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊)) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉))))))
 
Theorempl42N 37924 Law holding in a Hilbert lattice that fails in orthomodular lattice L42 (Figure 7 in [MegPav2000] p. 2366). (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &    = (oc‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊)) → ((((𝑋 𝑌) 𝑍) 𝑊) 𝑉) ((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))
 
Syntaxclh 37925 Extend class notation with set of all co-atoms (lattice hyperplanes).
class LHyp
 
Syntaxclaut 37926 Extend class notation with set of all lattice automorphisms.
class LAut
 
SyntaxcwpointsN 37927 Extend class notation with W points.
class WAtoms
 
SyntaxcpautN 37928 Extend class notation with set of all projective automorphisms.
class PAut
 
Definitiondf-lhyp 37929* Define the set of lattice hyperplanes, which are all lattice elements covered by 1 (i.e., all co-atoms). We call them "hyperplanes" instead of "co-atoms" in analogy with projective geometry hyperplanes. (Contributed by NM, 11-May-2012.)
LHyp = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ 𝑥( ⋖ ‘𝑘)(1.‘𝑘)})
 
Definitiondf-laut 37930* Define set of lattice autoisomorphisms. (Contributed by NM, 11-May-2012.)
LAut = (𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦)))})
 
Definitiondf-watsN 37931* Define W-atoms corresponding to an arbitrary "fiducial (i.e. reference) atom" 𝑑. These are all atoms not in the polarity of {𝑑}), which is the hyperplane determined by 𝑑. Definition of set W in [Crawley] p. 111. (Contributed by NM, 26-Jan-2012.)
WAtoms = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ ((Atoms‘𝑘) ∖ ((⊥𝑃𝑘)‘{𝑑}))))
 
Definitiondf-pautN 37932* Define set of all projective automorphisms. This is the intended definition of automorphism in [Crawley] p. 112. (Contributed by NM, 26-Jan-2012.)
PAut = (𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))})
 
TheoremwatfvalN 37933* The W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &   𝑃 = (⊥𝑃𝐾)    &   𝑊 = (WAtoms‘𝐾)       (𝐾𝐵𝑊 = (𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑}))))
 
TheoremwatvalN 37934 Value of the W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &   𝑃 = (⊥𝑃𝐾)    &   𝑊 = (WAtoms‘𝐾)       ((𝐾𝐵𝐷𝐴) → (𝑊𝐷) = (𝐴 ∖ ((⊥𝑃𝐾)‘{𝐷})))
 
TheoremiswatN 37935 The predicate "is a W atom" (corresponding to fiducial atom 𝐷). (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &   𝑃 = (⊥𝑃𝐾)    &   𝑊 = (WAtoms‘𝐾)       ((𝐾𝐵𝐷𝐴) → (𝑃 ∈ (𝑊𝐷) ↔ (𝑃𝐴 ∧ ¬ 𝑃 ∈ ((⊥𝑃𝐾)‘{𝐷}))))
 
Theoremlhpset 37936* The set of co-atoms (lattice hyperplanes). (Contributed by NM, 11-May-2012.)
𝐵 = (Base‘𝐾)    &    1 = (1.‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (𝐾𝐴𝐻 = {𝑤𝐵𝑤𝐶 1 })
 
Theoremislhp 37937 The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 11-May-2012.)
𝐵 = (Base‘𝐾)    &    1 = (1.‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (𝐾𝐴 → (𝑊𝐻 ↔ (𝑊𝐵𝑊𝐶 1 )))
 
Theoremislhp2 37938 The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 18-May-2012.)
𝐵 = (Base‘𝐾)    &    1 = (1.‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾𝐴𝑊𝐵) → (𝑊𝐻𝑊𝐶 1 ))
 
Theoremlhpbase 37939 A co-atom is a member of the lattice base set (i.e., a lattice element). (Contributed by NM, 18-May-2012.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (𝑊𝐻𝑊𝐵)
 
Theoremlhp1cvr 37940 The lattice unit covers a co-atom (lattice hyperplane). (Contributed by NM, 18-May-2012.)
1 = (1.‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾𝐴𝑊𝐻) → 𝑊𝐶 1 )
 
Theoremlhplt 37941 An atom under a co-atom is strictly less than it. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)
= (le‘𝐾)    &    < = (lt‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊)) → 𝑃 < 𝑊)
 
Theoremlhp2lt 37942 The join of two atoms under a co-atom is strictly less than it. (Contributed by NM, 8-Jul-2013.)
= (le‘𝐾)    &    < = (lt‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) < 𝑊)
 
Theoremlhpexlt 37943* There exists an atom less than a co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)
< = (lt‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 𝑝 < 𝑊)
 
Theoremlhp0lt 37944 A co-atom is greater than zero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)
< = (lt‘𝐾)    &    0 = (0.‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 < 𝑊)
 
Theoremlhpn0 37945 A co-atom is nonzero. TODO: is this needed? (Contributed by NM, 26-Apr-2013.)
0 = (0.‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊0 )
 
Theoremlhpexle 37946* There exists an atom under a co-atom. (Contributed by NM, 26-Apr-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 𝑝 𝑊)
 
Theoremlhpexnle 37947* There exists an atom not under a co-atom. (Contributed by NM, 12-Apr-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 ¬ 𝑝 𝑊)
 
Theoremlhpexle1lem 37948* Lemma for lhpexle1 37949 and others that eliminates restrictions on 𝑋. (Contributed by NM, 24-Jul-2013.)
(𝜑 → ∃𝑝𝐴 (𝑝 𝑊𝜓))    &   ((𝜑 ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝜓𝑝𝑋))       (𝜑 → ∃𝑝𝐴 (𝑝 𝑊𝜓𝑝𝑋))
 
Theoremlhpexle1 37949* There exists an atom under a co-atom different from any given element. (Contributed by NM, 24-Jul-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
 
Theoremlhpexle2lem 37950* Lemma for lhpexle2 37951. (Contributed by NM, 19-Jun-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
 
Theoremlhpexle2 37951* There exists atom under a co-atom different from any two other elements. (Contributed by NM, 24-Jul-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
 
Theoremlhpexle3lem 37952* There exists atom under a co-atom different from any three other atoms. TODO: study if adant*, simp* usage can be improved. (Contributed by NM, 9-Jul-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
 
Theoremlhpexle3 37953* There exists atom under a co-atom different from any three other elements. (Contributed by NM, 24-Jul-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
 
Theoremlhpex2leN 37954* There exist at least two different atoms under a co-atom. This allows us to create a line under the co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) (New usage is discouraged.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞))
 
Theoremlhpoc 37955 The orthocomplement of a co-atom (lattice hyperplane) is an atom. (Contributed by NM, 18-May-2012.)
𝐵 = (Base‘𝐾)    &    = (oc‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐵) → (𝑊𝐻 ↔ ( 𝑊) ∈ 𝐴))
 
Theoremlhpoc2N 37956 The orthocomplement of an atom is a co-atom (lattice hyperplane). (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (oc‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐵) → (𝑊𝐴 ↔ ( 𝑊) ∈ 𝐻))
 
Theoremlhpocnle 37957 The orthocomplement of a co-atom is not under it. (Contributed by NM, 22-May-2012.)
= (le‘𝐾)    &    = (oc‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ¬ ( 𝑊) 𝑊)
 
Theoremlhpocat 37958 The orthocomplement of a co-atom is an atom. (Contributed by NM, 9-Feb-2013.)
= (oc‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( 𝑊) ∈ 𝐴)
 
Theoremlhpocnel 37959 The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 25-May-2012.)
= (le‘𝐾)    &    = (oc‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( 𝑊) ∈ 𝐴 ∧ ¬ ( 𝑊) 𝑊))
 
Theoremlhpocnel2 37960 The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 20-Feb-2014.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑃 = ((oc‘𝐾)‘𝑊)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
 
Theoremlhpjat1 37961 The join of a co-atom (hyperplane) and an atom not under it is the lattice unit. (Contributed by NM, 18-May-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    1 = (1.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑊 𝑃) = 1 )
 
Theoremlhpjat2 37962 The join of a co-atom (hyperplane) and an atom not under it is the lattice unit. (Contributed by NM, 4-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    1 = (1.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = 1 )
 
Theoremlhpj1 37963 The join of a co-atom (hyperplane) and an element not under it is the lattice unit. (Contributed by NM, 7-Dec-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    1 = (1.‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑊 𝑋) = 1 )
 
Theoremlhpmcvr 37964 The meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 7-Dec-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (meet‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑋 𝑊)𝐶𝑋)
 
Theoremlhpmcvr2 37965* Alternate way to express that the meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 9-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋))
 
Theoremlhpmcvr3 37966 Specialization of lhpmcvr2 37965. TODO: Use this to simplify many uses of (𝑃 (𝑋 𝑊)) = 𝑋 to become 𝑃 𝑋. (Contributed by NM, 6-Apr-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑋 ↔ (𝑃 (𝑋 𝑊)) = 𝑋))
 
Theoremlhpmcvr4N 37967 Specialization of lhpmcvr2 37965. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → ¬ 𝑃 𝑌)
 
Theoremlhpmcvr5N 37968* Specialization of lhpmcvr2 37965. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) → ∃𝑝𝐴𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ (𝑝 (𝑋 𝑊)) = 𝑋))
 
Theoremlhpmcvr6N 37969* Specialization of lhpmcvr2 37965. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) → ∃𝑝𝐴𝑝 𝑊 ∧ ¬ 𝑝 𝑌𝑝 𝑋))
 
Theoremlhpm0atN 37970 If the meet of a lattice hyperplane with a nonzero element is zero, the element is an atom. (Contributed by NM, 28-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (meet‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝑋𝐴)
 
Theoremlhpmat 37971 An element covered by the lattice unit, when conjoined with an atom not under it, equals the lattice zero. (Contributed by NM, 6-Jun-2012.)
= (le‘𝐾)    &    = (meet‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = 0 )
 
Theoremlhpmatb 37972 An element covered by the lattice unit, when conjoined with an atom, equals zero iff the atom is not under it. (Contributed by NM, 15-Jun-2013.)
= (le‘𝐾)    &    = (meet‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴) → (¬ 𝑃 𝑊 ↔ (𝑃 𝑊) = 0 ))
 
Theoremlhp2at0 37973 Join and meet with different atoms under co-atom 𝑊. (Contributed by NM, 15-Jun-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑈) 𝑉) = 0 )
 
Theoremlhp2atnle 37974 Inequality for 2 different atoms under co-atom 𝑊. (Contributed by NM, 17-Jun-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ¬ 𝑉 (𝑃 𝑈))
 
Theoremlhp2atne 37975 Inequality for joins with 2 different atoms under co-atom 𝑊. (Contributed by NM, 22-Jul-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑈𝑉) → (𝑃 𝑈) ≠ (𝑄 𝑉))
 
Theoremlhp2at0nle 37976 Inequality for 2 different atoms (or an atom and zero) under co-atom 𝑊. (Contributed by NM, 28-Jul-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ¬ 𝑉 (𝑃 𝑈))
 
Theoremlhp2at0ne 37977 Inequality for joins with 2 different atoms (or an atom and zero) under co-atom 𝑊. (Contributed by NM, 28-Jul-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑈𝑉) → (𝑃 𝑈) ≠ (𝑄 𝑉))
 
Theoremlhpelim 37978 Eliminate an atom not under a lattice hyperplane. TODO: Look at proofs using lhpmat 37971 to see if this can be used to shorten them. (Contributed by NM, 27-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → ((𝑃 (𝑋 𝑊)) 𝑊) = (𝑋 𝑊))
 
Theoremlhpmod2i2 37979 Modular law for hyperplanes analogous to atmod2i2 37803 for atoms. (Contributed by NM, 9-Feb-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)))
 
Theoremlhpmod6i1 37980 Modular law for hyperplanes analogous to complement of atmod2i1 37802 for atoms. (Contributed by NM, 1-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊))
 
Theoremlhprelat3N 37981* The Hilbert lattice is relatively atomic with respect to co-atoms (lattice hyperplanes). Dual version of hlrelat3 37353. (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    < = (lt‘𝐾)    &    = (meet‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
 
Theoremcdlemb2 37982* Given two atoms not under the fiducial (reference) co-atom 𝑊, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 30-May-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑟𝐴𝑟 𝑊 ∧ ¬ 𝑟 (𝑃 𝑄)))
 
Theoremlhple 37983 Property of a lattice element under a co-atom. (Contributed by NM, 28-Feb-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → ((𝑃 𝑋) 𝑊) = 𝑋)
 
Theoremlhpat 37984 Create an atom under a co-atom. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 23-May-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
 
Theoremlhpat4N 37985 Property of an atom under a co-atom. (Contributed by NM, 24-Nov-2013.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑈𝐴𝑈 𝑊)) → ((𝑃 𝑈) 𝑊) = 𝑈)
 
Theoremlhpat2 37986 Create an atom under a co-atom. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 21-Nov-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑅 = ((𝑃 𝑄) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑅𝐴)
 
Theoremlhpat3 37987 There is only one atom under both 𝑃 𝑄 and co-atom 𝑊. (Contributed by NM, 21-Nov-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑅 = ((𝑃 𝑄) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → (¬ 𝑆 𝑊𝑆𝑅))
 
Theorem4atexlemk 37988 Lemma for 4atexlem7 38016. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑𝐾 ∈ HL)
 
Theorem4atexlemw 37989 Lemma for 4atexlem7 38016. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑𝑊𝐻)
 
Theorem4atexlempw 37990 Lemma for 4atexlem7 38016. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
 
Theorem4atexlemp 37991 Lemma for 4atexlem7 38016. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑𝑃𝐴)
 
Theorem4atexlemq 37992 Lemma for 4atexlem7 38016. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑𝑄𝐴)
 
Theorem4atexlems 37993 Lemma for 4atexlem7 38016. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑𝑆𝐴)
 
Theorem4atexlemt 37994 Lemma for 4atexlem7 38016. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑𝑇𝐴)
 
Theorem4atexlemutvt 37995 Lemma for 4atexlem7 38016. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑 → (𝑈 𝑇) = (𝑉 𝑇))
 
Theorem4atexlempnq 37996 Lemma for 4atexlem7 38016. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑𝑃𝑄)
 
Theorem4atexlemnslpq 37997 Lemma for 4atexlem7 38016. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑 → ¬ 𝑆 (𝑃 𝑄))
 
Theorem4atexlemkl 37998 Lemma for 4atexlem7 38016. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑𝐾 ∈ Lat)
 
Theorem4atexlemkc 37999 Lemma for 4atexlem7 38016. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑𝐾 ∈ CvLat)
 
Theorem4atexlemwb 38000 Lemma for 4atexlem7 38016. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))    &   𝐻 = (LHyp‘𝐾)       (𝜑𝑊 ∈ (Base‘𝐾))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >