Step | Hyp | Ref
| Expression |
1 | | elex 3440 |
. 2
⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) |
2 | | lflset.f |
. . 3
⊢ 𝐹 = (LFnl‘𝑊) |
3 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) |
4 | | lflset.d |
. . . . . . . . 9
⊢ 𝐷 = (Scalar‘𝑊) |
5 | 3, 4 | eqtr4di 2797 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐷) |
6 | 5 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐷)) |
7 | | lflset.k |
. . . . . . 7
⊢ 𝐾 = (Base‘𝐷) |
8 | 6, 7 | eqtr4di 2797 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾) |
9 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) |
10 | | lflset.v |
. . . . . . 7
⊢ 𝑉 = (Base‘𝑊) |
11 | 9, 10 | eqtr4di 2797 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
12 | 8, 11 | oveq12d 7273 |
. . . . 5
⊢ (𝑤 = 𝑊 → ((Base‘(Scalar‘𝑤)) ↑m
(Base‘𝑤)) = (𝐾 ↑m 𝑉)) |
13 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 → (+g‘𝑤) = (+g‘𝑊)) |
14 | | lflset.a |
. . . . . . . . . . . 12
⊢ + =
(+g‘𝑊) |
15 | 13, 14 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (+g‘𝑤) = + ) |
16 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = ( ·𝑠
‘𝑊)) |
17 | | lflset.s |
. . . . . . . . . . . . 13
⊢ · = (
·𝑠 ‘𝑊) |
18 | 16, 17 | eqtr4di 2797 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = · ) |
19 | 18 | oveqd 7272 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (𝑟( ·𝑠
‘𝑤)𝑥) = (𝑟 · 𝑥)) |
20 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → 𝑦 = 𝑦) |
21 | 15, 19, 20 | oveq123d 7276 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → ((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦) = ((𝑟 · 𝑥) + 𝑦)) |
22 | 21 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = (𝑓‘((𝑟 · 𝑥) + 𝑦))) |
23 | 5 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 →
(+g‘(Scalar‘𝑤)) = (+g‘𝐷)) |
24 | | lflset.p |
. . . . . . . . . . 11
⊢ ⨣ =
(+g‘𝐷) |
25 | 23, 24 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 →
(+g‘(Scalar‘𝑤)) = ⨣ ) |
26 | 5 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 →
(.r‘(Scalar‘𝑤)) = (.r‘𝐷)) |
27 | | lflset.t |
. . . . . . . . . . . 12
⊢ × =
(.r‘𝐷) |
28 | 26, 27 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 →
(.r‘(Scalar‘𝑤)) = × ) |
29 | 28 | oveqd 7272 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥)) = (𝑟 × (𝑓‘𝑥))) |
30 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (𝑓‘𝑦) = (𝑓‘𝑦)) |
31 | 25, 29, 30 | oveq123d 7276 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))) |
32 | 22, 31 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦)) ↔ (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦)))) |
33 | 11, 32 | raleqbidv 3327 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦)) ↔ ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦)))) |
34 | 11, 33 | raleqbidv 3327 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦)))) |
35 | 8, 34 | raleqbidv 3327 |
. . . . 5
⊢ (𝑤 = 𝑊 → (∀𝑟 ∈ (Base‘(Scalar‘𝑤))∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦)) ↔ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦)))) |
36 | 12, 35 | rabeqbidv 3410 |
. . . 4
⊢ (𝑤 = 𝑊 → {𝑓 ∈ ((Base‘(Scalar‘𝑤)) ↑m
(Base‘𝑤)) ∣
∀𝑟 ∈
(Base‘(Scalar‘𝑤))∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦))} = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))}) |
37 | | df-lfl 36999 |
. . . 4
⊢ LFnl =
(𝑤 ∈ V ↦ {𝑓 ∈
((Base‘(Scalar‘𝑤)) ↑m (Base‘𝑤)) ∣ ∀𝑟 ∈
(Base‘(Scalar‘𝑤))∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦))}) |
38 | | ovex 7288 |
. . . . 5
⊢ (𝐾 ↑m 𝑉) ∈ V |
39 | 38 | rabex 5251 |
. . . 4
⊢ {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))} ∈ V |
40 | 36, 37, 39 | fvmpt 6857 |
. . 3
⊢ (𝑊 ∈ V →
(LFnl‘𝑊) = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))}) |
41 | 2, 40 | syl5eq 2791 |
. 2
⊢ (𝑊 ∈ V → 𝐹 = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))}) |
42 | 1, 41 | syl 17 |
1
⊢ (𝑊 ∈ 𝑋 → 𝐹 = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))}) |