Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflset Structured version   Visualization version   GIF version

Theorem lflset 37917
Description: The set of linear functionals in a left module or left vector space. (Contributed by NM, 15-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lflset.v 𝑉 = (Baseβ€˜π‘Š)
lflset.a + = (+gβ€˜π‘Š)
lflset.d 𝐷 = (Scalarβ€˜π‘Š)
lflset.s Β· = ( ·𝑠 β€˜π‘Š)
lflset.k 𝐾 = (Baseβ€˜π·)
lflset.p ⨣ = (+gβ€˜π·)
lflset.t Γ— = (.rβ€˜π·)
lflset.f 𝐹 = (LFnlβ€˜π‘Š)
Assertion
Ref Expression
lflset (π‘Š ∈ 𝑋 β†’ 𝐹 = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ βˆ€π‘Ÿ ∈ 𝐾 βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (π‘“β€˜((π‘Ÿ Β· π‘₯) + 𝑦)) = ((π‘Ÿ Γ— (π‘“β€˜π‘₯)) ⨣ (π‘“β€˜π‘¦))})
Distinct variable groups:   𝑓,π‘Ÿ,𝐾   π‘₯,𝑓,𝑦,𝑉   𝑓,π‘Š   π‘₯,π‘Ÿ,𝑦,π‘Š
Allowed substitution hints:   𝐷(π‘₯,𝑦,𝑓,π‘Ÿ)   + (π‘₯,𝑦,𝑓,π‘Ÿ)   ⨣ (π‘₯,𝑦,𝑓,π‘Ÿ)   Β· (π‘₯,𝑦,𝑓,π‘Ÿ)   Γ— (π‘₯,𝑦,𝑓,π‘Ÿ)   𝐹(π‘₯,𝑦,𝑓,π‘Ÿ)   𝐾(π‘₯,𝑦)   𝑉(π‘Ÿ)   𝑋(π‘₯,𝑦,𝑓,π‘Ÿ)

Proof of Theorem lflset
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (π‘Š ∈ 𝑋 β†’ π‘Š ∈ V)
2 lflset.f . . 3 𝐹 = (LFnlβ€˜π‘Š)
3 fveq2 6888 . . . . . . . . 9 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = (Scalarβ€˜π‘Š))
4 lflset.d . . . . . . . . 9 𝐷 = (Scalarβ€˜π‘Š)
53, 4eqtr4di 2790 . . . . . . . 8 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = 𝐷)
65fveq2d 6892 . . . . . . 7 (𝑀 = π‘Š β†’ (Baseβ€˜(Scalarβ€˜π‘€)) = (Baseβ€˜π·))
7 lflset.k . . . . . . 7 𝐾 = (Baseβ€˜π·)
86, 7eqtr4di 2790 . . . . . 6 (𝑀 = π‘Š β†’ (Baseβ€˜(Scalarβ€˜π‘€)) = 𝐾)
9 fveq2 6888 . . . . . . 7 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
10 lflset.v . . . . . . 7 𝑉 = (Baseβ€˜π‘Š)
119, 10eqtr4di 2790 . . . . . 6 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = 𝑉)
128, 11oveq12d 7423 . . . . 5 (𝑀 = π‘Š β†’ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m (Baseβ€˜π‘€)) = (𝐾 ↑m 𝑉))
13 fveq2 6888 . . . . . . . . . . . 12 (𝑀 = π‘Š β†’ (+gβ€˜π‘€) = (+gβ€˜π‘Š))
14 lflset.a . . . . . . . . . . . 12 + = (+gβ€˜π‘Š)
1513, 14eqtr4di 2790 . . . . . . . . . . 11 (𝑀 = π‘Š β†’ (+gβ€˜π‘€) = + )
16 fveq2 6888 . . . . . . . . . . . . 13 (𝑀 = π‘Š β†’ ( ·𝑠 β€˜π‘€) = ( ·𝑠 β€˜π‘Š))
17 lflset.s . . . . . . . . . . . . 13 Β· = ( ·𝑠 β€˜π‘Š)
1816, 17eqtr4di 2790 . . . . . . . . . . . 12 (𝑀 = π‘Š β†’ ( ·𝑠 β€˜π‘€) = Β· )
1918oveqd 7422 . . . . . . . . . . 11 (𝑀 = π‘Š β†’ (π‘Ÿ( ·𝑠 β€˜π‘€)π‘₯) = (π‘Ÿ Β· π‘₯))
20 eqidd 2733 . . . . . . . . . . 11 (𝑀 = π‘Š β†’ 𝑦 = 𝑦)
2115, 19, 20oveq123d 7426 . . . . . . . . . 10 (𝑀 = π‘Š β†’ ((π‘Ÿ( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)𝑦) = ((π‘Ÿ Β· π‘₯) + 𝑦))
2221fveq2d 6892 . . . . . . . . 9 (𝑀 = π‘Š β†’ (π‘“β€˜((π‘Ÿ( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)𝑦)) = (π‘“β€˜((π‘Ÿ Β· π‘₯) + 𝑦)))
235fveq2d 6892 . . . . . . . . . . 11 (𝑀 = π‘Š β†’ (+gβ€˜(Scalarβ€˜π‘€)) = (+gβ€˜π·))
24 lflset.p . . . . . . . . . . 11 ⨣ = (+gβ€˜π·)
2523, 24eqtr4di 2790 . . . . . . . . . 10 (𝑀 = π‘Š β†’ (+gβ€˜(Scalarβ€˜π‘€)) = ⨣ )
265fveq2d 6892 . . . . . . . . . . . 12 (𝑀 = π‘Š β†’ (.rβ€˜(Scalarβ€˜π‘€)) = (.rβ€˜π·))
27 lflset.t . . . . . . . . . . . 12 Γ— = (.rβ€˜π·)
2826, 27eqtr4di 2790 . . . . . . . . . . 11 (𝑀 = π‘Š β†’ (.rβ€˜(Scalarβ€˜π‘€)) = Γ— )
2928oveqd 7422 . . . . . . . . . 10 (𝑀 = π‘Š β†’ (π‘Ÿ(.rβ€˜(Scalarβ€˜π‘€))(π‘“β€˜π‘₯)) = (π‘Ÿ Γ— (π‘“β€˜π‘₯)))
30 eqidd 2733 . . . . . . . . . 10 (𝑀 = π‘Š β†’ (π‘“β€˜π‘¦) = (π‘“β€˜π‘¦))
3125, 29, 30oveq123d 7426 . . . . . . . . 9 (𝑀 = π‘Š β†’ ((π‘Ÿ(.rβ€˜(Scalarβ€˜π‘€))(π‘“β€˜π‘₯))(+gβ€˜(Scalarβ€˜π‘€))(π‘“β€˜π‘¦)) = ((π‘Ÿ Γ— (π‘“β€˜π‘₯)) ⨣ (π‘“β€˜π‘¦)))
3222, 31eqeq12d 2748 . . . . . . . 8 (𝑀 = π‘Š β†’ ((π‘“β€˜((π‘Ÿ( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)𝑦)) = ((π‘Ÿ(.rβ€˜(Scalarβ€˜π‘€))(π‘“β€˜π‘₯))(+gβ€˜(Scalarβ€˜π‘€))(π‘“β€˜π‘¦)) ↔ (π‘“β€˜((π‘Ÿ Β· π‘₯) + 𝑦)) = ((π‘Ÿ Γ— (π‘“β€˜π‘₯)) ⨣ (π‘“β€˜π‘¦))))
3311, 32raleqbidv 3342 . . . . . . 7 (𝑀 = π‘Š β†’ (βˆ€π‘¦ ∈ (Baseβ€˜π‘€)(π‘“β€˜((π‘Ÿ( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)𝑦)) = ((π‘Ÿ(.rβ€˜(Scalarβ€˜π‘€))(π‘“β€˜π‘₯))(+gβ€˜(Scalarβ€˜π‘€))(π‘“β€˜π‘¦)) ↔ βˆ€π‘¦ ∈ 𝑉 (π‘“β€˜((π‘Ÿ Β· π‘₯) + 𝑦)) = ((π‘Ÿ Γ— (π‘“β€˜π‘₯)) ⨣ (π‘“β€˜π‘¦))))
3411, 33raleqbidv 3342 . . . . . 6 (𝑀 = π‘Š β†’ (βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)(π‘“β€˜((π‘Ÿ( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)𝑦)) = ((π‘Ÿ(.rβ€˜(Scalarβ€˜π‘€))(π‘“β€˜π‘₯))(+gβ€˜(Scalarβ€˜π‘€))(π‘“β€˜π‘¦)) ↔ βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (π‘“β€˜((π‘Ÿ Β· π‘₯) + 𝑦)) = ((π‘Ÿ Γ— (π‘“β€˜π‘₯)) ⨣ (π‘“β€˜π‘¦))))
358, 34raleqbidv 3342 . . . . 5 (𝑀 = π‘Š β†’ (βˆ€π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘€))βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)(π‘“β€˜((π‘Ÿ( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)𝑦)) = ((π‘Ÿ(.rβ€˜(Scalarβ€˜π‘€))(π‘“β€˜π‘₯))(+gβ€˜(Scalarβ€˜π‘€))(π‘“β€˜π‘¦)) ↔ βˆ€π‘Ÿ ∈ 𝐾 βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (π‘“β€˜((π‘Ÿ Β· π‘₯) + 𝑦)) = ((π‘Ÿ Γ— (π‘“β€˜π‘₯)) ⨣ (π‘“β€˜π‘¦))))
3612, 35rabeqbidv 3449 . . . 4 (𝑀 = π‘Š β†’ {𝑓 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m (Baseβ€˜π‘€)) ∣ βˆ€π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘€))βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)(π‘“β€˜((π‘Ÿ( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)𝑦)) = ((π‘Ÿ(.rβ€˜(Scalarβ€˜π‘€))(π‘“β€˜π‘₯))(+gβ€˜(Scalarβ€˜π‘€))(π‘“β€˜π‘¦))} = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ βˆ€π‘Ÿ ∈ 𝐾 βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (π‘“β€˜((π‘Ÿ Β· π‘₯) + 𝑦)) = ((π‘Ÿ Γ— (π‘“β€˜π‘₯)) ⨣ (π‘“β€˜π‘¦))})
37 df-lfl 37916 . . . 4 LFnl = (𝑀 ∈ V ↦ {𝑓 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m (Baseβ€˜π‘€)) ∣ βˆ€π‘Ÿ ∈ (Baseβ€˜(Scalarβ€˜π‘€))βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)(π‘“β€˜((π‘Ÿ( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)𝑦)) = ((π‘Ÿ(.rβ€˜(Scalarβ€˜π‘€))(π‘“β€˜π‘₯))(+gβ€˜(Scalarβ€˜π‘€))(π‘“β€˜π‘¦))})
38 ovex 7438 . . . . 5 (𝐾 ↑m 𝑉) ∈ V
3938rabex 5331 . . . 4 {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ βˆ€π‘Ÿ ∈ 𝐾 βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (π‘“β€˜((π‘Ÿ Β· π‘₯) + 𝑦)) = ((π‘Ÿ Γ— (π‘“β€˜π‘₯)) ⨣ (π‘“β€˜π‘¦))} ∈ V
4036, 37, 39fvmpt 6995 . . 3 (π‘Š ∈ V β†’ (LFnlβ€˜π‘Š) = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ βˆ€π‘Ÿ ∈ 𝐾 βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (π‘“β€˜((π‘Ÿ Β· π‘₯) + 𝑦)) = ((π‘Ÿ Γ— (π‘“β€˜π‘₯)) ⨣ (π‘“β€˜π‘¦))})
412, 40eqtrid 2784 . 2 (π‘Š ∈ V β†’ 𝐹 = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ βˆ€π‘Ÿ ∈ 𝐾 βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (π‘“β€˜((π‘Ÿ Β· π‘₯) + 𝑦)) = ((π‘Ÿ Γ— (π‘“β€˜π‘₯)) ⨣ (π‘“β€˜π‘¦))})
421, 41syl 17 1 (π‘Š ∈ 𝑋 β†’ 𝐹 = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ βˆ€π‘Ÿ ∈ 𝐾 βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (π‘“β€˜((π‘Ÿ Β· π‘₯) + 𝑦)) = ((π‘Ÿ Γ— (π‘“β€˜π‘₯)) ⨣ (π‘“β€˜π‘¦))})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {crab 3432  Vcvv 3474  β€˜cfv 6540  (class class class)co 7405   ↑m cmap 8816  Basecbs 17140  +gcplusg 17193  .rcmulr 17194  Scalarcsca 17196   ·𝑠 cvsca 17197  LFnlclfn 37915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-lfl 37916
This theorem is referenced by:  islfl  37918
  Copyright terms: Public domain W3C validator