| Step | Hyp | Ref
| Expression |
| 1 | | elex 3485 |
. 2
⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) |
| 2 | | lflset.f |
. . 3
⊢ 𝐹 = (LFnl‘𝑊) |
| 3 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) |
| 4 | | lflset.d |
. . . . . . . . 9
⊢ 𝐷 = (Scalar‘𝑊) |
| 5 | 3, 4 | eqtr4di 2789 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐷) |
| 6 | 5 | fveq2d 6885 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐷)) |
| 7 | | lflset.k |
. . . . . . 7
⊢ 𝐾 = (Base‘𝐷) |
| 8 | 6, 7 | eqtr4di 2789 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾) |
| 9 | | fveq2 6881 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) |
| 10 | | lflset.v |
. . . . . . 7
⊢ 𝑉 = (Base‘𝑊) |
| 11 | 9, 10 | eqtr4di 2789 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
| 12 | 8, 11 | oveq12d 7428 |
. . . . 5
⊢ (𝑤 = 𝑊 → ((Base‘(Scalar‘𝑤)) ↑m
(Base‘𝑤)) = (𝐾 ↑m 𝑉)) |
| 13 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 → (+g‘𝑤) = (+g‘𝑊)) |
| 14 | | lflset.a |
. . . . . . . . . . . 12
⊢ + =
(+g‘𝑊) |
| 15 | 13, 14 | eqtr4di 2789 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (+g‘𝑤) = + ) |
| 16 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = ( ·𝑠
‘𝑊)) |
| 17 | | lflset.s |
. . . . . . . . . . . . 13
⊢ · = (
·𝑠 ‘𝑊) |
| 18 | 16, 17 | eqtr4di 2789 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = · ) |
| 19 | 18 | oveqd 7427 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (𝑟( ·𝑠
‘𝑤)𝑥) = (𝑟 · 𝑥)) |
| 20 | | eqidd 2737 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → 𝑦 = 𝑦) |
| 21 | 15, 19, 20 | oveq123d 7431 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → ((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦) = ((𝑟 · 𝑥) + 𝑦)) |
| 22 | 21 | fveq2d 6885 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = (𝑓‘((𝑟 · 𝑥) + 𝑦))) |
| 23 | 5 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 →
(+g‘(Scalar‘𝑤)) = (+g‘𝐷)) |
| 24 | | lflset.p |
. . . . . . . . . . 11
⊢ ⨣ =
(+g‘𝐷) |
| 25 | 23, 24 | eqtr4di 2789 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 →
(+g‘(Scalar‘𝑤)) = ⨣ ) |
| 26 | 5 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 →
(.r‘(Scalar‘𝑤)) = (.r‘𝐷)) |
| 27 | | lflset.t |
. . . . . . . . . . . 12
⊢ × =
(.r‘𝐷) |
| 28 | 26, 27 | eqtr4di 2789 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 →
(.r‘(Scalar‘𝑤)) = × ) |
| 29 | 28 | oveqd 7427 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥)) = (𝑟 × (𝑓‘𝑥))) |
| 30 | | eqidd 2737 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (𝑓‘𝑦) = (𝑓‘𝑦)) |
| 31 | 25, 29, 30 | oveq123d 7431 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))) |
| 32 | 22, 31 | eqeq12d 2752 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦)) ↔ (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦)))) |
| 33 | 11, 32 | raleqbidv 3329 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦)) ↔ ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦)))) |
| 34 | 11, 33 | raleqbidv 3329 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦)))) |
| 35 | 8, 34 | raleqbidv 3329 |
. . . . 5
⊢ (𝑤 = 𝑊 → (∀𝑟 ∈ (Base‘(Scalar‘𝑤))∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦)) ↔ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦)))) |
| 36 | 12, 35 | rabeqbidv 3439 |
. . . 4
⊢ (𝑤 = 𝑊 → {𝑓 ∈ ((Base‘(Scalar‘𝑤)) ↑m
(Base‘𝑤)) ∣
∀𝑟 ∈
(Base‘(Scalar‘𝑤))∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦))} = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))}) |
| 37 | | df-lfl 39081 |
. . . 4
⊢ LFnl =
(𝑤 ∈ V ↦ {𝑓 ∈
((Base‘(Scalar‘𝑤)) ↑m (Base‘𝑤)) ∣ ∀𝑟 ∈
(Base‘(Scalar‘𝑤))∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦))}) |
| 38 | | ovex 7443 |
. . . . 5
⊢ (𝐾 ↑m 𝑉) ∈ V |
| 39 | 38 | rabex 5314 |
. . . 4
⊢ {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))} ∈ V |
| 40 | 36, 37, 39 | fvmpt 6991 |
. . 3
⊢ (𝑊 ∈ V →
(LFnl‘𝑊) = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))}) |
| 41 | 2, 40 | eqtrid 2783 |
. 2
⊢ (𝑊 ∈ V → 𝐹 = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))}) |
| 42 | 1, 41 | syl 17 |
1
⊢ (𝑊 ∈ 𝑋 → 𝐹 = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))}) |