| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elex 3500 | . 2
⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | 
| 2 |  | lflset.f | . . 3
⊢ 𝐹 = (LFnl‘𝑊) | 
| 3 |  | fveq2 6905 | . . . . . . . . 9
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) | 
| 4 |  | lflset.d | . . . . . . . . 9
⊢ 𝐷 = (Scalar‘𝑊) | 
| 5 | 3, 4 | eqtr4di 2794 | . . . . . . . 8
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐷) | 
| 6 | 5 | fveq2d 6909 | . . . . . . 7
⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐷)) | 
| 7 |  | lflset.k | . . . . . . 7
⊢ 𝐾 = (Base‘𝐷) | 
| 8 | 6, 7 | eqtr4di 2794 | . . . . . 6
⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾) | 
| 9 |  | fveq2 6905 | . . . . . . 7
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | 
| 10 |  | lflset.v | . . . . . . 7
⊢ 𝑉 = (Base‘𝑊) | 
| 11 | 9, 10 | eqtr4di 2794 | . . . . . 6
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) | 
| 12 | 8, 11 | oveq12d 7450 | . . . . 5
⊢ (𝑤 = 𝑊 → ((Base‘(Scalar‘𝑤)) ↑m
(Base‘𝑤)) = (𝐾 ↑m 𝑉)) | 
| 13 |  | fveq2 6905 | . . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 → (+g‘𝑤) = (+g‘𝑊)) | 
| 14 |  | lflset.a | . . . . . . . . . . . 12
⊢  + =
(+g‘𝑊) | 
| 15 | 13, 14 | eqtr4di 2794 | . . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (+g‘𝑤) = + ) | 
| 16 |  | fveq2 6905 | . . . . . . . . . . . . 13
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = ( ·𝑠
‘𝑊)) | 
| 17 |  | lflset.s | . . . . . . . . . . . . 13
⊢  · = (
·𝑠 ‘𝑊) | 
| 18 | 16, 17 | eqtr4di 2794 | . . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = · ) | 
| 19 | 18 | oveqd 7449 | . . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (𝑟( ·𝑠
‘𝑤)𝑥) = (𝑟 · 𝑥)) | 
| 20 |  | eqidd 2737 | . . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → 𝑦 = 𝑦) | 
| 21 | 15, 19, 20 | oveq123d 7453 | . . . . . . . . . 10
⊢ (𝑤 = 𝑊 → ((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦) = ((𝑟 · 𝑥) + 𝑦)) | 
| 22 | 21 | fveq2d 6909 | . . . . . . . . 9
⊢ (𝑤 = 𝑊 → (𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = (𝑓‘((𝑟 · 𝑥) + 𝑦))) | 
| 23 | 5 | fveq2d 6909 | . . . . . . . . . . 11
⊢ (𝑤 = 𝑊 →
(+g‘(Scalar‘𝑤)) = (+g‘𝐷)) | 
| 24 |  | lflset.p | . . . . . . . . . . 11
⊢  ⨣ =
(+g‘𝐷) | 
| 25 | 23, 24 | eqtr4di 2794 | . . . . . . . . . 10
⊢ (𝑤 = 𝑊 →
(+g‘(Scalar‘𝑤)) = ⨣ ) | 
| 26 | 5 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 →
(.r‘(Scalar‘𝑤)) = (.r‘𝐷)) | 
| 27 |  | lflset.t | . . . . . . . . . . . 12
⊢  × =
(.r‘𝐷) | 
| 28 | 26, 27 | eqtr4di 2794 | . . . . . . . . . . 11
⊢ (𝑤 = 𝑊 →
(.r‘(Scalar‘𝑤)) = × ) | 
| 29 | 28 | oveqd 7449 | . . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥)) = (𝑟 × (𝑓‘𝑥))) | 
| 30 |  | eqidd 2737 | . . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (𝑓‘𝑦) = (𝑓‘𝑦)) | 
| 31 | 25, 29, 30 | oveq123d 7453 | . . . . . . . . 9
⊢ (𝑤 = 𝑊 → ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))) | 
| 32 | 22, 31 | eqeq12d 2752 | . . . . . . . 8
⊢ (𝑤 = 𝑊 → ((𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦)) ↔ (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦)))) | 
| 33 | 11, 32 | raleqbidv 3345 | . . . . . . 7
⊢ (𝑤 = 𝑊 → (∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦)) ↔ ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦)))) | 
| 34 | 11, 33 | raleqbidv 3345 | . . . . . 6
⊢ (𝑤 = 𝑊 → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦)))) | 
| 35 | 8, 34 | raleqbidv 3345 | . . . . 5
⊢ (𝑤 = 𝑊 → (∀𝑟 ∈ (Base‘(Scalar‘𝑤))∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦)) ↔ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦)))) | 
| 36 | 12, 35 | rabeqbidv 3454 | . . . 4
⊢ (𝑤 = 𝑊 → {𝑓 ∈ ((Base‘(Scalar‘𝑤)) ↑m
(Base‘𝑤)) ∣
∀𝑟 ∈
(Base‘(Scalar‘𝑤))∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦))} = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))}) | 
| 37 |  | df-lfl 39060 | . . . 4
⊢ LFnl =
(𝑤 ∈ V ↦ {𝑓 ∈
((Base‘(Scalar‘𝑤)) ↑m (Base‘𝑤)) ∣ ∀𝑟 ∈
(Base‘(Scalar‘𝑤))∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦))}) | 
| 38 |  | ovex 7465 | . . . . 5
⊢ (𝐾 ↑m 𝑉) ∈ V | 
| 39 | 38 | rabex 5338 | . . . 4
⊢ {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))} ∈ V | 
| 40 | 36, 37, 39 | fvmpt 7015 | . . 3
⊢ (𝑊 ∈ V →
(LFnl‘𝑊) = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))}) | 
| 41 | 2, 40 | eqtrid 2788 | . 2
⊢ (𝑊 ∈ V → 𝐹 = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))}) | 
| 42 | 1, 41 | syl 17 | 1
⊢ (𝑊 ∈ 𝑋 → 𝐹 = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))}) |