Step | Hyp | Ref
| Expression |
1 | | elex 3492 |
. 2
β’ (π β π β π β V) |
2 | | lflset.f |
. . 3
β’ πΉ = (LFnlβπ) |
3 | | fveq2 6888 |
. . . . . . . . 9
β’ (π€ = π β (Scalarβπ€) = (Scalarβπ)) |
4 | | lflset.d |
. . . . . . . . 9
β’ π· = (Scalarβπ) |
5 | 3, 4 | eqtr4di 2790 |
. . . . . . . 8
β’ (π€ = π β (Scalarβπ€) = π·) |
6 | 5 | fveq2d 6892 |
. . . . . . 7
β’ (π€ = π β (Baseβ(Scalarβπ€)) = (Baseβπ·)) |
7 | | lflset.k |
. . . . . . 7
β’ πΎ = (Baseβπ·) |
8 | 6, 7 | eqtr4di 2790 |
. . . . . 6
β’ (π€ = π β (Baseβ(Scalarβπ€)) = πΎ) |
9 | | fveq2 6888 |
. . . . . . 7
β’ (π€ = π β (Baseβπ€) = (Baseβπ)) |
10 | | lflset.v |
. . . . . . 7
β’ π = (Baseβπ) |
11 | 9, 10 | eqtr4di 2790 |
. . . . . 6
β’ (π€ = π β (Baseβπ€) = π) |
12 | 8, 11 | oveq12d 7423 |
. . . . 5
β’ (π€ = π β ((Baseβ(Scalarβπ€)) βm
(Baseβπ€)) = (πΎ βm π)) |
13 | | fveq2 6888 |
. . . . . . . . . . . 12
β’ (π€ = π β (+gβπ€) = (+gβπ)) |
14 | | lflset.a |
. . . . . . . . . . . 12
β’ + =
(+gβπ) |
15 | 13, 14 | eqtr4di 2790 |
. . . . . . . . . . 11
β’ (π€ = π β (+gβπ€) = + ) |
16 | | fveq2 6888 |
. . . . . . . . . . . . 13
β’ (π€ = π β (
Β·π βπ€) = ( Β·π
βπ)) |
17 | | lflset.s |
. . . . . . . . . . . . 13
β’ Β· = (
Β·π βπ) |
18 | 16, 17 | eqtr4di 2790 |
. . . . . . . . . . . 12
β’ (π€ = π β (
Β·π βπ€) = Β· ) |
19 | 18 | oveqd 7422 |
. . . . . . . . . . 11
β’ (π€ = π β (π( Β·π
βπ€)π₯) = (π Β· π₯)) |
20 | | eqidd 2733 |
. . . . . . . . . . 11
β’ (π€ = π β π¦ = π¦) |
21 | 15, 19, 20 | oveq123d 7426 |
. . . . . . . . . 10
β’ (π€ = π β ((π( Β·π
βπ€)π₯)(+gβπ€)π¦) = ((π Β· π₯) + π¦)) |
22 | 21 | fveq2d 6892 |
. . . . . . . . 9
β’ (π€ = π β (πβ((π( Β·π
βπ€)π₯)(+gβπ€)π¦)) = (πβ((π Β· π₯) + π¦))) |
23 | 5 | fveq2d 6892 |
. . . . . . . . . . 11
β’ (π€ = π β
(+gβ(Scalarβπ€)) = (+gβπ·)) |
24 | | lflset.p |
. . . . . . . . . . 11
⒠⨣ =
(+gβπ·) |
25 | 23, 24 | eqtr4di 2790 |
. . . . . . . . . 10
β’ (π€ = π β
(+gβ(Scalarβπ€)) = ⨣ ) |
26 | 5 | fveq2d 6892 |
. . . . . . . . . . . 12
β’ (π€ = π β
(.rβ(Scalarβπ€)) = (.rβπ·)) |
27 | | lflset.t |
. . . . . . . . . . . 12
β’ Γ =
(.rβπ·) |
28 | 26, 27 | eqtr4di 2790 |
. . . . . . . . . . 11
β’ (π€ = π β
(.rβ(Scalarβπ€)) = Γ ) |
29 | 28 | oveqd 7422 |
. . . . . . . . . 10
β’ (π€ = π β (π(.rβ(Scalarβπ€))(πβπ₯)) = (π Γ (πβπ₯))) |
30 | | eqidd 2733 |
. . . . . . . . . 10
β’ (π€ = π β (πβπ¦) = (πβπ¦)) |
31 | 25, 29, 30 | oveq123d 7426 |
. . . . . . . . 9
β’ (π€ = π β ((π(.rβ(Scalarβπ€))(πβπ₯))(+gβ(Scalarβπ€))(πβπ¦)) = ((π Γ (πβπ₯)) ⨣ (πβπ¦))) |
32 | 22, 31 | eqeq12d 2748 |
. . . . . . . 8
β’ (π€ = π β ((πβ((π( Β·π
βπ€)π₯)(+gβπ€)π¦)) = ((π(.rβ(Scalarβπ€))(πβπ₯))(+gβ(Scalarβπ€))(πβπ¦)) β (πβ((π Β· π₯) + π¦)) = ((π Γ (πβπ₯)) ⨣ (πβπ¦)))) |
33 | 11, 32 | raleqbidv 3342 |
. . . . . . 7
β’ (π€ = π β (βπ¦ β (Baseβπ€)(πβ((π( Β·π
βπ€)π₯)(+gβπ€)π¦)) = ((π(.rβ(Scalarβπ€))(πβπ₯))(+gβ(Scalarβπ€))(πβπ¦)) β βπ¦ β π (πβ((π Β· π₯) + π¦)) = ((π Γ (πβπ₯)) ⨣ (πβπ¦)))) |
34 | 11, 33 | raleqbidv 3342 |
. . . . . 6
β’ (π€ = π β (βπ₯ β (Baseβπ€)βπ¦ β (Baseβπ€)(πβ((π( Β·π
βπ€)π₯)(+gβπ€)π¦)) = ((π(.rβ(Scalarβπ€))(πβπ₯))(+gβ(Scalarβπ€))(πβπ¦)) β βπ₯ β π βπ¦ β π (πβ((π Β· π₯) + π¦)) = ((π Γ (πβπ₯)) ⨣ (πβπ¦)))) |
35 | 8, 34 | raleqbidv 3342 |
. . . . 5
β’ (π€ = π β (βπ β (Baseβ(Scalarβπ€))βπ₯ β (Baseβπ€)βπ¦ β (Baseβπ€)(πβ((π( Β·π
βπ€)π₯)(+gβπ€)π¦)) = ((π(.rβ(Scalarβπ€))(πβπ₯))(+gβ(Scalarβπ€))(πβπ¦)) β βπ β πΎ βπ₯ β π βπ¦ β π (πβ((π Β· π₯) + π¦)) = ((π Γ (πβπ₯)) ⨣ (πβπ¦)))) |
36 | 12, 35 | rabeqbidv 3449 |
. . . 4
β’ (π€ = π β {π β ((Baseβ(Scalarβπ€)) βm
(Baseβπ€)) β£
βπ β
(Baseβ(Scalarβπ€))βπ₯ β (Baseβπ€)βπ¦ β (Baseβπ€)(πβ((π( Β·π
βπ€)π₯)(+gβπ€)π¦)) = ((π(.rβ(Scalarβπ€))(πβπ₯))(+gβ(Scalarβπ€))(πβπ¦))} = {π β (πΎ βm π) β£ βπ β πΎ βπ₯ β π βπ¦ β π (πβ((π Β· π₯) + π¦)) = ((π Γ (πβπ₯)) ⨣ (πβπ¦))}) |
37 | | df-lfl 37916 |
. . . 4
β’ LFnl =
(π€ β V β¦ {π β
((Baseβ(Scalarβπ€)) βm (Baseβπ€)) β£ βπ β
(Baseβ(Scalarβπ€))βπ₯ β (Baseβπ€)βπ¦ β (Baseβπ€)(πβ((π( Β·π
βπ€)π₯)(+gβπ€)π¦)) = ((π(.rβ(Scalarβπ€))(πβπ₯))(+gβ(Scalarβπ€))(πβπ¦))}) |
38 | | ovex 7438 |
. . . . 5
β’ (πΎ βm π) β V |
39 | 38 | rabex 5331 |
. . . 4
β’ {π β (πΎ βm π) β£ βπ β πΎ βπ₯ β π βπ¦ β π (πβ((π Β· π₯) + π¦)) = ((π Γ (πβπ₯)) ⨣ (πβπ¦))} β V |
40 | 36, 37, 39 | fvmpt 6995 |
. . 3
β’ (π β V β
(LFnlβπ) = {π β (πΎ βm π) β£ βπ β πΎ βπ₯ β π βπ¦ β π (πβ((π Β· π₯) + π¦)) = ((π Γ (πβπ₯)) ⨣ (πβπ¦))}) |
41 | 2, 40 | eqtrid 2784 |
. 2
β’ (π β V β πΉ = {π β (πΎ βm π) β£ βπ β πΎ βπ₯ β π βπ¦ β π (πβ((π Β· π₯) + π¦)) = ((π Γ (πβπ₯)) ⨣ (πβπ¦))}) |
42 | 1, 41 | syl 17 |
1
β’ (π β π β πΉ = {π β (πΎ βm π) β£ βπ β πΎ βπ₯ β π βπ¦ β π (πβ((π Β· π₯) + π¦)) = ((π Γ (πβπ₯)) ⨣ (πβπ¦))}) |