Detailed syntax breakdown of Definition df-line
Step | Hyp | Ref
| Expression |
1 | | cline 45961 |
. 2
class
LineM |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | cvv 3422 |
. . 3
class
V |
4 | | vx |
. . . 4
setvar 𝑥 |
5 | | vy |
. . . 4
setvar 𝑦 |
6 | 2 | cv 1538 |
. . . . 5
class 𝑤 |
7 | | cbs 16840 |
. . . . 5
class
Base |
8 | 6, 7 | cfv 6418 |
. . . 4
class
(Base‘𝑤) |
9 | 4 | cv 1538 |
. . . . . 6
class 𝑥 |
10 | 9 | csn 4558 |
. . . . 5
class {𝑥} |
11 | 8, 10 | cdif 3880 |
. . . 4
class
((Base‘𝑤)
∖ {𝑥}) |
12 | | vp |
. . . . . . . 8
setvar 𝑝 |
13 | 12 | cv 1538 |
. . . . . . 7
class 𝑝 |
14 | | csca 16891 |
. . . . . . . . . . . 12
class
Scalar |
15 | 6, 14 | cfv 6418 |
. . . . . . . . . . 11
class
(Scalar‘𝑤) |
16 | | cur 19652 |
. . . . . . . . . . 11
class
1r |
17 | 15, 16 | cfv 6418 |
. . . . . . . . . 10
class
(1r‘(Scalar‘𝑤)) |
18 | | vt |
. . . . . . . . . . 11
setvar 𝑡 |
19 | 18 | cv 1538 |
. . . . . . . . . 10
class 𝑡 |
20 | | csg 18494 |
. . . . . . . . . . 11
class
-g |
21 | 15, 20 | cfv 6418 |
. . . . . . . . . 10
class
(-g‘(Scalar‘𝑤)) |
22 | 17, 19, 21 | co 7255 |
. . . . . . . . 9
class
((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡) |
23 | | cvsca 16892 |
. . . . . . . . . 10
class
·𝑠 |
24 | 6, 23 | cfv 6418 |
. . . . . . . . 9
class (
·𝑠 ‘𝑤) |
25 | 22, 9, 24 | co 7255 |
. . . . . . . 8
class
(((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠
‘𝑤)𝑥) |
26 | 5 | cv 1538 |
. . . . . . . . 9
class 𝑦 |
27 | 19, 26, 24 | co 7255 |
. . . . . . . 8
class (𝑡(
·𝑠 ‘𝑤)𝑦) |
28 | | cplusg 16888 |
. . . . . . . . 9
class
+g |
29 | 6, 28 | cfv 6418 |
. . . . . . . 8
class
(+g‘𝑤) |
30 | 25, 27, 29 | co 7255 |
. . . . . . 7
class
((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)(𝑡( ·𝑠
‘𝑤)𝑦)) |
31 | 13, 30 | wceq 1539 |
. . . . . 6
wff 𝑝 =
((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)(𝑡( ·𝑠
‘𝑤)𝑦)) |
32 | 15, 7 | cfv 6418 |
. . . . . 6
class
(Base‘(Scalar‘𝑤)) |
33 | 31, 18, 32 | wrex 3064 |
. . . . 5
wff
∃𝑡 ∈
(Base‘(Scalar‘𝑤))𝑝 =
((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)(𝑡( ·𝑠
‘𝑤)𝑦)) |
34 | 33, 12, 8 | crab 3067 |
. . . 4
class {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈
(Base‘(Scalar‘𝑤))𝑝 =
((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)(𝑡( ·𝑠
‘𝑤)𝑦))} |
35 | 4, 5, 8, 11, 34 | cmpo 7257 |
. . 3
class (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ ((Base‘𝑤) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 =
((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)(𝑡( ·𝑠
‘𝑤)𝑦))}) |
36 | 2, 3, 35 | cmpt 5153 |
. 2
class (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ ((Base‘𝑤) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 =
((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)(𝑡( ·𝑠
‘𝑤)𝑦))})) |
37 | 1, 36 | wceq 1539 |
1
wff
LineM = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ ((Base‘𝑤) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 =
((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)(𝑡( ·𝑠
‘𝑤)𝑦))})) |