Step | Hyp | Ref
| Expression |
1 | | cline 46903 |
. 2
class
LineM |
2 | | vw |
. . 3
setvar π€ |
3 | | cvv 3447 |
. . 3
class
V |
4 | | vx |
. . . 4
setvar π₯ |
5 | | vy |
. . . 4
setvar π¦ |
6 | 2 | cv 1541 |
. . . . 5
class π€ |
7 | | cbs 17091 |
. . . . 5
class
Base |
8 | 6, 7 | cfv 6500 |
. . . 4
class
(Baseβπ€) |
9 | 4 | cv 1541 |
. . . . . 6
class π₯ |
10 | 9 | csn 4590 |
. . . . 5
class {π₯} |
11 | 8, 10 | cdif 3911 |
. . . 4
class
((Baseβπ€)
β {π₯}) |
12 | | vp |
. . . . . . . 8
setvar π |
13 | 12 | cv 1541 |
. . . . . . 7
class π |
14 | | csca 17144 |
. . . . . . . . . . . 12
class
Scalar |
15 | 6, 14 | cfv 6500 |
. . . . . . . . . . 11
class
(Scalarβπ€) |
16 | | cur 19921 |
. . . . . . . . . . 11
class
1r |
17 | 15, 16 | cfv 6500 |
. . . . . . . . . 10
class
(1rβ(Scalarβπ€)) |
18 | | vt |
. . . . . . . . . . 11
setvar π‘ |
19 | 18 | cv 1541 |
. . . . . . . . . 10
class π‘ |
20 | | csg 18758 |
. . . . . . . . . . 11
class
-g |
21 | 15, 20 | cfv 6500 |
. . . . . . . . . 10
class
(-gβ(Scalarβπ€)) |
22 | 17, 19, 21 | co 7361 |
. . . . . . . . 9
class
((1rβ(Scalarβπ€))(-gβ(Scalarβπ€))π‘) |
23 | | cvsca 17145 |
. . . . . . . . . 10
class
Β·π |
24 | 6, 23 | cfv 6500 |
. . . . . . . . 9
class (
Β·π βπ€) |
25 | 22, 9, 24 | co 7361 |
. . . . . . . 8
class
(((1rβ(Scalarβπ€))(-gβ(Scalarβπ€))π‘)( Β·π
βπ€)π₯) |
26 | 5 | cv 1541 |
. . . . . . . . 9
class π¦ |
27 | 19, 26, 24 | co 7361 |
. . . . . . . 8
class (π‘(
Β·π βπ€)π¦) |
28 | | cplusg 17141 |
. . . . . . . . 9
class
+g |
29 | 6, 28 | cfv 6500 |
. . . . . . . 8
class
(+gβπ€) |
30 | 25, 27, 29 | co 7361 |
. . . . . . 7
class
((((1rβ(Scalarβπ€))(-gβ(Scalarβπ€))π‘)( Β·π
βπ€)π₯)(+gβπ€)(π‘( Β·π
βπ€)π¦)) |
31 | 13, 30 | wceq 1542 |
. . . . . 6
wff π =
((((1rβ(Scalarβπ€))(-gβ(Scalarβπ€))π‘)( Β·π
βπ€)π₯)(+gβπ€)(π‘( Β·π
βπ€)π¦)) |
32 | 15, 7 | cfv 6500 |
. . . . . 6
class
(Baseβ(Scalarβπ€)) |
33 | 31, 18, 32 | wrex 3070 |
. . . . 5
wff
βπ‘ β
(Baseβ(Scalarβπ€))π =
((((1rβ(Scalarβπ€))(-gβ(Scalarβπ€))π‘)( Β·π
βπ€)π₯)(+gβπ€)(π‘( Β·π
βπ€)π¦)) |
34 | 33, 12, 8 | crab 3406 |
. . . 4
class {π β (Baseβπ€) β£ βπ‘ β
(Baseβ(Scalarβπ€))π =
((((1rβ(Scalarβπ€))(-gβ(Scalarβπ€))π‘)( Β·π
βπ€)π₯)(+gβπ€)(π‘( Β·π
βπ€)π¦))} |
35 | 4, 5, 8, 11, 34 | cmpo 7363 |
. . 3
class (π₯ β (Baseβπ€), π¦ β ((Baseβπ€) β {π₯}) β¦ {π β (Baseβπ€) β£ βπ‘ β (Baseβ(Scalarβπ€))π =
((((1rβ(Scalarβπ€))(-gβ(Scalarβπ€))π‘)( Β·π
βπ€)π₯)(+gβπ€)(π‘( Β·π
βπ€)π¦))}) |
36 | 2, 3, 35 | cmpt 5192 |
. 2
class (π€ β V β¦ (π₯ β (Baseβπ€), π¦ β ((Baseβπ€) β {π₯}) β¦ {π β (Baseβπ€) β£ βπ‘ β (Baseβ(Scalarβπ€))π =
((((1rβ(Scalarβπ€))(-gβ(Scalarβπ€))π‘)( Β·π
βπ€)π₯)(+gβπ€)(π‘( Β·π
βπ€)π¦))})) |
37 | 1, 36 | wceq 1542 |
1
wff
LineM = (π€ β V β¦ (π₯ β (Baseβπ€), π¦ β ((Baseβπ€) β {π₯}) β¦ {π β (Baseβπ€) β£ βπ‘ β (Baseβ(Scalarβπ€))π =
((((1rβ(Scalarβπ€))(-gβ(Scalarβπ€))π‘)( Β·π
βπ€)π₯)(+gβπ€)(π‘( Β·π
βπ€)π¦))})) |