Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-line Structured version   Visualization version   GIF version

Definition df-line 46905
Description: Definition of lines passing through two different points in a left module (or any extended structure having a base set, an addition, and a scalar multiplication). (Contributed by AV, 14-Jan-2023.)
Assertion
Ref Expression
df-line LineM = (𝑀 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘€), 𝑦 ∈ ((Baseβ€˜π‘€) βˆ– {π‘₯}) ↦ {𝑝 ∈ (Baseβ€˜π‘€) ∣ βˆƒπ‘‘ ∈ (Baseβ€˜(Scalarβ€˜π‘€))𝑝 = ((((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑)( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)(𝑑( ·𝑠 β€˜π‘€)𝑦))}))
Distinct variable group:   𝑑,𝑝,𝑀,π‘₯,𝑦

Detailed syntax breakdown of Definition df-line
StepHypRef Expression
1 cline 46903 . 2 class LineM
2 vw . . 3 setvar 𝑀
3 cvv 3447 . . 3 class V
4 vx . . . 4 setvar π‘₯
5 vy . . . 4 setvar 𝑦
62cv 1541 . . . . 5 class 𝑀
7 cbs 17091 . . . . 5 class Base
86, 7cfv 6500 . . . 4 class (Baseβ€˜π‘€)
94cv 1541 . . . . . 6 class π‘₯
109csn 4590 . . . . 5 class {π‘₯}
118, 10cdif 3911 . . . 4 class ((Baseβ€˜π‘€) βˆ– {π‘₯})
12 vp . . . . . . . 8 setvar 𝑝
1312cv 1541 . . . . . . 7 class 𝑝
14 csca 17144 . . . . . . . . . . . 12 class Scalar
156, 14cfv 6500 . . . . . . . . . . 11 class (Scalarβ€˜π‘€)
16 cur 19921 . . . . . . . . . . 11 class 1r
1715, 16cfv 6500 . . . . . . . . . 10 class (1rβ€˜(Scalarβ€˜π‘€))
18 vt . . . . . . . . . . 11 setvar 𝑑
1918cv 1541 . . . . . . . . . 10 class 𝑑
20 csg 18758 . . . . . . . . . . 11 class -g
2115, 20cfv 6500 . . . . . . . . . 10 class (-gβ€˜(Scalarβ€˜π‘€))
2217, 19, 21co 7361 . . . . . . . . 9 class ((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑)
23 cvsca 17145 . . . . . . . . . 10 class ·𝑠
246, 23cfv 6500 . . . . . . . . 9 class ( ·𝑠 β€˜π‘€)
2522, 9, 24co 7361 . . . . . . . 8 class (((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑)( ·𝑠 β€˜π‘€)π‘₯)
265cv 1541 . . . . . . . . 9 class 𝑦
2719, 26, 24co 7361 . . . . . . . 8 class (𝑑( ·𝑠 β€˜π‘€)𝑦)
28 cplusg 17141 . . . . . . . . 9 class +g
296, 28cfv 6500 . . . . . . . 8 class (+gβ€˜π‘€)
3025, 27, 29co 7361 . . . . . . 7 class ((((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑)( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)(𝑑( ·𝑠 β€˜π‘€)𝑦))
3113, 30wceq 1542 . . . . . 6 wff 𝑝 = ((((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑)( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)(𝑑( ·𝑠 β€˜π‘€)𝑦))
3215, 7cfv 6500 . . . . . 6 class (Baseβ€˜(Scalarβ€˜π‘€))
3331, 18, 32wrex 3070 . . . . 5 wff βˆƒπ‘‘ ∈ (Baseβ€˜(Scalarβ€˜π‘€))𝑝 = ((((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑)( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)(𝑑( ·𝑠 β€˜π‘€)𝑦))
3433, 12, 8crab 3406 . . . 4 class {𝑝 ∈ (Baseβ€˜π‘€) ∣ βˆƒπ‘‘ ∈ (Baseβ€˜(Scalarβ€˜π‘€))𝑝 = ((((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑)( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)(𝑑( ·𝑠 β€˜π‘€)𝑦))}
354, 5, 8, 11, 34cmpo 7363 . . 3 class (π‘₯ ∈ (Baseβ€˜π‘€), 𝑦 ∈ ((Baseβ€˜π‘€) βˆ– {π‘₯}) ↦ {𝑝 ∈ (Baseβ€˜π‘€) ∣ βˆƒπ‘‘ ∈ (Baseβ€˜(Scalarβ€˜π‘€))𝑝 = ((((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑)( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)(𝑑( ·𝑠 β€˜π‘€)𝑦))})
362, 3, 35cmpt 5192 . 2 class (𝑀 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘€), 𝑦 ∈ ((Baseβ€˜π‘€) βˆ– {π‘₯}) ↦ {𝑝 ∈ (Baseβ€˜π‘€) ∣ βˆƒπ‘‘ ∈ (Baseβ€˜(Scalarβ€˜π‘€))𝑝 = ((((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑)( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)(𝑑( ·𝑠 β€˜π‘€)𝑦))}))
371, 36wceq 1542 1 wff LineM = (𝑀 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘€), 𝑦 ∈ ((Baseβ€˜π‘€) βˆ– {π‘₯}) ↦ {𝑝 ∈ (Baseβ€˜π‘€) ∣ βˆƒπ‘‘ ∈ (Baseβ€˜(Scalarβ€˜π‘€))𝑝 = ((((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑)( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)(𝑑( ·𝑠 β€˜π‘€)𝑦))}))
Colors of variables: wff setvar class
This definition is referenced by:  lines  46907
  Copyright terms: Public domain W3C validator