Detailed syntax breakdown of Definition df-sph
Step | Hyp | Ref
| Expression |
1 | | csph 46132 |
. 2
class
Sphere |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | cvv 3437 |
. . 3
class
V |
4 | | vx |
. . . 4
setvar 𝑥 |
5 | | vr |
. . . 4
setvar 𝑟 |
6 | 2 | cv 1538 |
. . . . 5
class 𝑤 |
7 | | cbs 16957 |
. . . . 5
class
Base |
8 | 6, 7 | cfv 6458 |
. . . 4
class
(Base‘𝑤) |
9 | | cc0 10917 |
. . . . 5
class
0 |
10 | | cpnf 11052 |
. . . . 5
class
+∞ |
11 | | cicc 13128 |
. . . . 5
class
[,] |
12 | 9, 10, 11 | co 7307 |
. . . 4
class
(0[,]+∞) |
13 | | vp |
. . . . . . . 8
setvar 𝑝 |
14 | 13 | cv 1538 |
. . . . . . 7
class 𝑝 |
15 | 4 | cv 1538 |
. . . . . . 7
class 𝑥 |
16 | | cds 17016 |
. . . . . . . 8
class
dist |
17 | 6, 16 | cfv 6458 |
. . . . . . 7
class
(dist‘𝑤) |
18 | 14, 15, 17 | co 7307 |
. . . . . 6
class (𝑝(dist‘𝑤)𝑥) |
19 | 5 | cv 1538 |
. . . . . 6
class 𝑟 |
20 | 18, 19 | wceq 1539 |
. . . . 5
wff (𝑝(dist‘𝑤)𝑥) = 𝑟 |
21 | 20, 13, 8 | crab 3284 |
. . . 4
class {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟} |
22 | 4, 5, 8, 12, 21 | cmpo 7309 |
. . 3
class (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟}) |
23 | 2, 3, 22 | cmpt 5164 |
. 2
class (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟})) |
24 | 1, 23 | wceq 1539 |
1
wff Sphere =
(𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟})) |