Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-sph Structured version   Visualization version   GIF version

Definition df-sph 47464
Description: Definition of spheres for given centers and radii in a metric space (or more generally, in a distance space, see distspace 23822, or even in any extended structure having a base set and a distance function into the real numbers. (Contributed by AV, 14-Jan-2023.)
Assertion
Ref Expression
df-sph Sphere = (𝑀 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘€), π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ (Baseβ€˜π‘€) ∣ (𝑝(distβ€˜π‘€)π‘₯) = π‘Ÿ}))
Distinct variable group:   π‘Ÿ,𝑝,𝑀,π‘₯

Detailed syntax breakdown of Definition df-sph
StepHypRef Expression
1 csph 47462 . 2 class Sphere
2 vw . . 3 setvar 𝑀
3 cvv 3475 . . 3 class V
4 vx . . . 4 setvar π‘₯
5 vr . . . 4 setvar π‘Ÿ
62cv 1541 . . . . 5 class 𝑀
7 cbs 17144 . . . . 5 class Base
86, 7cfv 6544 . . . 4 class (Baseβ€˜π‘€)
9 cc0 11110 . . . . 5 class 0
10 cpnf 11245 . . . . 5 class +∞
11 cicc 13327 . . . . 5 class [,]
129, 10, 11co 7409 . . . 4 class (0[,]+∞)
13 vp . . . . . . . 8 setvar 𝑝
1413cv 1541 . . . . . . 7 class 𝑝
154cv 1541 . . . . . . 7 class π‘₯
16 cds 17206 . . . . . . . 8 class dist
176, 16cfv 6544 . . . . . . 7 class (distβ€˜π‘€)
1814, 15, 17co 7409 . . . . . 6 class (𝑝(distβ€˜π‘€)π‘₯)
195cv 1541 . . . . . 6 class π‘Ÿ
2018, 19wceq 1542 . . . . 5 wff (𝑝(distβ€˜π‘€)π‘₯) = π‘Ÿ
2120, 13, 8crab 3433 . . . 4 class {𝑝 ∈ (Baseβ€˜π‘€) ∣ (𝑝(distβ€˜π‘€)π‘₯) = π‘Ÿ}
224, 5, 8, 12, 21cmpo 7411 . . 3 class (π‘₯ ∈ (Baseβ€˜π‘€), π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ (Baseβ€˜π‘€) ∣ (𝑝(distβ€˜π‘€)π‘₯) = π‘Ÿ})
232, 3, 22cmpt 5232 . 2 class (𝑀 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘€), π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ (Baseβ€˜π‘€) ∣ (𝑝(distβ€˜π‘€)π‘₯) = π‘Ÿ}))
241, 23wceq 1542 1 wff Sphere = (𝑀 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘€), π‘Ÿ ∈ (0[,]+∞) ↦ {𝑝 ∈ (Baseβ€˜π‘€) ∣ (𝑝(distβ€˜π‘€)π‘₯) = π‘Ÿ}))
Colors of variables: wff setvar class
This definition is referenced by:  spheres  47480
  Copyright terms: Public domain W3C validator