Step | Hyp | Ref
| Expression |
1 | | csph 47462 |
. 2
class
Sphere |
2 | | vw |
. . 3
setvar π€ |
3 | | cvv 3475 |
. . 3
class
V |
4 | | vx |
. . . 4
setvar π₯ |
5 | | vr |
. . . 4
setvar π |
6 | 2 | cv 1541 |
. . . . 5
class π€ |
7 | | cbs 17144 |
. . . . 5
class
Base |
8 | 6, 7 | cfv 6544 |
. . . 4
class
(Baseβπ€) |
9 | | cc0 11110 |
. . . . 5
class
0 |
10 | | cpnf 11245 |
. . . . 5
class
+β |
11 | | cicc 13327 |
. . . . 5
class
[,] |
12 | 9, 10, 11 | co 7409 |
. . . 4
class
(0[,]+β) |
13 | | vp |
. . . . . . . 8
setvar π |
14 | 13 | cv 1541 |
. . . . . . 7
class π |
15 | 4 | cv 1541 |
. . . . . . 7
class π₯ |
16 | | cds 17206 |
. . . . . . . 8
class
dist |
17 | 6, 16 | cfv 6544 |
. . . . . . 7
class
(distβπ€) |
18 | 14, 15, 17 | co 7409 |
. . . . . 6
class (π(distβπ€)π₯) |
19 | 5 | cv 1541 |
. . . . . 6
class π |
20 | 18, 19 | wceq 1542 |
. . . . 5
wff (π(distβπ€)π₯) = π |
21 | 20, 13, 8 | crab 3433 |
. . . 4
class {π β (Baseβπ€) β£ (π(distβπ€)π₯) = π} |
22 | 4, 5, 8, 12, 21 | cmpo 7411 |
. . 3
class (π₯ β (Baseβπ€), π β (0[,]+β) β¦ {π β (Baseβπ€) β£ (π(distβπ€)π₯) = π}) |
23 | 2, 3, 22 | cmpt 5232 |
. 2
class (π€ β V β¦ (π₯ β (Baseβπ€), π β (0[,]+β) β¦ {π β (Baseβπ€) β£ (π(distβπ€)π₯) = π})) |
24 | 1, 23 | wceq 1542 |
1
wff Sphere =
(π€ β V β¦ (π₯ β (Baseβπ€), π β (0[,]+β) β¦ {π β (Baseβπ€) β£ (π(distβπ€)π₯) = π})) |