Detailed syntax breakdown of Definition df-sph
| Step | Hyp | Ref
| Expression |
| 1 | | csph 48649 |
. 2
class
Sphere |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vx |
. . . 4
setvar 𝑥 |
| 5 | | vr |
. . . 4
setvar 𝑟 |
| 6 | 2 | cv 1539 |
. . . . 5
class 𝑤 |
| 7 | | cbs 17247 |
. . . . 5
class
Base |
| 8 | 6, 7 | cfv 6561 |
. . . 4
class
(Base‘𝑤) |
| 9 | | cc0 11155 |
. . . . 5
class
0 |
| 10 | | cpnf 11292 |
. . . . 5
class
+∞ |
| 11 | | cicc 13390 |
. . . . 5
class
[,] |
| 12 | 9, 10, 11 | co 7431 |
. . . 4
class
(0[,]+∞) |
| 13 | | vp |
. . . . . . . 8
setvar 𝑝 |
| 14 | 13 | cv 1539 |
. . . . . . 7
class 𝑝 |
| 15 | 4 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 16 | | cds 17306 |
. . . . . . . 8
class
dist |
| 17 | 6, 16 | cfv 6561 |
. . . . . . 7
class
(dist‘𝑤) |
| 18 | 14, 15, 17 | co 7431 |
. . . . . 6
class (𝑝(dist‘𝑤)𝑥) |
| 19 | 5 | cv 1539 |
. . . . . 6
class 𝑟 |
| 20 | 18, 19 | wceq 1540 |
. . . . 5
wff (𝑝(dist‘𝑤)𝑥) = 𝑟 |
| 21 | 20, 13, 8 | crab 3436 |
. . . 4
class {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟} |
| 22 | 4, 5, 8, 12, 21 | cmpo 7433 |
. . 3
class (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟}) |
| 23 | 2, 3, 22 | cmpt 5225 |
. 2
class (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟})) |
| 24 | 1, 23 | wceq 1540 |
1
wff Sphere =
(𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟})) |