Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lines Structured version   Visualization version   GIF version

Theorem lines 47465
Description: The lines passing through two different points in a left module (or any extended structure having a base set, an addition, and a scalar multiplication). (Contributed by AV, 14-Jan-2023.)
Hypotheses
Ref Expression
lines.b 𝐡 = (Baseβ€˜π‘Š)
lines.l 𝐿 = (LineMβ€˜π‘Š)
lines.s 𝑆 = (Scalarβ€˜π‘Š)
lines.k 𝐾 = (Baseβ€˜π‘†)
lines.p Β· = ( ·𝑠 β€˜π‘Š)
lines.a + = (+gβ€˜π‘Š)
lines.m βˆ’ = (-gβ€˜π‘†)
lines.1 1 = (1rβ€˜π‘†)
Assertion
Ref Expression
lines (π‘Š ∈ 𝑉 β†’ 𝐿 = (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦))}))
Distinct variable groups:   𝐡,𝑝,π‘₯,𝑦   𝑑,𝐾   𝑑,𝑆   π‘Š,𝑝,𝑑,π‘₯,𝑦
Allowed substitution hints:   𝐡(𝑑)   + (π‘₯,𝑦,𝑑,𝑝)   𝑆(π‘₯,𝑦,𝑝)   Β· (π‘₯,𝑦,𝑑,𝑝)   1 (π‘₯,𝑦,𝑑,𝑝)   𝐾(π‘₯,𝑦,𝑝)   𝐿(π‘₯,𝑦,𝑑,𝑝)   βˆ’ (π‘₯,𝑦,𝑑,𝑝)   𝑉(π‘₯,𝑦,𝑑,𝑝)

Proof of Theorem lines
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 lines.l . 2 𝐿 = (LineMβ€˜π‘Š)
2 df-line 47463 . . 3 LineM = (𝑀 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘€), 𝑦 ∈ ((Baseβ€˜π‘€) βˆ– {π‘₯}) ↦ {𝑝 ∈ (Baseβ€˜π‘€) ∣ βˆƒπ‘‘ ∈ (Baseβ€˜(Scalarβ€˜π‘€))𝑝 = ((((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑)( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)(𝑑( ·𝑠 β€˜π‘€)𝑦))}))
3 lines.b . . . . . . 7 𝐡 = (Baseβ€˜π‘Š)
4 fveq2 6892 . . . . . . 7 (π‘Š = 𝑀 β†’ (Baseβ€˜π‘Š) = (Baseβ€˜π‘€))
53, 4eqtrid 2785 . . . . . 6 (π‘Š = 𝑀 β†’ 𝐡 = (Baseβ€˜π‘€))
65difeq1d 4122 . . . . . 6 (π‘Š = 𝑀 β†’ (𝐡 βˆ– {π‘₯}) = ((Baseβ€˜π‘€) βˆ– {π‘₯}))
7 lines.k . . . . . . . . 9 𝐾 = (Baseβ€˜π‘†)
8 lines.s . . . . . . . . . . 11 𝑆 = (Scalarβ€˜π‘Š)
9 fveq2 6892 . . . . . . . . . . 11 (π‘Š = 𝑀 β†’ (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘€))
108, 9eqtrid 2785 . . . . . . . . . 10 (π‘Š = 𝑀 β†’ 𝑆 = (Scalarβ€˜π‘€))
1110fveq2d 6896 . . . . . . . . 9 (π‘Š = 𝑀 β†’ (Baseβ€˜π‘†) = (Baseβ€˜(Scalarβ€˜π‘€)))
127, 11eqtrid 2785 . . . . . . . 8 (π‘Š = 𝑀 β†’ 𝐾 = (Baseβ€˜(Scalarβ€˜π‘€)))
13 lines.a . . . . . . . . . . 11 + = (+gβ€˜π‘Š)
14 fveq2 6892 . . . . . . . . . . 11 (π‘Š = 𝑀 β†’ (+gβ€˜π‘Š) = (+gβ€˜π‘€))
1513, 14eqtrid 2785 . . . . . . . . . 10 (π‘Š = 𝑀 β†’ + = (+gβ€˜π‘€))
16 lines.p . . . . . . . . . . . 12 Β· = ( ·𝑠 β€˜π‘Š)
17 fveq2 6892 . . . . . . . . . . . 12 (π‘Š = 𝑀 β†’ ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘€))
1816, 17eqtrid 2785 . . . . . . . . . . 11 (π‘Š = 𝑀 β†’ Β· = ( ·𝑠 β€˜π‘€))
19 lines.m . . . . . . . . . . . . . 14 βˆ’ = (-gβ€˜π‘†)
208fveq2i 6895 . . . . . . . . . . . . . 14 (-gβ€˜π‘†) = (-gβ€˜(Scalarβ€˜π‘Š))
2119, 20eqtri 2761 . . . . . . . . . . . . 13 βˆ’ = (-gβ€˜(Scalarβ€˜π‘Š))
22 2fveq3 6897 . . . . . . . . . . . . 13 (π‘Š = 𝑀 β†’ (-gβ€˜(Scalarβ€˜π‘Š)) = (-gβ€˜(Scalarβ€˜π‘€)))
2321, 22eqtrid 2785 . . . . . . . . . . . 12 (π‘Š = 𝑀 β†’ βˆ’ = (-gβ€˜(Scalarβ€˜π‘€)))
24 lines.1 . . . . . . . . . . . . . 14 1 = (1rβ€˜π‘†)
258fveq2i 6895 . . . . . . . . . . . . . 14 (1rβ€˜π‘†) = (1rβ€˜(Scalarβ€˜π‘Š))
2624, 25eqtri 2761 . . . . . . . . . . . . 13 1 = (1rβ€˜(Scalarβ€˜π‘Š))
27 2fveq3 6897 . . . . . . . . . . . . 13 (π‘Š = 𝑀 β†’ (1rβ€˜(Scalarβ€˜π‘Š)) = (1rβ€˜(Scalarβ€˜π‘€)))
2826, 27eqtrid 2785 . . . . . . . . . . . 12 (π‘Š = 𝑀 β†’ 1 = (1rβ€˜(Scalarβ€˜π‘€)))
29 eqidd 2734 . . . . . . . . . . . 12 (π‘Š = 𝑀 β†’ 𝑑 = 𝑑)
3023, 28, 29oveq123d 7430 . . . . . . . . . . 11 (π‘Š = 𝑀 β†’ ( 1 βˆ’ 𝑑) = ((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑))
31 eqidd 2734 . . . . . . . . . . 11 (π‘Š = 𝑀 β†’ π‘₯ = π‘₯)
3218, 30, 31oveq123d 7430 . . . . . . . . . 10 (π‘Š = 𝑀 β†’ (( 1 βˆ’ 𝑑) Β· π‘₯) = (((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑)( ·𝑠 β€˜π‘€)π‘₯))
3318oveqd 7426 . . . . . . . . . 10 (π‘Š = 𝑀 β†’ (𝑑 Β· 𝑦) = (𝑑( ·𝑠 β€˜π‘€)𝑦))
3415, 32, 33oveq123d 7430 . . . . . . . . 9 (π‘Š = 𝑀 β†’ ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦)) = ((((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑)( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)(𝑑( ·𝑠 β€˜π‘€)𝑦)))
3534eqeq2d 2744 . . . . . . . 8 (π‘Š = 𝑀 β†’ (𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦)) ↔ 𝑝 = ((((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑)( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)(𝑑( ·𝑠 β€˜π‘€)𝑦))))
3612, 35rexeqbidv 3344 . . . . . . 7 (π‘Š = 𝑀 β†’ (βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦)) ↔ βˆƒπ‘‘ ∈ (Baseβ€˜(Scalarβ€˜π‘€))𝑝 = ((((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑)( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)(𝑑( ·𝑠 β€˜π‘€)𝑦))))
375, 36rabeqbidv 3450 . . . . . 6 (π‘Š = 𝑀 β†’ {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦))} = {𝑝 ∈ (Baseβ€˜π‘€) ∣ βˆƒπ‘‘ ∈ (Baseβ€˜(Scalarβ€˜π‘€))𝑝 = ((((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑)( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)(𝑑( ·𝑠 β€˜π‘€)𝑦))})
385, 6, 37mpoeq123dv 7484 . . . . 5 (π‘Š = 𝑀 β†’ (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦))}) = (π‘₯ ∈ (Baseβ€˜π‘€), 𝑦 ∈ ((Baseβ€˜π‘€) βˆ– {π‘₯}) ↦ {𝑝 ∈ (Baseβ€˜π‘€) ∣ βˆƒπ‘‘ ∈ (Baseβ€˜(Scalarβ€˜π‘€))𝑝 = ((((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑)( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)(𝑑( ·𝑠 β€˜π‘€)𝑦))}))
3938eqcomd 2739 . . . 4 (π‘Š = 𝑀 β†’ (π‘₯ ∈ (Baseβ€˜π‘€), 𝑦 ∈ ((Baseβ€˜π‘€) βˆ– {π‘₯}) ↦ {𝑝 ∈ (Baseβ€˜π‘€) ∣ βˆƒπ‘‘ ∈ (Baseβ€˜(Scalarβ€˜π‘€))𝑝 = ((((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑)( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)(𝑑( ·𝑠 β€˜π‘€)𝑦))}) = (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦))}))
4039eqcoms 2741 . . 3 (𝑀 = π‘Š β†’ (π‘₯ ∈ (Baseβ€˜π‘€), 𝑦 ∈ ((Baseβ€˜π‘€) βˆ– {π‘₯}) ↦ {𝑝 ∈ (Baseβ€˜π‘€) ∣ βˆƒπ‘‘ ∈ (Baseβ€˜(Scalarβ€˜π‘€))𝑝 = ((((1rβ€˜(Scalarβ€˜π‘€))(-gβ€˜(Scalarβ€˜π‘€))𝑑)( ·𝑠 β€˜π‘€)π‘₯)(+gβ€˜π‘€)(𝑑( ·𝑠 β€˜π‘€)𝑦))}) = (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦))}))
41 elex 3493 . . 3 (π‘Š ∈ 𝑉 β†’ π‘Š ∈ V)
423fvexi 6906 . . . . 5 𝐡 ∈ V
4342difexi 5329 . . . . 5 (𝐡 βˆ– {π‘₯}) ∈ V
4442, 43mpoex 8066 . . . 4 (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦))}) ∈ V
4544a1i 11 . . 3 (π‘Š ∈ 𝑉 β†’ (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦))}) ∈ V)
462, 40, 41, 45fvmptd3 7022 . 2 (π‘Š ∈ 𝑉 β†’ (LineMβ€˜π‘Š) = (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦))}))
471, 46eqtrid 2785 1 (π‘Š ∈ 𝑉 β†’ 𝐿 = (π‘₯ ∈ 𝐡, 𝑦 ∈ (𝐡 βˆ– {π‘₯}) ↦ {𝑝 ∈ 𝐡 ∣ βˆƒπ‘‘ ∈ 𝐾 𝑝 = ((( 1 βˆ’ 𝑑) Β· π‘₯) + (𝑑 Β· 𝑦))}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3071  {crab 3433  Vcvv 3475   βˆ– cdif 3946  {csn 4629  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  Basecbs 17144  +gcplusg 17197  Scalarcsca 17200   ·𝑠 cvsca 17201  -gcsg 18821  1rcur 20004  LineMcline 47461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-line 47463
This theorem is referenced by:  line  47466  rrxlines  47467
  Copyright terms: Public domain W3C validator