Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lines Structured version   Visualization version   GIF version

Theorem lines 46135
Description: The lines passing through two different points in a left module (or any extended structure having a base set, an addition, and a scalar multiplication). (Contributed by AV, 14-Jan-2023.)
Hypotheses
Ref Expression
lines.b 𝐵 = (Base‘𝑊)
lines.l 𝐿 = (LineM𝑊)
lines.s 𝑆 = (Scalar‘𝑊)
lines.k 𝐾 = (Base‘𝑆)
lines.p · = ( ·𝑠𝑊)
lines.a + = (+g𝑊)
lines.m = (-g𝑆)
lines.1 1 = (1r𝑆)
Assertion
Ref Expression
lines (𝑊𝑉𝐿 = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
Distinct variable groups:   𝐵,𝑝,𝑥,𝑦   𝑡,𝐾   𝑡,𝑆   𝑊,𝑝,𝑡,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑡)   + (𝑥,𝑦,𝑡,𝑝)   𝑆(𝑥,𝑦,𝑝)   · (𝑥,𝑦,𝑡,𝑝)   1 (𝑥,𝑦,𝑡,𝑝)   𝐾(𝑥,𝑦,𝑝)   𝐿(𝑥,𝑦,𝑡,𝑝)   (𝑥,𝑦,𝑡,𝑝)   𝑉(𝑥,𝑦,𝑡,𝑝)

Proof of Theorem lines
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lines.l . 2 𝐿 = (LineM𝑊)
2 df-line 46133 . . 3 LineM = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ ((Base‘𝑤) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 = ((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠𝑤)𝑥)(+g𝑤)(𝑡( ·𝑠𝑤)𝑦))}))
3 lines.b . . . . . . 7 𝐵 = (Base‘𝑊)
4 fveq2 6804 . . . . . . 7 (𝑊 = 𝑤 → (Base‘𝑊) = (Base‘𝑤))
53, 4eqtrid 2788 . . . . . 6 (𝑊 = 𝑤𝐵 = (Base‘𝑤))
65difeq1d 4062 . . . . . 6 (𝑊 = 𝑤 → (𝐵 ∖ {𝑥}) = ((Base‘𝑤) ∖ {𝑥}))
7 lines.k . . . . . . . . 9 𝐾 = (Base‘𝑆)
8 lines.s . . . . . . . . . . 11 𝑆 = (Scalar‘𝑊)
9 fveq2 6804 . . . . . . . . . . 11 (𝑊 = 𝑤 → (Scalar‘𝑊) = (Scalar‘𝑤))
108, 9eqtrid 2788 . . . . . . . . . 10 (𝑊 = 𝑤𝑆 = (Scalar‘𝑤))
1110fveq2d 6808 . . . . . . . . 9 (𝑊 = 𝑤 → (Base‘𝑆) = (Base‘(Scalar‘𝑤)))
127, 11eqtrid 2788 . . . . . . . 8 (𝑊 = 𝑤𝐾 = (Base‘(Scalar‘𝑤)))
13 lines.a . . . . . . . . . . 11 + = (+g𝑊)
14 fveq2 6804 . . . . . . . . . . 11 (𝑊 = 𝑤 → (+g𝑊) = (+g𝑤))
1513, 14eqtrid 2788 . . . . . . . . . 10 (𝑊 = 𝑤+ = (+g𝑤))
16 lines.p . . . . . . . . . . . 12 · = ( ·𝑠𝑊)
17 fveq2 6804 . . . . . . . . . . . 12 (𝑊 = 𝑤 → ( ·𝑠𝑊) = ( ·𝑠𝑤))
1816, 17eqtrid 2788 . . . . . . . . . . 11 (𝑊 = 𝑤· = ( ·𝑠𝑤))
19 lines.m . . . . . . . . . . . . . 14 = (-g𝑆)
208fveq2i 6807 . . . . . . . . . . . . . 14 (-g𝑆) = (-g‘(Scalar‘𝑊))
2119, 20eqtri 2764 . . . . . . . . . . . . 13 = (-g‘(Scalar‘𝑊))
22 2fveq3 6809 . . . . . . . . . . . . 13 (𝑊 = 𝑤 → (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑤)))
2321, 22eqtrid 2788 . . . . . . . . . . . 12 (𝑊 = 𝑤 = (-g‘(Scalar‘𝑤)))
24 lines.1 . . . . . . . . . . . . . 14 1 = (1r𝑆)
258fveq2i 6807 . . . . . . . . . . . . . 14 (1r𝑆) = (1r‘(Scalar‘𝑊))
2624, 25eqtri 2764 . . . . . . . . . . . . 13 1 = (1r‘(Scalar‘𝑊))
27 2fveq3 6809 . . . . . . . . . . . . 13 (𝑊 = 𝑤 → (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑤)))
2826, 27eqtrid 2788 . . . . . . . . . . . 12 (𝑊 = 𝑤1 = (1r‘(Scalar‘𝑤)))
29 eqidd 2737 . . . . . . . . . . . 12 (𝑊 = 𝑤𝑡 = 𝑡)
3023, 28, 29oveq123d 7328 . . . . . . . . . . 11 (𝑊 = 𝑤 → ( 1 𝑡) = ((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡))
31 eqidd 2737 . . . . . . . . . . 11 (𝑊 = 𝑤𝑥 = 𝑥)
3218, 30, 31oveq123d 7328 . . . . . . . . . 10 (𝑊 = 𝑤 → (( 1 𝑡) · 𝑥) = (((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠𝑤)𝑥))
3318oveqd 7324 . . . . . . . . . 10 (𝑊 = 𝑤 → (𝑡 · 𝑦) = (𝑡( ·𝑠𝑤)𝑦))
3415, 32, 33oveq123d 7328 . . . . . . . . 9 (𝑊 = 𝑤 → ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦)) = ((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠𝑤)𝑥)(+g𝑤)(𝑡( ·𝑠𝑤)𝑦)))
3534eqeq2d 2747 . . . . . . . 8 (𝑊 = 𝑤 → (𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ 𝑝 = ((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠𝑤)𝑥)(+g𝑤)(𝑡( ·𝑠𝑤)𝑦))))
3612, 35rexeqbidv 3349 . . . . . . 7 (𝑊 = 𝑤 → (∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 = ((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠𝑤)𝑥)(+g𝑤)(𝑡( ·𝑠𝑤)𝑦))))
375, 36rabeqbidv 3427 . . . . . 6 (𝑊 = 𝑤 → {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 = ((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠𝑤)𝑥)(+g𝑤)(𝑡( ·𝑠𝑤)𝑦))})
385, 6, 37mpoeq123dv 7382 . . . . 5 (𝑊 = 𝑤 → (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))}) = (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ ((Base‘𝑤) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 = ((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠𝑤)𝑥)(+g𝑤)(𝑡( ·𝑠𝑤)𝑦))}))
3938eqcomd 2742 . . . 4 (𝑊 = 𝑤 → (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ ((Base‘𝑤) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 = ((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠𝑤)𝑥)(+g𝑤)(𝑡( ·𝑠𝑤)𝑦))}) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
4039eqcoms 2744 . . 3 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ ((Base‘𝑤) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 = ((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠𝑤)𝑥)(+g𝑤)(𝑡( ·𝑠𝑤)𝑦))}) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
41 elex 3455 . . 3 (𝑊𝑉𝑊 ∈ V)
423fvexi 6818 . . . . 5 𝐵 ∈ V
4342difexi 5261 . . . . 5 (𝐵 ∖ {𝑥}) ∈ V
4442, 43mpoex 7952 . . . 4 (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))}) ∈ V
4544a1i 11 . . 3 (𝑊𝑉 → (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))}) ∈ V)
462, 40, 41, 45fvmptd3 6930 . 2 (𝑊𝑉 → (LineM𝑊) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
471, 46eqtrid 2788 1 (𝑊𝑉𝐿 = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  wrex 3071  {crab 3284  Vcvv 3437  cdif 3889  {csn 4565  cfv 6458  (class class class)co 7307  cmpo 7309  Basecbs 16957  +gcplusg 17007  Scalarcsca 17010   ·𝑠 cvsca 17011  -gcsg 18624  1rcur 19782  LineMcline 46131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864  df-line 46133
This theorem is referenced by:  line  46136  rrxlines  46137
  Copyright terms: Public domain W3C validator