Step | Hyp | Ref
| Expression |
1 | | lines.l |
. 2
β’ πΏ = (LineMβπ) |
2 | | df-line 47463 |
. . 3
β’
LineM = (π€ β V β¦ (π₯ β (Baseβπ€), π¦ β ((Baseβπ€) β {π₯}) β¦ {π β (Baseβπ€) β£ βπ‘ β (Baseβ(Scalarβπ€))π =
((((1rβ(Scalarβπ€))(-gβ(Scalarβπ€))π‘)( Β·π
βπ€)π₯)(+gβπ€)(π‘( Β·π
βπ€)π¦))})) |
3 | | lines.b |
. . . . . . 7
β’ π΅ = (Baseβπ) |
4 | | fveq2 6892 |
. . . . . . 7
β’ (π = π€ β (Baseβπ) = (Baseβπ€)) |
5 | 3, 4 | eqtrid 2785 |
. . . . . 6
β’ (π = π€ β π΅ = (Baseβπ€)) |
6 | 5 | difeq1d 4122 |
. . . . . 6
β’ (π = π€ β (π΅ β {π₯}) = ((Baseβπ€) β {π₯})) |
7 | | lines.k |
. . . . . . . . 9
β’ πΎ = (Baseβπ) |
8 | | lines.s |
. . . . . . . . . . 11
β’ π = (Scalarβπ) |
9 | | fveq2 6892 |
. . . . . . . . . . 11
β’ (π = π€ β (Scalarβπ) = (Scalarβπ€)) |
10 | 8, 9 | eqtrid 2785 |
. . . . . . . . . 10
β’ (π = π€ β π = (Scalarβπ€)) |
11 | 10 | fveq2d 6896 |
. . . . . . . . 9
β’ (π = π€ β (Baseβπ) = (Baseβ(Scalarβπ€))) |
12 | 7, 11 | eqtrid 2785 |
. . . . . . . 8
β’ (π = π€ β πΎ = (Baseβ(Scalarβπ€))) |
13 | | lines.a |
. . . . . . . . . . 11
β’ + =
(+gβπ) |
14 | | fveq2 6892 |
. . . . . . . . . . 11
β’ (π = π€ β (+gβπ) = (+gβπ€)) |
15 | 13, 14 | eqtrid 2785 |
. . . . . . . . . 10
β’ (π = π€ β + =
(+gβπ€)) |
16 | | lines.p |
. . . . . . . . . . . 12
β’ Β· = (
Β·π βπ) |
17 | | fveq2 6892 |
. . . . . . . . . . . 12
β’ (π = π€ β ( Β·π
βπ) = (
Β·π βπ€)) |
18 | 16, 17 | eqtrid 2785 |
. . . . . . . . . . 11
β’ (π = π€ β Β· = (
Β·π βπ€)) |
19 | | lines.m |
. . . . . . . . . . . . . 14
β’ β =
(-gβπ) |
20 | 8 | fveq2i 6895 |
. . . . . . . . . . . . . 14
β’
(-gβπ) = (-gβ(Scalarβπ)) |
21 | 19, 20 | eqtri 2761 |
. . . . . . . . . . . . 13
β’ β =
(-gβ(Scalarβπ)) |
22 | | 2fveq3 6897 |
. . . . . . . . . . . . 13
β’ (π = π€ β
(-gβ(Scalarβπ)) =
(-gβ(Scalarβπ€))) |
23 | 21, 22 | eqtrid 2785 |
. . . . . . . . . . . 12
β’ (π = π€ β β =
(-gβ(Scalarβπ€))) |
24 | | lines.1 |
. . . . . . . . . . . . . 14
β’ 1 =
(1rβπ) |
25 | 8 | fveq2i 6895 |
. . . . . . . . . . . . . 14
β’
(1rβπ) = (1rβ(Scalarβπ)) |
26 | 24, 25 | eqtri 2761 |
. . . . . . . . . . . . 13
β’ 1 =
(1rβ(Scalarβπ)) |
27 | | 2fveq3 6897 |
. . . . . . . . . . . . 13
β’ (π = π€ β
(1rβ(Scalarβπ)) =
(1rβ(Scalarβπ€))) |
28 | 26, 27 | eqtrid 2785 |
. . . . . . . . . . . 12
β’ (π = π€ β 1 =
(1rβ(Scalarβπ€))) |
29 | | eqidd 2734 |
. . . . . . . . . . . 12
β’ (π = π€ β π‘ = π‘) |
30 | 23, 28, 29 | oveq123d 7430 |
. . . . . . . . . . 11
β’ (π = π€ β ( 1 β π‘) = ((1rβ(Scalarβπ€))(-gβ(Scalarβπ€))π‘)) |
31 | | eqidd 2734 |
. . . . . . . . . . 11
β’ (π = π€ β π₯ = π₯) |
32 | 18, 30, 31 | oveq123d 7430 |
. . . . . . . . . 10
β’ (π = π€ β (( 1 β π‘) Β· π₯) =
(((1rβ(Scalarβπ€))(-gβ(Scalarβπ€))π‘)( Β·π
βπ€)π₯)) |
33 | 18 | oveqd 7426 |
. . . . . . . . . 10
β’ (π = π€ β (π‘ Β· π¦) = (π‘( Β·π
βπ€)π¦)) |
34 | 15, 32, 33 | oveq123d 7430 |
. . . . . . . . 9
β’ (π = π€ β ((( 1 β π‘) Β· π₯) + (π‘ Β· π¦)) =
((((1rβ(Scalarβπ€))(-gβ(Scalarβπ€))π‘)( Β·π
βπ€)π₯)(+gβπ€)(π‘( Β·π
βπ€)π¦))) |
35 | 34 | eqeq2d 2744 |
. . . . . . . 8
β’ (π = π€ β (π = ((( 1 β π‘) Β· π₯) + (π‘ Β· π¦)) β π =
((((1rβ(Scalarβπ€))(-gβ(Scalarβπ€))π‘)( Β·π
βπ€)π₯)(+gβπ€)(π‘( Β·π
βπ€)π¦)))) |
36 | 12, 35 | rexeqbidv 3344 |
. . . . . . 7
β’ (π = π€ β (βπ‘ β πΎ π = ((( 1 β π‘) Β· π₯) + (π‘ Β· π¦)) β βπ‘ β (Baseβ(Scalarβπ€))π =
((((1rβ(Scalarβπ€))(-gβ(Scalarβπ€))π‘)( Β·π
βπ€)π₯)(+gβπ€)(π‘( Β·π
βπ€)π¦)))) |
37 | 5, 36 | rabeqbidv 3450 |
. . . . . 6
β’ (π = π€ β {π β π΅ β£ βπ‘ β πΎ π = ((( 1 β π‘) Β· π₯) + (π‘ Β· π¦))} = {π β (Baseβπ€) β£ βπ‘ β (Baseβ(Scalarβπ€))π =
((((1rβ(Scalarβπ€))(-gβ(Scalarβπ€))π‘)( Β·π
βπ€)π₯)(+gβπ€)(π‘( Β·π
βπ€)π¦))}) |
38 | 5, 6, 37 | mpoeq123dv 7484 |
. . . . 5
β’ (π = π€ β (π₯ β π΅, π¦ β (π΅ β {π₯}) β¦ {π β π΅ β£ βπ‘ β πΎ π = ((( 1 β π‘) Β· π₯) + (π‘ Β· π¦))}) = (π₯ β (Baseβπ€), π¦ β ((Baseβπ€) β {π₯}) β¦ {π β (Baseβπ€) β£ βπ‘ β (Baseβ(Scalarβπ€))π =
((((1rβ(Scalarβπ€))(-gβ(Scalarβπ€))π‘)( Β·π
βπ€)π₯)(+gβπ€)(π‘( Β·π
βπ€)π¦))})) |
39 | 38 | eqcomd 2739 |
. . . 4
β’ (π = π€ β (π₯ β (Baseβπ€), π¦ β ((Baseβπ€) β {π₯}) β¦ {π β (Baseβπ€) β£ βπ‘ β (Baseβ(Scalarβπ€))π =
((((1rβ(Scalarβπ€))(-gβ(Scalarβπ€))π‘)( Β·π
βπ€)π₯)(+gβπ€)(π‘( Β·π
βπ€)π¦))}) = (π₯ β π΅, π¦ β (π΅ β {π₯}) β¦ {π β π΅ β£ βπ‘ β πΎ π = ((( 1 β π‘) Β· π₯) + (π‘ Β· π¦))})) |
40 | 39 | eqcoms 2741 |
. . 3
β’ (π€ = π β (π₯ β (Baseβπ€), π¦ β ((Baseβπ€) β {π₯}) β¦ {π β (Baseβπ€) β£ βπ‘ β (Baseβ(Scalarβπ€))π =
((((1rβ(Scalarβπ€))(-gβ(Scalarβπ€))π‘)( Β·π
βπ€)π₯)(+gβπ€)(π‘( Β·π
βπ€)π¦))}) = (π₯ β π΅, π¦ β (π΅ β {π₯}) β¦ {π β π΅ β£ βπ‘ β πΎ π = ((( 1 β π‘) Β· π₯) + (π‘ Β· π¦))})) |
41 | | elex 3493 |
. . 3
β’ (π β π β π β V) |
42 | 3 | fvexi 6906 |
. . . . 5
β’ π΅ β V |
43 | 42 | difexi 5329 |
. . . . 5
β’ (π΅ β {π₯}) β V |
44 | 42, 43 | mpoex 8066 |
. . . 4
β’ (π₯ β π΅, π¦ β (π΅ β {π₯}) β¦ {π β π΅ β£ βπ‘ β πΎ π = ((( 1 β π‘) Β· π₯) + (π‘ Β· π¦))}) β V |
45 | 44 | a1i 11 |
. . 3
β’ (π β π β (π₯ β π΅, π¦ β (π΅ β {π₯}) β¦ {π β π΅ β£ βπ‘ β πΎ π = ((( 1 β π‘) Β· π₯) + (π‘ Β· π¦))}) β V) |
46 | 2, 40, 41, 45 | fvmptd3 7022 |
. 2
β’ (π β π β (LineMβπ) = (π₯ β π΅, π¦ β (π΅ β {π₯}) β¦ {π β π΅ β£ βπ‘ β πΎ π = ((( 1 β π‘) Β· π₯) + (π‘ Β· π¦))})) |
47 | 1, 46 | eqtrid 2785 |
1
β’ (π β π β πΏ = (π₯ β π΅, π¦ β (π΅ β {π₯}) β¦ {π β π΅ β£ βπ‘ β πΎ π = ((( 1 β π‘) Β· π₯) + (π‘ Β· π¦))})) |