Step | Hyp | Ref
| Expression |
1 | | lines.l |
. 2
⊢ 𝐿 = (LineM‘𝑊) |
2 | | df-line 46031 |
. . 3
⊢
LineM = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ ((Base‘𝑤) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 =
((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)(𝑡( ·𝑠
‘𝑤)𝑦))})) |
3 | | lines.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑊) |
4 | | fveq2 6767 |
. . . . . . 7
⊢ (𝑊 = 𝑤 → (Base‘𝑊) = (Base‘𝑤)) |
5 | 3, 4 | eqtrid 2790 |
. . . . . 6
⊢ (𝑊 = 𝑤 → 𝐵 = (Base‘𝑤)) |
6 | 5 | difeq1d 4056 |
. . . . . 6
⊢ (𝑊 = 𝑤 → (𝐵 ∖ {𝑥}) = ((Base‘𝑤) ∖ {𝑥})) |
7 | | lines.k |
. . . . . . . . 9
⊢ 𝐾 = (Base‘𝑆) |
8 | | lines.s |
. . . . . . . . . . 11
⊢ 𝑆 = (Scalar‘𝑊) |
9 | | fveq2 6767 |
. . . . . . . . . . 11
⊢ (𝑊 = 𝑤 → (Scalar‘𝑊) = (Scalar‘𝑤)) |
10 | 8, 9 | eqtrid 2790 |
. . . . . . . . . 10
⊢ (𝑊 = 𝑤 → 𝑆 = (Scalar‘𝑤)) |
11 | 10 | fveq2d 6771 |
. . . . . . . . 9
⊢ (𝑊 = 𝑤 → (Base‘𝑆) = (Base‘(Scalar‘𝑤))) |
12 | 7, 11 | eqtrid 2790 |
. . . . . . . 8
⊢ (𝑊 = 𝑤 → 𝐾 = (Base‘(Scalar‘𝑤))) |
13 | | lines.a |
. . . . . . . . . . 11
⊢ + =
(+g‘𝑊) |
14 | | fveq2 6767 |
. . . . . . . . . . 11
⊢ (𝑊 = 𝑤 → (+g‘𝑊) = (+g‘𝑤)) |
15 | 13, 14 | eqtrid 2790 |
. . . . . . . . . 10
⊢ (𝑊 = 𝑤 → + =
(+g‘𝑤)) |
16 | | lines.p |
. . . . . . . . . . . 12
⊢ · = (
·𝑠 ‘𝑊) |
17 | | fveq2 6767 |
. . . . . . . . . . . 12
⊢ (𝑊 = 𝑤 → ( ·𝑠
‘𝑊) = (
·𝑠 ‘𝑤)) |
18 | 16, 17 | eqtrid 2790 |
. . . . . . . . . . 11
⊢ (𝑊 = 𝑤 → · = (
·𝑠 ‘𝑤)) |
19 | | lines.m |
. . . . . . . . . . . . . 14
⊢ − =
(-g‘𝑆) |
20 | 8 | fveq2i 6770 |
. . . . . . . . . . . . . 14
⊢
(-g‘𝑆) = (-g‘(Scalar‘𝑊)) |
21 | 19, 20 | eqtri 2766 |
. . . . . . . . . . . . 13
⊢ − =
(-g‘(Scalar‘𝑊)) |
22 | | 2fveq3 6772 |
. . . . . . . . . . . . 13
⊢ (𝑊 = 𝑤 →
(-g‘(Scalar‘𝑊)) =
(-g‘(Scalar‘𝑤))) |
23 | 21, 22 | eqtrid 2790 |
. . . . . . . . . . . 12
⊢ (𝑊 = 𝑤 → − =
(-g‘(Scalar‘𝑤))) |
24 | | lines.1 |
. . . . . . . . . . . . . 14
⊢ 1 =
(1r‘𝑆) |
25 | 8 | fveq2i 6770 |
. . . . . . . . . . . . . 14
⊢
(1r‘𝑆) = (1r‘(Scalar‘𝑊)) |
26 | 24, 25 | eqtri 2766 |
. . . . . . . . . . . . 13
⊢ 1 =
(1r‘(Scalar‘𝑊)) |
27 | | 2fveq3 6772 |
. . . . . . . . . . . . 13
⊢ (𝑊 = 𝑤 →
(1r‘(Scalar‘𝑊)) =
(1r‘(Scalar‘𝑤))) |
28 | 26, 27 | eqtrid 2790 |
. . . . . . . . . . . 12
⊢ (𝑊 = 𝑤 → 1 =
(1r‘(Scalar‘𝑤))) |
29 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ (𝑊 = 𝑤 → 𝑡 = 𝑡) |
30 | 23, 28, 29 | oveq123d 7289 |
. . . . . . . . . . 11
⊢ (𝑊 = 𝑤 → ( 1 − 𝑡) = ((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)) |
31 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (𝑊 = 𝑤 → 𝑥 = 𝑥) |
32 | 18, 30, 31 | oveq123d 7289 |
. . . . . . . . . 10
⊢ (𝑊 = 𝑤 → (( 1 − 𝑡) · 𝑥) =
(((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠
‘𝑤)𝑥)) |
33 | 18 | oveqd 7285 |
. . . . . . . . . 10
⊢ (𝑊 = 𝑤 → (𝑡 · 𝑦) = (𝑡( ·𝑠
‘𝑤)𝑦)) |
34 | 15, 32, 33 | oveq123d 7289 |
. . . . . . . . 9
⊢ (𝑊 = 𝑤 → ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) =
((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)(𝑡( ·𝑠
‘𝑤)𝑦))) |
35 | 34 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑊 = 𝑤 → (𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ 𝑝 =
((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)(𝑡( ·𝑠
‘𝑤)𝑦)))) |
36 | 12, 35 | rexeqbidv 3335 |
. . . . . . 7
⊢ (𝑊 = 𝑤 → (∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 =
((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)(𝑡( ·𝑠
‘𝑤)𝑦)))) |
37 | 5, 36 | rabeqbidv 3418 |
. . . . . 6
⊢ (𝑊 = 𝑤 → {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 =
((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)(𝑡( ·𝑠
‘𝑤)𝑦))}) |
38 | 5, 6, 37 | mpoeq123dv 7341 |
. . . . 5
⊢ (𝑊 = 𝑤 → (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}) = (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ ((Base‘𝑤) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 =
((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)(𝑡( ·𝑠
‘𝑤)𝑦))})) |
39 | 38 | eqcomd 2744 |
. . . 4
⊢ (𝑊 = 𝑤 → (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ ((Base‘𝑤) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 =
((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)(𝑡( ·𝑠
‘𝑤)𝑦))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})) |
40 | 39 | eqcoms 2746 |
. . 3
⊢ (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ ((Base‘𝑤) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 =
((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)(𝑡( ·𝑠
‘𝑤)𝑦))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})) |
41 | | elex 3448 |
. . 3
⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) |
42 | 3 | fvexi 6781 |
. . . . 5
⊢ 𝐵 ∈ V |
43 | 42 | difexi 5251 |
. . . . 5
⊢ (𝐵 ∖ {𝑥}) ∈ V |
44 | 42, 43 | mpoex 7910 |
. . . 4
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}) ∈ V |
45 | 44 | a1i 11 |
. . 3
⊢ (𝑊 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}) ∈ V) |
46 | 2, 40, 41, 45 | fvmptd3 6891 |
. 2
⊢ (𝑊 ∈ 𝑉 → (LineM‘𝑊) = (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})) |
47 | 1, 46 | eqtrid 2790 |
1
⊢ (𝑊 ∈ 𝑉 → 𝐿 = (𝑥 ∈ 𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝 ∈ 𝐵 ∣ ∃𝑡 ∈ 𝐾 𝑝 = ((( 1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})) |