Step | Hyp | Ref
| Expression |
1 | | clln 38818 |
. 2
class
LLines |
2 | | vk |
. . 3
setvar π |
3 | | cvv 3466 |
. . 3
class
V |
4 | | vp |
. . . . . . 7
setvar π |
5 | 4 | cv 1532 |
. . . . . 6
class π |
6 | | vx |
. . . . . . 7
setvar π₯ |
7 | 6 | cv 1532 |
. . . . . 6
class π₯ |
8 | 2 | cv 1532 |
. . . . . . 7
class π |
9 | | ccvr 38588 |
. . . . . . 7
class
β |
10 | 8, 9 | cfv 6533 |
. . . . . 6
class ( β
βπ) |
11 | 5, 7, 10 | wbr 5138 |
. . . . 5
wff π( β βπ)π₯ |
12 | | catm 38589 |
. . . . . 6
class
Atoms |
13 | 8, 12 | cfv 6533 |
. . . . 5
class
(Atomsβπ) |
14 | 11, 4, 13 | wrex 3062 |
. . . 4
wff
βπ β
(Atomsβπ)π( β βπ)π₯ |
15 | | cbs 17142 |
. . . . 5
class
Base |
16 | 8, 15 | cfv 6533 |
. . . 4
class
(Baseβπ) |
17 | 14, 6, 16 | crab 3424 |
. . 3
class {π₯ β (Baseβπ) β£ βπ β (Atomsβπ)π( β βπ)π₯} |
18 | 2, 3, 17 | cmpt 5221 |
. 2
class (π β V β¦ {π₯ β (Baseβπ) β£ βπ β (Atomsβπ)π( β βπ)π₯}) |
19 | 1, 18 | wceq 1533 |
1
wff LLines =
(π β V β¦ {π₯ β (Baseβπ) β£ βπ β (Atomsβπ)π( β βπ)π₯}) |