Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnset Structured version   Visualization version   GIF version

Theorem llnset 39627
Description: The set of lattice lines in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
llnset.b 𝐵 = (Base‘𝐾)
llnset.c 𝐶 = ( ⋖ ‘𝐾)
llnset.a 𝐴 = (Atoms‘𝐾)
llnset.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnset (𝐾𝐷𝑁 = {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥})
Distinct variable groups:   𝐴,𝑝   𝑥,𝐵   𝑥,𝑝,𝐾
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑝)   𝐶(𝑥,𝑝)   𝐷(𝑥,𝑝)   𝑁(𝑥,𝑝)

Proof of Theorem llnset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3458 . 2 (𝐾𝐷𝐾 ∈ V)
2 llnset.n . . 3 𝑁 = (LLines‘𝐾)
3 fveq2 6830 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
4 llnset.b . . . . . 6 𝐵 = (Base‘𝐾)
53, 4eqtr4di 2786 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
6 fveq2 6830 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
7 llnset.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
86, 7eqtr4di 2786 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
9 fveq2 6830 . . . . . . . 8 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = ( ⋖ ‘𝐾))
10 llnset.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
119, 10eqtr4di 2786 . . . . . . 7 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = 𝐶)
1211breqd 5106 . . . . . 6 (𝑘 = 𝐾 → (𝑝( ⋖ ‘𝑘)𝑥𝑝𝐶𝑥))
138, 12rexeqbidv 3314 . . . . 5 (𝑘 = 𝐾 → (∃𝑝 ∈ (Atoms‘𝑘)𝑝( ⋖ ‘𝑘)𝑥 ↔ ∃𝑝𝐴 𝑝𝐶𝑥))
145, 13rabeqbidv 3414 . . . 4 (𝑘 = 𝐾 → {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑝( ⋖ ‘𝑘)𝑥} = {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥})
15 df-llines 39620 . . . 4 LLines = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑝( ⋖ ‘𝑘)𝑥})
164fvexi 6844 . . . . 5 𝐵 ∈ V
1716rabex 5281 . . . 4 {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥} ∈ V
1814, 15, 17fvmpt 6937 . . 3 (𝐾 ∈ V → (LLines‘𝐾) = {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥})
192, 18eqtrid 2780 . 2 (𝐾 ∈ V → 𝑁 = {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥})
201, 19syl 17 1 (𝐾𝐷𝑁 = {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wrex 3057  {crab 3396  Vcvv 3437   class class class wbr 5095  cfv 6488  Basecbs 17124  ccvr 39384  Atomscatm 39385  LLinesclln 39613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6444  df-fun 6490  df-fv 6496  df-llines 39620
This theorem is referenced by:  islln  39628
  Copyright terms: Public domain W3C validator