Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnset Structured version   Visualization version   GIF version

Theorem llnset 38840
Description: The set of lattice lines in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
llnset.b 𝐡 = (Baseβ€˜πΎ)
llnset.c 𝐢 = ( β‹– β€˜πΎ)
llnset.a 𝐴 = (Atomsβ€˜πΎ)
llnset.n 𝑁 = (LLinesβ€˜πΎ)
Assertion
Ref Expression
llnset (𝐾 ∈ 𝐷 β†’ 𝑁 = {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘ ∈ 𝐴 𝑝𝐢π‘₯})
Distinct variable groups:   𝐴,𝑝   π‘₯,𝐡   π‘₯,𝑝,𝐾
Allowed substitution hints:   𝐴(π‘₯)   𝐡(𝑝)   𝐢(π‘₯,𝑝)   𝐷(π‘₯,𝑝)   𝑁(π‘₯,𝑝)

Proof of Theorem llnset
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐾 ∈ 𝐷 β†’ 𝐾 ∈ V)
2 llnset.n . . 3 𝑁 = (LLinesβ€˜πΎ)
3 fveq2 6891 . . . . . 6 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = (Baseβ€˜πΎ))
4 llnset.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
53, 4eqtr4di 2789 . . . . 5 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = 𝐡)
6 fveq2 6891 . . . . . . 7 (π‘˜ = 𝐾 β†’ (Atomsβ€˜π‘˜) = (Atomsβ€˜πΎ))
7 llnset.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
86, 7eqtr4di 2789 . . . . . 6 (π‘˜ = 𝐾 β†’ (Atomsβ€˜π‘˜) = 𝐴)
9 fveq2 6891 . . . . . . . 8 (π‘˜ = 𝐾 β†’ ( β‹– β€˜π‘˜) = ( β‹– β€˜πΎ))
10 llnset.c . . . . . . . 8 𝐢 = ( β‹– β€˜πΎ)
119, 10eqtr4di 2789 . . . . . . 7 (π‘˜ = 𝐾 β†’ ( β‹– β€˜π‘˜) = 𝐢)
1211breqd 5159 . . . . . 6 (π‘˜ = 𝐾 β†’ (𝑝( β‹– β€˜π‘˜)π‘₯ ↔ 𝑝𝐢π‘₯))
138, 12rexeqbidv 3342 . . . . 5 (π‘˜ = 𝐾 β†’ (βˆƒπ‘ ∈ (Atomsβ€˜π‘˜)𝑝( β‹– β€˜π‘˜)π‘₯ ↔ βˆƒπ‘ ∈ 𝐴 𝑝𝐢π‘₯))
145, 13rabeqbidv 3448 . . . 4 (π‘˜ = 𝐾 β†’ {π‘₯ ∈ (Baseβ€˜π‘˜) ∣ βˆƒπ‘ ∈ (Atomsβ€˜π‘˜)𝑝( β‹– β€˜π‘˜)π‘₯} = {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘ ∈ 𝐴 𝑝𝐢π‘₯})
15 df-llines 38833 . . . 4 LLines = (π‘˜ ∈ V ↦ {π‘₯ ∈ (Baseβ€˜π‘˜) ∣ βˆƒπ‘ ∈ (Atomsβ€˜π‘˜)𝑝( β‹– β€˜π‘˜)π‘₯})
164fvexi 6905 . . . . 5 𝐡 ∈ V
1716rabex 5332 . . . 4 {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘ ∈ 𝐴 𝑝𝐢π‘₯} ∈ V
1814, 15, 17fvmpt 6998 . . 3 (𝐾 ∈ V β†’ (LLinesβ€˜πΎ) = {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘ ∈ 𝐴 𝑝𝐢π‘₯})
192, 18eqtrid 2783 . 2 (𝐾 ∈ V β†’ 𝑁 = {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘ ∈ 𝐴 𝑝𝐢π‘₯})
201, 19syl 17 1 (𝐾 ∈ 𝐷 β†’ 𝑁 = {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘ ∈ 𝐴 𝑝𝐢π‘₯})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105  βˆƒwrex 3069  {crab 3431  Vcvv 3473   class class class wbr 5148  β€˜cfv 6543  Basecbs 17151   β‹– ccvr 38596  Atomscatm 38597  LLinesclln 38826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-llines 38833
This theorem is referenced by:  islln  38841
  Copyright terms: Public domain W3C validator