Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnset Structured version   Visualization version   GIF version

Theorem llnset 39466
Description: The set of lattice lines in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
llnset.b 𝐵 = (Base‘𝐾)
llnset.c 𝐶 = ( ⋖ ‘𝐾)
llnset.a 𝐴 = (Atoms‘𝐾)
llnset.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnset (𝐾𝐷𝑁 = {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥})
Distinct variable groups:   𝐴,𝑝   𝑥,𝐵   𝑥,𝑝,𝐾
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑝)   𝐶(𝑥,𝑝)   𝐷(𝑥,𝑝)   𝑁(𝑥,𝑝)

Proof of Theorem llnset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3484 . 2 (𝐾𝐷𝐾 ∈ V)
2 llnset.n . . 3 𝑁 = (LLines‘𝐾)
3 fveq2 6886 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
4 llnset.b . . . . . 6 𝐵 = (Base‘𝐾)
53, 4eqtr4di 2787 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
6 fveq2 6886 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
7 llnset.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
86, 7eqtr4di 2787 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
9 fveq2 6886 . . . . . . . 8 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = ( ⋖ ‘𝐾))
10 llnset.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
119, 10eqtr4di 2787 . . . . . . 7 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = 𝐶)
1211breqd 5134 . . . . . 6 (𝑘 = 𝐾 → (𝑝( ⋖ ‘𝑘)𝑥𝑝𝐶𝑥))
138, 12rexeqbidv 3330 . . . . 5 (𝑘 = 𝐾 → (∃𝑝 ∈ (Atoms‘𝑘)𝑝( ⋖ ‘𝑘)𝑥 ↔ ∃𝑝𝐴 𝑝𝐶𝑥))
145, 13rabeqbidv 3438 . . . 4 (𝑘 = 𝐾 → {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑝( ⋖ ‘𝑘)𝑥} = {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥})
15 df-llines 39459 . . . 4 LLines = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑝( ⋖ ‘𝑘)𝑥})
164fvexi 6900 . . . . 5 𝐵 ∈ V
1716rabex 5319 . . . 4 {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥} ∈ V
1814, 15, 17fvmpt 6996 . . 3 (𝐾 ∈ V → (LLines‘𝐾) = {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥})
192, 18eqtrid 2781 . 2 (𝐾 ∈ V → 𝑁 = {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥})
201, 19syl 17 1 (𝐾𝐷𝑁 = {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wrex 3059  {crab 3419  Vcvv 3463   class class class wbr 5123  cfv 6541  Basecbs 17229  ccvr 39222  Atomscatm 39223  LLinesclln 39452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-llines 39459
This theorem is referenced by:  islln  39467
  Copyright terms: Public domain W3C validator