| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > llnset | Structured version Visualization version GIF version | ||
| Description: The set of lattice lines in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.) |
| Ref | Expression |
|---|---|
| llnset.b | ⊢ 𝐵 = (Base‘𝐾) |
| llnset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| llnset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| llnset.n | ⊢ 𝑁 = (LLines‘𝐾) |
| Ref | Expression |
|---|---|
| llnset | ⊢ (𝐾 ∈ 𝐷 → 𝑁 = {𝑥 ∈ 𝐵 ∣ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3484 | . 2 ⊢ (𝐾 ∈ 𝐷 → 𝐾 ∈ V) | |
| 2 | llnset.n | . . 3 ⊢ 𝑁 = (LLines‘𝐾) | |
| 3 | fveq2 6886 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) | |
| 4 | llnset.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | 3, 4 | eqtr4di 2787 | . . . . 5 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
| 6 | fveq2 6886 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾)) | |
| 7 | llnset.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 8 | 6, 7 | eqtr4di 2787 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴) |
| 9 | fveq2 6886 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = ( ⋖ ‘𝐾)) | |
| 10 | llnset.c | . . . . . . . 8 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 11 | 9, 10 | eqtr4di 2787 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = 𝐶) |
| 12 | 11 | breqd 5134 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝑝( ⋖ ‘𝑘)𝑥 ↔ 𝑝𝐶𝑥)) |
| 13 | 8, 12 | rexeqbidv 3330 | . . . . 5 ⊢ (𝑘 = 𝐾 → (∃𝑝 ∈ (Atoms‘𝑘)𝑝( ⋖ ‘𝑘)𝑥 ↔ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑥)) |
| 14 | 5, 13 | rabeqbidv 3438 | . . . 4 ⊢ (𝑘 = 𝐾 → {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑝( ⋖ ‘𝑘)𝑥} = {𝑥 ∈ 𝐵 ∣ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑥}) |
| 15 | df-llines 39459 | . . . 4 ⊢ LLines = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑝( ⋖ ‘𝑘)𝑥}) | |
| 16 | 4 | fvexi 6900 | . . . . 5 ⊢ 𝐵 ∈ V |
| 17 | 16 | rabex 5319 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑥} ∈ V |
| 18 | 14, 15, 17 | fvmpt 6996 | . . 3 ⊢ (𝐾 ∈ V → (LLines‘𝐾) = {𝑥 ∈ 𝐵 ∣ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑥}) |
| 19 | 2, 18 | eqtrid 2781 | . 2 ⊢ (𝐾 ∈ V → 𝑁 = {𝑥 ∈ 𝐵 ∣ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑥}) |
| 20 | 1, 19 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐷 → 𝑁 = {𝑥 ∈ 𝐵 ∣ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 {crab 3419 Vcvv 3463 class class class wbr 5123 ‘cfv 6541 Basecbs 17229 ⋖ ccvr 39222 Atomscatm 39223 LLinesclln 39452 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-llines 39459 |
| This theorem is referenced by: islln 39467 |
| Copyright terms: Public domain | W3C validator |