| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-lmic | Structured version Visualization version GIF version | ||
| Description: Two modules are said to be isomorphic iff they are connected by at least one isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| Ref | Expression |
|---|---|
| df-lmic | ⊢ ≃𝑚 = (◡ LMIso “ (V ∖ 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmic 21020 | . 2 class ≃𝑚 | |
| 2 | clmim 21019 | . . . 4 class LMIso | |
| 3 | 2 | ccnv 5684 | . . 3 class ◡ LMIso |
| 4 | cvv 3480 | . . . 4 class V | |
| 5 | c1o 8499 | . . . 4 class 1o | |
| 6 | 4, 5 | cdif 3948 | . . 3 class (V ∖ 1o) |
| 7 | 3, 6 | cima 5688 | . 2 class (◡ LMIso “ (V ∖ 1o)) |
| 8 | 1, 7 | wceq 1540 | 1 wff ≃𝑚 = (◡ LMIso “ (V ∖ 1o)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: brlmic 21067 |
| Copyright terms: Public domain | W3C validator |