MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lmic Structured version   Visualization version   GIF version

Definition df-lmic 20635
Description: Two modules are said to be isomorphic iff they are connected by at least one isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
df-lmic 𝑚 = ( LMIso “ (V ∖ 1o))

Detailed syntax breakdown of Definition df-lmic
StepHypRef Expression
1 clmic 20632 . 2 class 𝑚
2 clmim 20631 . . . 4 class LMIso
32ccnv 5676 . . 3 class LMIso
4 cvv 3475 . . . 4 class V
5 c1o 8459 . . . 4 class 1o
64, 5cdif 3946 . . 3 class (V ∖ 1o)
73, 6cima 5680 . 2 class ( LMIso “ (V ∖ 1o))
81, 7wceq 1542 1 wff 𝑚 = ( LMIso “ (V ∖ 1o))
Colors of variables: wff setvar class
This definition is referenced by:  brlmic  20679
  Copyright terms: Public domain W3C validator