MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brlmic Structured version   Visualization version   GIF version

Theorem brlmic 20972
Description: The relation "is isomorphic to" for modules. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
brlmic (𝑅𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅)

Proof of Theorem brlmic
StepHypRef Expression
1 df-lmic 20928 . 2 𝑚 = ( LMIso “ (V ∖ 1o))
2 lmimfn 20930 . 2 LMIso Fn (LMod × LMod)
31, 2brwitnlem 8425 1 (𝑅𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wne 2925  c0 4284   class class class wbr 5092   × cxp 5617  (class class class)co 7349  LModclmod 20763   LMIso clmim 20924  𝑚 clmic 20925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-1o 8388  df-lmim 20927  df-lmic 20928
This theorem is referenced by:  brlmici  20973  lmiclcl  20974  lmicrcl  20975  lmicsym  20976  lmiclbs  21744  lmictra  21752  lmicdim  33577  lnmlmic  43071
  Copyright terms: Public domain W3C validator