![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brlmic | Structured version Visualization version GIF version |
Description: The relation "is isomorphic to" for modules. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
brlmic | ⊢ (𝑅 ≃𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lmic 20862 | . 2 ⊢ ≃𝑚 = (◡ LMIso “ (V ∖ 1o)) | |
2 | lmimfn 20864 | . 2 ⊢ LMIso Fn (LMod × LMod) | |
3 | 1, 2 | brwitnlem 8502 | 1 ⊢ (𝑅 ≃𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ≠ wne 2932 ∅c0 4314 class class class wbr 5138 × cxp 5664 (class class class)co 7401 LModclmod 20696 LMIso clmim 20858 ≃𝑚 clmic 20859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-1o 8461 df-lmim 20861 df-lmic 20862 |
This theorem is referenced by: brlmici 20907 lmiclcl 20908 lmicrcl 20909 lmicsym 20910 lmiclbs 21700 lmictra 21708 lmicdim 33168 lnmlmic 42319 |
Copyright terms: Public domain | W3C validator |