| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmlmhm | Structured version Visualization version GIF version | ||
| Description: Lemma for module homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| reldmlmhm | ⊢ Rel dom LMHom |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lmhm 20994 | . 2 ⊢ LMHom = (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠 ‘𝑠)𝑦)) = (𝑥( ·𝑠 ‘𝑡)(𝑓‘𝑦)))}) | |
| 2 | 1 | reldmmpo 7550 | 1 ⊢ Rel dom LMHom |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∀wral 3050 {crab 3420 [wsbc 3772 dom cdm 5667 Rel wrel 5672 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 Scalarcsca 17280 ·𝑠 cvsca 17281 GrpHom cghm 19204 LModclmod 20831 LMHom clmhm 20991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-xp 5673 df-rel 5674 df-dm 5677 df-oprab 7418 df-mpo 7419 df-lmhm 20994 |
| This theorem is referenced by: mendbas 43137 |
| Copyright terms: Public domain | W3C validator |