MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmlmhm Structured version   Visualization version   GIF version

Theorem reldmlmhm 20873
Description: Lemma for module homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
reldmlmhm Rel dom LMHom

Proof of Theorem reldmlmhm
Dummy variables 𝑓 𝑠 𝑑 𝑀 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lmhm 20870 . 2 LMHom = (𝑠 ∈ LMod, 𝑑 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑑) ∣ [(Scalarβ€˜π‘ ) / 𝑀]((Scalarβ€˜π‘‘) = 𝑀 ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘ )(π‘“β€˜(π‘₯( ·𝑠 β€˜π‘ )𝑦)) = (π‘₯( ·𝑠 β€˜π‘‘)(π‘“β€˜π‘¦)))})
21reldmmpo 7539 1 Rel dom LMHom
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 395   = wceq 1533  βˆ€wral 3055  {crab 3426  [wsbc 3772  dom cdm 5669  Rel wrel 5674  β€˜cfv 6537  (class class class)co 7405  Basecbs 17153  Scalarcsca 17209   ·𝑠 cvsca 17210   GrpHom cghm 19138  LModclmod 20706   LMHom clmhm 20867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-xp 5675  df-rel 5676  df-dm 5679  df-oprab 7409  df-mpo 7410  df-lmhm 20870
This theorem is referenced by:  mendbas  42504
  Copyright terms: Public domain W3C validator