MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmlmhm Structured version   Visualization version   GIF version

Theorem reldmlmhm 20635
Description: Lemma for module homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
reldmlmhm Rel dom LMHom

Proof of Theorem reldmlmhm
Dummy variables 𝑓 𝑠 𝑑 𝑀 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lmhm 20632 . 2 LMHom = (𝑠 ∈ LMod, 𝑑 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑑) ∣ [(Scalarβ€˜π‘ ) / 𝑀]((Scalarβ€˜π‘‘) = 𝑀 ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘ )(π‘“β€˜(π‘₯( ·𝑠 β€˜π‘ )𝑦)) = (π‘₯( ·𝑠 β€˜π‘‘)(π‘“β€˜π‘¦)))})
21reldmmpo 7542 1 Rel dom LMHom
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 396   = wceq 1541  βˆ€wral 3061  {crab 3432  [wsbc 3777  dom cdm 5676  Rel wrel 5681  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  Scalarcsca 17199   ·𝑠 cvsca 17200   GrpHom cghm 19088  LModclmod 20470   LMHom clmhm 20629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-dm 5686  df-oprab 7412  df-mpo 7413  df-lmhm 20632
This theorem is referenced by:  mendbas  41916
  Copyright terms: Public domain W3C validator