MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmlmhm Structured version   Visualization version   GIF version

Theorem reldmlmhm 20393
Description: Lemma for module homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
reldmlmhm Rel dom LMHom

Proof of Theorem reldmlmhm
Dummy variables 𝑓 𝑠 𝑡 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lmhm 20390 . 2 LMHom = (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠𝑠)𝑦)) = (𝑥( ·𝑠𝑡)(𝑓𝑦)))})
21reldmmpo 7475 1 Rel dom LMHom
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1541  wral 3062  {crab 3404  [wsbc 3731  dom cdm 5625  Rel wrel 5630  cfv 6484  (class class class)co 7342  Basecbs 17010  Scalarcsca 17063   ·𝑠 cvsca 17064   GrpHom cghm 18928  LModclmod 20229   LMHom clmhm 20387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pr 5377
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-rab 3405  df-v 3444  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-sn 4579  df-pr 4581  df-op 4585  df-br 5098  df-opab 5160  df-xp 5631  df-rel 5632  df-dm 5635  df-oprab 7346  df-mpo 7347  df-lmhm 20390
This theorem is referenced by:  mendbas  41321
  Copyright terms: Public domain W3C validator