Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldmlmhm | Structured version Visualization version GIF version |
Description: Lemma for module homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
Ref | Expression |
---|---|
reldmlmhm | ⊢ Rel dom LMHom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lmhm 20390 | . 2 ⊢ LMHom = (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠 ‘𝑠)𝑦)) = (𝑥( ·𝑠 ‘𝑡)(𝑓‘𝑦)))}) | |
2 | 1 | reldmmpo 7475 | 1 ⊢ Rel dom LMHom |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1541 ∀wral 3062 {crab 3404 [wsbc 3731 dom cdm 5625 Rel wrel 5630 ‘cfv 6484 (class class class)co 7342 Basecbs 17010 Scalarcsca 17063 ·𝑠 cvsca 17064 GrpHom cghm 18928 LModclmod 20229 LMHom clmhm 20387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pr 5377 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-br 5098 df-opab 5160 df-xp 5631 df-rel 5632 df-dm 5635 df-oprab 7346 df-mpo 7347 df-lmhm 20390 |
This theorem is referenced by: mendbas 41321 |
Copyright terms: Public domain | W3C validator |