Detailed syntax breakdown of Definition df-lsatoms
Step | Hyp | Ref
| Expression |
1 | | clsa 36725 |
. 2
class
LSAtoms |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | cvv 3408 |
. . 3
class
V |
4 | | vv |
. . . . 5
setvar 𝑣 |
5 | 2 | cv 1542 |
. . . . . . 7
class 𝑤 |
6 | | cbs 16760 |
. . . . . . 7
class
Base |
7 | 5, 6 | cfv 6380 |
. . . . . 6
class
(Base‘𝑤) |
8 | | c0g 16944 |
. . . . . . . 8
class
0g |
9 | 5, 8 | cfv 6380 |
. . . . . . 7
class
(0g‘𝑤) |
10 | 9 | csn 4541 |
. . . . . 6
class
{(0g‘𝑤)} |
11 | 7, 10 | cdif 3863 |
. . . . 5
class
((Base‘𝑤)
∖ {(0g‘𝑤)}) |
12 | 4 | cv 1542 |
. . . . . . 7
class 𝑣 |
13 | 12 | csn 4541 |
. . . . . 6
class {𝑣} |
14 | | clspn 20008 |
. . . . . . 7
class
LSpan |
15 | 5, 14 | cfv 6380 |
. . . . . 6
class
(LSpan‘𝑤) |
16 | 13, 15 | cfv 6380 |
. . . . 5
class
((LSpan‘𝑤)‘{𝑣}) |
17 | 4, 11, 16 | cmpt 5135 |
. . . 4
class (𝑣 ∈ ((Base‘𝑤) ∖
{(0g‘𝑤)})
↦ ((LSpan‘𝑤)‘{𝑣})) |
18 | 17 | crn 5552 |
. . 3
class ran
(𝑣 ∈
((Base‘𝑤) ∖
{(0g‘𝑤)})
↦ ((LSpan‘𝑤)‘{𝑣})) |
19 | 2, 3, 18 | cmpt 5135 |
. 2
class (𝑤 ∈ V ↦ ran (𝑣 ∈ ((Base‘𝑤) ∖
{(0g‘𝑤)})
↦ ((LSpan‘𝑤)‘{𝑣}))) |
20 | 1, 19 | wceq 1543 |
1
wff LSAtoms =
(𝑤 ∈ V ↦ ran
(𝑣 ∈
((Base‘𝑤) ∖
{(0g‘𝑤)})
↦ ((LSpan‘𝑤)‘{𝑣}))) |