Step | Hyp | Ref
| Expression |
1 | | clsa 37832 |
. 2
class
LSAtoms |
2 | | vw |
. . 3
setvar π€ |
3 | | cvv 3474 |
. . 3
class
V |
4 | | vv |
. . . . 5
setvar π£ |
5 | 2 | cv 1540 |
. . . . . . 7
class π€ |
6 | | cbs 17140 |
. . . . . . 7
class
Base |
7 | 5, 6 | cfv 6540 |
. . . . . 6
class
(Baseβπ€) |
8 | | c0g 17381 |
. . . . . . . 8
class
0g |
9 | 5, 8 | cfv 6540 |
. . . . . . 7
class
(0gβπ€) |
10 | 9 | csn 4627 |
. . . . . 6
class
{(0gβπ€)} |
11 | 7, 10 | cdif 3944 |
. . . . 5
class
((Baseβπ€)
β {(0gβπ€)}) |
12 | 4 | cv 1540 |
. . . . . . 7
class π£ |
13 | 12 | csn 4627 |
. . . . . 6
class {π£} |
14 | | clspn 20574 |
. . . . . . 7
class
LSpan |
15 | 5, 14 | cfv 6540 |
. . . . . 6
class
(LSpanβπ€) |
16 | 13, 15 | cfv 6540 |
. . . . 5
class
((LSpanβπ€)β{π£}) |
17 | 4, 11, 16 | cmpt 5230 |
. . . 4
class (π£ β ((Baseβπ€) β
{(0gβπ€)})
β¦ ((LSpanβπ€)β{π£})) |
18 | 17 | crn 5676 |
. . 3
class ran
(π£ β
((Baseβπ€) β
{(0gβπ€)})
β¦ ((LSpanβπ€)β{π£})) |
19 | 2, 3, 18 | cmpt 5230 |
. 2
class (π€ β V β¦ ran (π£ β ((Baseβπ€) β
{(0gβπ€)})
β¦ ((LSpanβπ€)β{π£}))) |
20 | 1, 19 | wceq 1541 |
1
wff LSAtoms =
(π€ β V β¦ ran
(π£ β
((Baseβπ€) β
{(0gβπ€)})
β¦ ((LSpanβπ€)β{π£}))) |