Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatset Structured version   Visualization version   GIF version

Theorem lsatset 34797
Description: The set of all 1-dim subspaces (atoms) of a left module or left vector space. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lsatset.v 𝑉 = (Base‘𝑊)
lsatset.n 𝑁 = (LSpan‘𝑊)
lsatset.z 0 = (0g𝑊)
lsatset.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
lsatset (𝑊𝑋𝐴 = ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})))
Distinct variable groups:   𝑣,𝑁   𝑣,𝑉   𝑣,𝑊   𝑣, 0   𝑣,𝑋
Allowed substitution hint:   𝐴(𝑣)

Proof of Theorem lsatset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lsatset.a . 2 𝐴 = (LSAtoms‘𝑊)
2 elex 3364 . . 3 (𝑊𝑋𝑊 ∈ V)
3 fveq2 6333 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 lsatset.v . . . . . . . 8 𝑉 = (Base‘𝑊)
53, 4syl6eqr 2823 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
6 fveq2 6333 . . . . . . . . 9 (𝑤 = 𝑊 → (0g𝑤) = (0g𝑊))
7 lsatset.z . . . . . . . . 9 0 = (0g𝑊)
86, 7syl6eqr 2823 . . . . . . . 8 (𝑤 = 𝑊 → (0g𝑤) = 0 )
98sneqd 4329 . . . . . . 7 (𝑤 = 𝑊 → {(0g𝑤)} = { 0 })
105, 9difeq12d 3880 . . . . . 6 (𝑤 = 𝑊 → ((Base‘𝑤) ∖ {(0g𝑤)}) = (𝑉 ∖ { 0 }))
11 fveq2 6333 . . . . . . . 8 (𝑤 = 𝑊 → (LSpan‘𝑤) = (LSpan‘𝑊))
12 lsatset.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
1311, 12syl6eqr 2823 . . . . . . 7 (𝑤 = 𝑊 → (LSpan‘𝑤) = 𝑁)
1413fveq1d 6335 . . . . . 6 (𝑤 = 𝑊 → ((LSpan‘𝑤)‘{𝑣}) = (𝑁‘{𝑣}))
1510, 14mpteq12dv 4868 . . . . 5 (𝑤 = 𝑊 → (𝑣 ∈ ((Base‘𝑤) ∖ {(0g𝑤)}) ↦ ((LSpan‘𝑤)‘{𝑣})) = (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})))
1615rneqd 5490 . . . 4 (𝑤 = 𝑊 → ran (𝑣 ∈ ((Base‘𝑤) ∖ {(0g𝑤)}) ↦ ((LSpan‘𝑤)‘{𝑣})) = ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})))
17 df-lsatoms 34783 . . . 4 LSAtoms = (𝑤 ∈ V ↦ ran (𝑣 ∈ ((Base‘𝑤) ∖ {(0g𝑤)}) ↦ ((LSpan‘𝑤)‘{𝑣})))
1812fvexi 6345 . . . . . . 7 𝑁 ∈ V
1918rnex 7251 . . . . . 6 ran 𝑁 ∈ V
20 p0ex 4985 . . . . . 6 {∅} ∈ V
2119, 20unex 7107 . . . . 5 (ran 𝑁 ∪ {∅}) ∈ V
22 eqid 2771 . . . . . . 7 (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})) = (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣}))
23 fvrn0 6359 . . . . . . . 8 (𝑁‘{𝑣}) ∈ (ran 𝑁 ∪ {∅})
2423a1i 11 . . . . . . 7 (𝑣 ∈ (𝑉 ∖ { 0 }) → (𝑁‘{𝑣}) ∈ (ran 𝑁 ∪ {∅}))
2522, 24fmpti 6527 . . . . . 6 (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})):(𝑉 ∖ { 0 })⟶(ran 𝑁 ∪ {∅})
26 frn 6190 . . . . . 6 ((𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})):(𝑉 ∖ { 0 })⟶(ran 𝑁 ∪ {∅}) → ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})) ⊆ (ran 𝑁 ∪ {∅}))
2725, 26ax-mp 5 . . . . 5 ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})) ⊆ (ran 𝑁 ∪ {∅})
2821, 27ssexi 4938 . . . 4 ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})) ∈ V
2916, 17, 28fvmpt 6426 . . 3 (𝑊 ∈ V → (LSAtoms‘𝑊) = ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})))
302, 29syl 17 . 2 (𝑊𝑋 → (LSAtoms‘𝑊) = ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})))
311, 30syl5eq 2817 1 (𝑊𝑋𝐴 = ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  Vcvv 3351  cdif 3720  cun 3721  wss 3723  c0 4063  {csn 4317  cmpt 4864  ran crn 5251  wf 6026  cfv 6030  Basecbs 16064  0gc0g 16308  LSpanclspn 19184  LSAtomsclsa 34781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-fv 6038  df-lsatoms 34783
This theorem is referenced by:  islsat  34798  lsatlss  34803
  Copyright terms: Public domain W3C validator