Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatset Structured version   Visualization version   GIF version

Theorem lsatset 37848
Description: The set of all 1-dim subspaces (atoms) of a left module or left vector space. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lsatset.v 𝑉 = (Baseβ€˜π‘Š)
lsatset.n 𝑁 = (LSpanβ€˜π‘Š)
lsatset.z 0 = (0gβ€˜π‘Š)
lsatset.a 𝐴 = (LSAtomsβ€˜π‘Š)
Assertion
Ref Expression
lsatset (π‘Š ∈ 𝑋 β†’ 𝐴 = ran (𝑣 ∈ (𝑉 βˆ– { 0 }) ↦ (π‘β€˜{𝑣})))
Distinct variable groups:   𝑣,𝑁   𝑣,𝑉   𝑣,π‘Š   𝑣, 0   𝑣,𝑋
Allowed substitution hint:   𝐴(𝑣)

Proof of Theorem lsatset
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 lsatset.a . 2 𝐴 = (LSAtomsβ€˜π‘Š)
2 elex 3492 . . 3 (π‘Š ∈ 𝑋 β†’ π‘Š ∈ V)
3 fveq2 6888 . . . . . . . 8 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
4 lsatset.v . . . . . . . 8 𝑉 = (Baseβ€˜π‘Š)
53, 4eqtr4di 2790 . . . . . . 7 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = 𝑉)
6 fveq2 6888 . . . . . . . . 9 (𝑀 = π‘Š β†’ (0gβ€˜π‘€) = (0gβ€˜π‘Š))
7 lsatset.z . . . . . . . . 9 0 = (0gβ€˜π‘Š)
86, 7eqtr4di 2790 . . . . . . . 8 (𝑀 = π‘Š β†’ (0gβ€˜π‘€) = 0 )
98sneqd 4639 . . . . . . 7 (𝑀 = π‘Š β†’ {(0gβ€˜π‘€)} = { 0 })
105, 9difeq12d 4122 . . . . . 6 (𝑀 = π‘Š β†’ ((Baseβ€˜π‘€) βˆ– {(0gβ€˜π‘€)}) = (𝑉 βˆ– { 0 }))
11 fveq2 6888 . . . . . . . 8 (𝑀 = π‘Š β†’ (LSpanβ€˜π‘€) = (LSpanβ€˜π‘Š))
12 lsatset.n . . . . . . . 8 𝑁 = (LSpanβ€˜π‘Š)
1311, 12eqtr4di 2790 . . . . . . 7 (𝑀 = π‘Š β†’ (LSpanβ€˜π‘€) = 𝑁)
1413fveq1d 6890 . . . . . 6 (𝑀 = π‘Š β†’ ((LSpanβ€˜π‘€)β€˜{𝑣}) = (π‘β€˜{𝑣}))
1510, 14mpteq12dv 5238 . . . . 5 (𝑀 = π‘Š β†’ (𝑣 ∈ ((Baseβ€˜π‘€) βˆ– {(0gβ€˜π‘€)}) ↦ ((LSpanβ€˜π‘€)β€˜{𝑣})) = (𝑣 ∈ (𝑉 βˆ– { 0 }) ↦ (π‘β€˜{𝑣})))
1615rneqd 5935 . . . 4 (𝑀 = π‘Š β†’ ran (𝑣 ∈ ((Baseβ€˜π‘€) βˆ– {(0gβ€˜π‘€)}) ↦ ((LSpanβ€˜π‘€)β€˜{𝑣})) = ran (𝑣 ∈ (𝑉 βˆ– { 0 }) ↦ (π‘β€˜{𝑣})))
17 df-lsatoms 37834 . . . 4 LSAtoms = (𝑀 ∈ V ↦ ran (𝑣 ∈ ((Baseβ€˜π‘€) βˆ– {(0gβ€˜π‘€)}) ↦ ((LSpanβ€˜π‘€)β€˜{𝑣})))
1812fvexi 6902 . . . . . . 7 𝑁 ∈ V
1918rnex 7899 . . . . . 6 ran 𝑁 ∈ V
20 p0ex 5381 . . . . . 6 {βˆ…} ∈ V
2119, 20unex 7729 . . . . 5 (ran 𝑁 βˆͺ {βˆ…}) ∈ V
22 eqid 2732 . . . . . . 7 (𝑣 ∈ (𝑉 βˆ– { 0 }) ↦ (π‘β€˜{𝑣})) = (𝑣 ∈ (𝑉 βˆ– { 0 }) ↦ (π‘β€˜{𝑣}))
23 fvrn0 6918 . . . . . . . 8 (π‘β€˜{𝑣}) ∈ (ran 𝑁 βˆͺ {βˆ…})
2423a1i 11 . . . . . . 7 (𝑣 ∈ (𝑉 βˆ– { 0 }) β†’ (π‘β€˜{𝑣}) ∈ (ran 𝑁 βˆͺ {βˆ…}))
2522, 24fmpti 7108 . . . . . 6 (𝑣 ∈ (𝑉 βˆ– { 0 }) ↦ (π‘β€˜{𝑣})):(𝑉 βˆ– { 0 })⟢(ran 𝑁 βˆͺ {βˆ…})
26 frn 6721 . . . . . 6 ((𝑣 ∈ (𝑉 βˆ– { 0 }) ↦ (π‘β€˜{𝑣})):(𝑉 βˆ– { 0 })⟢(ran 𝑁 βˆͺ {βˆ…}) β†’ ran (𝑣 ∈ (𝑉 βˆ– { 0 }) ↦ (π‘β€˜{𝑣})) βŠ† (ran 𝑁 βˆͺ {βˆ…}))
2725, 26ax-mp 5 . . . . 5 ran (𝑣 ∈ (𝑉 βˆ– { 0 }) ↦ (π‘β€˜{𝑣})) βŠ† (ran 𝑁 βˆͺ {βˆ…})
2821, 27ssexi 5321 . . . 4 ran (𝑣 ∈ (𝑉 βˆ– { 0 }) ↦ (π‘β€˜{𝑣})) ∈ V
2916, 17, 28fvmpt 6995 . . 3 (π‘Š ∈ V β†’ (LSAtomsβ€˜π‘Š) = ran (𝑣 ∈ (𝑉 βˆ– { 0 }) ↦ (π‘β€˜{𝑣})))
302, 29syl 17 . 2 (π‘Š ∈ 𝑋 β†’ (LSAtomsβ€˜π‘Š) = ran (𝑣 ∈ (𝑉 βˆ– { 0 }) ↦ (π‘β€˜{𝑣})))
311, 30eqtrid 2784 1 (π‘Š ∈ 𝑋 β†’ 𝐴 = ran (𝑣 ∈ (𝑉 βˆ– { 0 }) ↦ (π‘β€˜{𝑣})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  Vcvv 3474   βˆ– cdif 3944   βˆͺ cun 3945   βŠ† wss 3947  βˆ…c0 4321  {csn 4627   ↦ cmpt 5230  ran crn 5676  βŸΆwf 6536  β€˜cfv 6540  Basecbs 17140  0gc0g 17381  LSpanclspn 20574  LSAtomsclsa 37832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-lsatoms 37834
This theorem is referenced by:  islsat  37849  lsatlss  37854
  Copyright terms: Public domain W3C validator