Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatset Structured version   Visualization version   GIF version

Theorem lsatset 38983
Description: The set of all 1-dim subspaces (atoms) of a left module or left vector space. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lsatset.v 𝑉 = (Base‘𝑊)
lsatset.n 𝑁 = (LSpan‘𝑊)
lsatset.z 0 = (0g𝑊)
lsatset.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
lsatset (𝑊𝑋𝐴 = ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})))
Distinct variable groups:   𝑣,𝑁   𝑣,𝑉   𝑣,𝑊   𝑣, 0   𝑣,𝑋
Allowed substitution hint:   𝐴(𝑣)

Proof of Theorem lsatset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lsatset.a . 2 𝐴 = (LSAtoms‘𝑊)
2 elex 3468 . . 3 (𝑊𝑋𝑊 ∈ V)
3 fveq2 6858 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 lsatset.v . . . . . . . 8 𝑉 = (Base‘𝑊)
53, 4eqtr4di 2782 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
6 fveq2 6858 . . . . . . . . 9 (𝑤 = 𝑊 → (0g𝑤) = (0g𝑊))
7 lsatset.z . . . . . . . . 9 0 = (0g𝑊)
86, 7eqtr4di 2782 . . . . . . . 8 (𝑤 = 𝑊 → (0g𝑤) = 0 )
98sneqd 4601 . . . . . . 7 (𝑤 = 𝑊 → {(0g𝑤)} = { 0 })
105, 9difeq12d 4090 . . . . . 6 (𝑤 = 𝑊 → ((Base‘𝑤) ∖ {(0g𝑤)}) = (𝑉 ∖ { 0 }))
11 fveq2 6858 . . . . . . . 8 (𝑤 = 𝑊 → (LSpan‘𝑤) = (LSpan‘𝑊))
12 lsatset.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
1311, 12eqtr4di 2782 . . . . . . 7 (𝑤 = 𝑊 → (LSpan‘𝑤) = 𝑁)
1413fveq1d 6860 . . . . . 6 (𝑤 = 𝑊 → ((LSpan‘𝑤)‘{𝑣}) = (𝑁‘{𝑣}))
1510, 14mpteq12dv 5194 . . . . 5 (𝑤 = 𝑊 → (𝑣 ∈ ((Base‘𝑤) ∖ {(0g𝑤)}) ↦ ((LSpan‘𝑤)‘{𝑣})) = (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})))
1615rneqd 5902 . . . 4 (𝑤 = 𝑊 → ran (𝑣 ∈ ((Base‘𝑤) ∖ {(0g𝑤)}) ↦ ((LSpan‘𝑤)‘{𝑣})) = ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})))
17 df-lsatoms 38969 . . . 4 LSAtoms = (𝑤 ∈ V ↦ ran (𝑣 ∈ ((Base‘𝑤) ∖ {(0g𝑤)}) ↦ ((LSpan‘𝑤)‘{𝑣})))
1812fvexi 6872 . . . . . . 7 𝑁 ∈ V
1918rnex 7886 . . . . . 6 ran 𝑁 ∈ V
20 p0ex 5339 . . . . . 6 {∅} ∈ V
2119, 20unex 7720 . . . . 5 (ran 𝑁 ∪ {∅}) ∈ V
22 eqid 2729 . . . . . . 7 (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})) = (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣}))
23 fvrn0 6888 . . . . . . . 8 (𝑁‘{𝑣}) ∈ (ran 𝑁 ∪ {∅})
2423a1i 11 . . . . . . 7 (𝑣 ∈ (𝑉 ∖ { 0 }) → (𝑁‘{𝑣}) ∈ (ran 𝑁 ∪ {∅}))
2522, 24fmpti 7084 . . . . . 6 (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})):(𝑉 ∖ { 0 })⟶(ran 𝑁 ∪ {∅})
26 frn 6695 . . . . . 6 ((𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})):(𝑉 ∖ { 0 })⟶(ran 𝑁 ∪ {∅}) → ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})) ⊆ (ran 𝑁 ∪ {∅}))
2725, 26ax-mp 5 . . . . 5 ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})) ⊆ (ran 𝑁 ∪ {∅})
2821, 27ssexi 5277 . . . 4 ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})) ∈ V
2916, 17, 28fvmpt 6968 . . 3 (𝑊 ∈ V → (LSAtoms‘𝑊) = ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})))
302, 29syl 17 . 2 (𝑊𝑋 → (LSAtoms‘𝑊) = ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})))
311, 30eqtrid 2776 1 (𝑊𝑋𝐴 = ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911  cun 3912  wss 3914  c0 4296  {csn 4589  cmpt 5188  ran crn 5639  wf 6507  cfv 6511  Basecbs 17179  0gc0g 17402  LSpanclspn 20877  LSAtomsclsa 38967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-lsatoms 38969
This theorem is referenced by:  islsat  38984  lsatlss  38989
  Copyright terms: Public domain W3C validator