Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatset Structured version   Visualization version   GIF version

Theorem lsatset 39110
Description: The set of all 1-dim subspaces (atoms) of a left module or left vector space. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lsatset.v 𝑉 = (Base‘𝑊)
lsatset.n 𝑁 = (LSpan‘𝑊)
lsatset.z 0 = (0g𝑊)
lsatset.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
lsatset (𝑊𝑋𝐴 = ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})))
Distinct variable groups:   𝑣,𝑁   𝑣,𝑉   𝑣,𝑊   𝑣, 0   𝑣,𝑋
Allowed substitution hint:   𝐴(𝑣)

Proof of Theorem lsatset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lsatset.a . 2 𝐴 = (LSAtoms‘𝑊)
2 elex 3458 . . 3 (𝑊𝑋𝑊 ∈ V)
3 fveq2 6828 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 lsatset.v . . . . . . . 8 𝑉 = (Base‘𝑊)
53, 4eqtr4di 2786 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
6 fveq2 6828 . . . . . . . . 9 (𝑤 = 𝑊 → (0g𝑤) = (0g𝑊))
7 lsatset.z . . . . . . . . 9 0 = (0g𝑊)
86, 7eqtr4di 2786 . . . . . . . 8 (𝑤 = 𝑊 → (0g𝑤) = 0 )
98sneqd 4587 . . . . . . 7 (𝑤 = 𝑊 → {(0g𝑤)} = { 0 })
105, 9difeq12d 4076 . . . . . 6 (𝑤 = 𝑊 → ((Base‘𝑤) ∖ {(0g𝑤)}) = (𝑉 ∖ { 0 }))
11 fveq2 6828 . . . . . . . 8 (𝑤 = 𝑊 → (LSpan‘𝑤) = (LSpan‘𝑊))
12 lsatset.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
1311, 12eqtr4di 2786 . . . . . . 7 (𝑤 = 𝑊 → (LSpan‘𝑤) = 𝑁)
1413fveq1d 6830 . . . . . 6 (𝑤 = 𝑊 → ((LSpan‘𝑤)‘{𝑣}) = (𝑁‘{𝑣}))
1510, 14mpteq12dv 5180 . . . . 5 (𝑤 = 𝑊 → (𝑣 ∈ ((Base‘𝑤) ∖ {(0g𝑤)}) ↦ ((LSpan‘𝑤)‘{𝑣})) = (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})))
1615rneqd 5882 . . . 4 (𝑤 = 𝑊 → ran (𝑣 ∈ ((Base‘𝑤) ∖ {(0g𝑤)}) ↦ ((LSpan‘𝑤)‘{𝑣})) = ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})))
17 df-lsatoms 39096 . . . 4 LSAtoms = (𝑤 ∈ V ↦ ran (𝑣 ∈ ((Base‘𝑤) ∖ {(0g𝑤)}) ↦ ((LSpan‘𝑤)‘{𝑣})))
1812fvexi 6842 . . . . . . 7 𝑁 ∈ V
1918rnex 7846 . . . . . 6 ran 𝑁 ∈ V
20 p0ex 5324 . . . . . 6 {∅} ∈ V
2119, 20unex 7683 . . . . 5 (ran 𝑁 ∪ {∅}) ∈ V
22 eqid 2733 . . . . . . 7 (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})) = (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣}))
23 fvrn0 6856 . . . . . . . 8 (𝑁‘{𝑣}) ∈ (ran 𝑁 ∪ {∅})
2423a1i 11 . . . . . . 7 (𝑣 ∈ (𝑉 ∖ { 0 }) → (𝑁‘{𝑣}) ∈ (ran 𝑁 ∪ {∅}))
2522, 24fmpti 7051 . . . . . 6 (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})):(𝑉 ∖ { 0 })⟶(ran 𝑁 ∪ {∅})
26 frn 6663 . . . . . 6 ((𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})):(𝑉 ∖ { 0 })⟶(ran 𝑁 ∪ {∅}) → ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})) ⊆ (ran 𝑁 ∪ {∅}))
2725, 26ax-mp 5 . . . . 5 ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})) ⊆ (ran 𝑁 ∪ {∅})
2821, 27ssexi 5262 . . . 4 ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})) ∈ V
2916, 17, 28fvmpt 6935 . . 3 (𝑊 ∈ V → (LSAtoms‘𝑊) = ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})))
302, 29syl 17 . 2 (𝑊𝑋 → (LSAtoms‘𝑊) = ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})))
311, 30eqtrid 2780 1 (𝑊𝑋𝐴 = ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cdif 3895  cun 3896  wss 3898  c0 4282  {csn 4575  cmpt 5174  ran crn 5620  wf 6482  cfv 6486  Basecbs 17122  0gc0g 17345  LSpanclspn 20906  LSAtomsclsa 39094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-lsatoms 39096
This theorem is referenced by:  islsat  39111  lsatlss  39116
  Copyright terms: Public domain W3C validator