Detailed syntax breakdown of Definition df-lshyp
| Step | Hyp | Ref
| Expression |
| 1 | | clsh 38976 |
. 2
class
LSHyp |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vs |
. . . . . . 7
setvar 𝑠 |
| 5 | 4 | cv 1539 |
. . . . . 6
class 𝑠 |
| 6 | 2 | cv 1539 |
. . . . . . 7
class 𝑤 |
| 7 | | cbs 17247 |
. . . . . . 7
class
Base |
| 8 | 6, 7 | cfv 6561 |
. . . . . 6
class
(Base‘𝑤) |
| 9 | 5, 8 | wne 2940 |
. . . . 5
wff 𝑠 ≠ (Base‘𝑤) |
| 10 | | vv |
. . . . . . . . . . 11
setvar 𝑣 |
| 11 | 10 | cv 1539 |
. . . . . . . . . 10
class 𝑣 |
| 12 | 11 | csn 4626 |
. . . . . . . . 9
class {𝑣} |
| 13 | 5, 12 | cun 3949 |
. . . . . . . 8
class (𝑠 ∪ {𝑣}) |
| 14 | | clspn 20969 |
. . . . . . . . 9
class
LSpan |
| 15 | 6, 14 | cfv 6561 |
. . . . . . . 8
class
(LSpan‘𝑤) |
| 16 | 13, 15 | cfv 6561 |
. . . . . . 7
class
((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) |
| 17 | 16, 8 | wceq 1540 |
. . . . . 6
wff
((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤) |
| 18 | 17, 10, 8 | wrex 3070 |
. . . . 5
wff
∃𝑣 ∈
(Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤) |
| 19 | 9, 18 | wa 395 |
. . . 4
wff (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤)) |
| 20 | | clss 20929 |
. . . . 5
class
LSubSp |
| 21 | 6, 20 | cfv 6561 |
. . . 4
class
(LSubSp‘𝑤) |
| 22 | 19, 4, 21 | crab 3436 |
. . 3
class {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))} |
| 23 | 2, 3, 22 | cmpt 5225 |
. 2
class (𝑤 ∈ V ↦ {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))}) |
| 24 | 1, 23 | wceq 1540 |
1
wff LSHyp =
(𝑤 ∈ V ↦ {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))}) |