Detailed syntax breakdown of Definition df-lshyp
Step | Hyp | Ref
| Expression |
1 | | clsh 36996 |
. 2
class
LSHyp |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | cvv 3433 |
. . 3
class
V |
4 | | vs |
. . . . . . 7
setvar 𝑠 |
5 | 4 | cv 1538 |
. . . . . 6
class 𝑠 |
6 | 2 | cv 1538 |
. . . . . . 7
class 𝑤 |
7 | | cbs 16921 |
. . . . . . 7
class
Base |
8 | 6, 7 | cfv 6437 |
. . . . . 6
class
(Base‘𝑤) |
9 | 5, 8 | wne 2944 |
. . . . 5
wff 𝑠 ≠ (Base‘𝑤) |
10 | | vv |
. . . . . . . . . . 11
setvar 𝑣 |
11 | 10 | cv 1538 |
. . . . . . . . . 10
class 𝑣 |
12 | 11 | csn 4562 |
. . . . . . . . 9
class {𝑣} |
13 | 5, 12 | cun 3886 |
. . . . . . . 8
class (𝑠 ∪ {𝑣}) |
14 | | clspn 20242 |
. . . . . . . . 9
class
LSpan |
15 | 6, 14 | cfv 6437 |
. . . . . . . 8
class
(LSpan‘𝑤) |
16 | 13, 15 | cfv 6437 |
. . . . . . 7
class
((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) |
17 | 16, 8 | wceq 1539 |
. . . . . 6
wff
((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤) |
18 | 17, 10, 8 | wrex 3066 |
. . . . 5
wff
∃𝑣 ∈
(Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤) |
19 | 9, 18 | wa 396 |
. . . 4
wff (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤)) |
20 | | clss 20202 |
. . . . 5
class
LSubSp |
21 | 6, 20 | cfv 6437 |
. . . 4
class
(LSubSp‘𝑤) |
22 | 19, 4, 21 | crab 3069 |
. . 3
class {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))} |
23 | 2, 3, 22 | cmpt 5158 |
. 2
class (𝑤 ∈ V ↦ {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))}) |
24 | 1, 23 | wceq 1539 |
1
wff LSHyp =
(𝑤 ∈ V ↦ {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))}) |