Home | Metamath
Proof Explorer Theorem List (p. 382 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 4atex2-0cOLDN 38101* | Same as 4atex2 38098 except that 𝑆 and 𝑇 are zero. TODO: do we need this one or 4atex2-0aOLDN 38099 or 4atex2-0bOLDN 38100? (Contributed by NM, 27-May-2013.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 = (0.‘𝐾) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑆 ∨ 𝑧) = (𝑇 ∨ 𝑧))) | ||
Theorem | 4atex3 38102* | More general version of 4atex 38097 for a line 𝑆 ∨ 𝑇 not necessarily connected to 𝑃 ∨ 𝑄. (Contributed by NM, 29-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑧 ≠ 𝑆 ∧ 𝑧 ≠ 𝑇 ∧ 𝑧 ≤ (𝑆 ∨ 𝑇)))) | ||
Theorem | lautset 38103* | The set of lattice automorphisms. (Contributed by NM, 11-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐼 = (LAut‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐴 → 𝐼 = {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))}) | ||
Theorem | islaut 38104* | The predicate "is a lattice automorphism". (Contributed by NM, 11-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐼 = (LAut‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐴 → (𝐹 ∈ 𝐼 ↔ (𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))))) | ||
Theorem | lautle 38105 | Less-than or equal property of a lattice automorphism. (Contributed by NM, 19-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐼 = (LAut‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌))) | ||
Theorem | laut1o 38106 | A lattice automorphism is one-to-one and onto. (Contributed by NM, 19-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐼 = (LAut‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝐹 ∈ 𝐼) → 𝐹:𝐵–1-1-onto→𝐵) | ||
Theorem | laut11 38107 | One-to-one property of a lattice automorphism. (Contributed by NM, 20-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐼 = (LAut‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐹‘𝑋) = (𝐹‘𝑌) ↔ 𝑋 = 𝑌)) | ||
Theorem | lautcl 38108 | A lattice automorphism value belongs to the base set. (Contributed by NM, 20-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐼 = (LAut‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝐵) | ||
Theorem | lautcnvclN 38109 | Reverse closure of a lattice automorphism. (Contributed by NM, 25-May-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐼 = (LAut‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ 𝑋 ∈ 𝐵) → (◡𝐹‘𝑋) ∈ 𝐵) | ||
Theorem | lautcnvle 38110 | Less-than or equal property of lattice automorphism converse. (Contributed by NM, 19-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐼 = (LAut‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌))) | ||
Theorem | lautcnv 38111 | The converse of a lattice automorphism is a lattice automorphism. (Contributed by NM, 10-May-2013.) |
⊢ 𝐼 = (LAut‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → ◡𝐹 ∈ 𝐼) | ||
Theorem | lautlt 38112 | Less-than property of a lattice automorphism. (Contributed by NM, 20-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐼 = (LAut‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ (𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 < 𝑌 ↔ (𝐹‘𝑋) < (𝐹‘𝑌))) | ||
Theorem | lautcvr 38113 | Covering property of a lattice automorphism. (Contributed by NM, 20-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐼 = (LAut‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ (𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐶𝑌 ↔ (𝐹‘𝑋)𝐶(𝐹‘𝑌))) | ||
Theorem | lautj 38114 | Meet property of a lattice automorphism. (Contributed by NM, 25-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐼 = (LAut‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) ∨ (𝐹‘𝑌))) | ||
Theorem | lautm 38115 | Meet property of a lattice automorphism. (Contributed by NM, 19-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐼 = (LAut‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘(𝑋 ∧ 𝑌)) = ((𝐹‘𝑋) ∧ (𝐹‘𝑌))) | ||
Theorem | lauteq 38116* | A lattice automorphism argument is equal to its value if all atoms are equal to their values. (Contributed by NM, 24-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐼 = (LAut‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = 𝑝) → (𝐹‘𝑋) = 𝑋) | ||
Theorem | idlaut 38117 | The identity function is a lattice automorphism. (Contributed by NM, 18-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐼 = (LAut‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐴 → ( I ↾ 𝐵) ∈ 𝐼) | ||
Theorem | lautco 38118 | The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013.) |
⊢ 𝐼 = (LAut‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) → (𝐹 ∘ 𝐺) ∈ 𝐼) | ||
Theorem | pautsetN 38119* | The set of projective automorphisms. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑀 = (PAut‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → 𝑀 = {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) | ||
Theorem | ispautN 38120* | The predicate "is a projective automorphism". (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑀 = (PAut‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → (𝐹 ∈ 𝑀 ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))))) | ||
Syntax | cldil 38121 | Extend class notation with set of all lattice dilations. |
class LDil | ||
Syntax | cltrn 38122 | Extend class notation with set of all lattice translations. |
class LTrn | ||
Syntax | cdilN 38123 | Extend class notation with set of all dilations. |
class Dil | ||
Syntax | ctrnN 38124 | Extend class notation with set of all translations. |
class Trn | ||
Definition | df-ldil 38125* | Define set of all lattice dilations. Similar to definition of dilation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.) |
⊢ LDil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)})) | ||
Definition | df-ltrn 38126* | Define set of all lattice translations. Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.) |
⊢ LTrn = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓‘𝑞))(meet‘𝑘)𝑤))})) | ||
Definition | df-dilN 38127* | Define set of all dilations. Definition of dilation in [Crawley] p. 111. (Contributed by NM, 30-Jan-2012.) |
⊢ Dil = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥)})) | ||
Definition | df-trnN 38128* | Define set of all translations. Definition of translation in [Crawley] p. 111. (Contributed by NM, 4-Feb-2012.) |
⊢ Trn = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ ((Dil‘𝑘)‘𝑑) ∣ ∀𝑞 ∈ ((WAtoms‘𝑘)‘𝑑)∀𝑟 ∈ ((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃‘𝑘)(𝑓‘𝑞)) ∩ ((⊥𝑃‘𝑘)‘{𝑑})) = ((𝑟(+𝑃‘𝑘)(𝑓‘𝑟)) ∩ ((⊥𝑃‘𝑘)‘{𝑑}))})) | ||
Theorem | ldilfset 38129* | The mapping from fiducial co-atom 𝑤 to its set of lattice dilations. (Contributed by NM, 11-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = (LAut‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐶 → (LDil‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) | ||
Theorem | ldilset 38130* | The set of lattice dilations for a fiducial co-atom 𝑊. (Contributed by NM, 11-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = (LAut‘𝐾) & ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → 𝐷 = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝑓‘𝑥) = 𝑥)}) | ||
Theorem | isldil 38131* | The predicate "is a lattice dilation". Similar to definition of dilation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = (LAut‘𝐾) & ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑊 → (𝐹‘𝑥) = 𝑥)))) | ||
Theorem | ldillaut 38132 | A lattice dilation is an automorphism. (Contributed by NM, 20-May-2012.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = (LAut‘𝐾) & ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐹 ∈ 𝐼) | ||
Theorem | ldil1o 38133 | A lattice dilation is a one-to-one onto function. (Contributed by NM, 19-Apr-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → 𝐹:𝐵–1-1-onto→𝐵) | ||
Theorem | ldilval 38134 | Value of a lattice dilation under its co-atom. (Contributed by NM, 20-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) | ||
Theorem | idldil 38135 | The identity function is a lattice dilation. (Contributed by NM, 18-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝐷) | ||
Theorem | ldilcnv 38136 | The converse of a lattice dilation is a lattice dilation. (Contributed by NM, 10-May-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷) → ◡𝐹 ∈ 𝐷) | ||
Theorem | ldilco 38137 | The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 ∘ 𝐺) ∈ 𝐷) | ||
Theorem | ltrnfset 38138* | The set of all lattice translations for a lattice 𝐾. (Contributed by NM, 11-May-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐶 → (LTrn‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑤 ∧ ¬ 𝑞 ≤ 𝑤) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑤))})) | ||
Theorem | ltrnset 38139* | The set of lattice translations for a fiducial co-atom 𝑊. (Contributed by NM, 11-May-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ∈ 𝐻) → 𝑇 = {𝑓 ∈ 𝐷 ∣ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊))}) | ||
Theorem | isltrn 38140* | The predicate "is a lattice translation". Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ 𝐷 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))))) | ||
Theorem | isltrn2N 38141* | The predicate "is a lattice translation". Version of isltrn 38140 that considers only different 𝑝 and 𝑞. TODO: Can this eliminate some separate proofs for the 𝑝 = 𝑞 case? (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ 𝐷 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))))) | ||
Theorem | ltrnu 38142 | Uniqueness property of a lattice translation value for atoms not under the fiducial co-atom 𝑊. Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 20-May-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘𝑄)) ∧ 𝑊)) | ||
Theorem | ltrnldil 38143 | A lattice translation is a lattice dilation. (Contributed by NM, 20-May-2012.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝐷) | ||
Theorem | ltrnlaut 38144 | A lattice translation is a lattice automorphism. (Contributed by NM, 20-May-2012.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = (LAut‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝐼) | ||
Theorem | ltrn1o 38145 | A lattice translation is a one-to-one onto function. (Contributed by NM, 20-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) | ||
Theorem | ltrncl 38146 | Closure of a lattice translation. (Contributed by NM, 20-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝐵) | ||
Theorem | ltrn11 38147 | One-to-one property of a lattice translation. (Contributed by NM, 20-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐹‘𝑋) = (𝐹‘𝑌) ↔ 𝑋 = 𝑌)) | ||
Theorem | ltrncnvnid 38148 | If a translation is different from the identity, so is its converse. (Contributed by NM, 17-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ◡𝐹 ≠ ( I ↾ 𝐵)) | ||
Theorem | ltrncoidN 38149 | Two translations are equal if the composition of one with the converse of the other is the zero translation. This is an analogue of vector subtraction. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵) ↔ 𝐹 = 𝐺)) | ||
Theorem | ltrnle 38150 | Less-than or equal property of a lattice translation. (Contributed by NM, 20-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌))) | ||
Theorem | ltrncnvleN 38151 | Less-than or equal property of lattice translation converse. (Contributed by NM, 10-May-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌))) | ||
Theorem | ltrnm 38152 | Lattice translation of a meet. (Contributed by NM, 20-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘(𝑋 ∧ 𝑌)) = ((𝐹‘𝑋) ∧ (𝐹‘𝑌))) | ||
Theorem | ltrnj 38153 | Lattice translation of a meet. TODO: change antecedent to 𝐾 ∈ HL (Contributed by NM, 25-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) ∨ (𝐹‘𝑌))) | ||
Theorem | ltrncvr 38154 | Covering property of a lattice translation. (Contributed by NM, 20-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐶𝑌 ↔ (𝐹‘𝑋)𝐶(𝐹‘𝑌))) | ||
Theorem | ltrnval1 38155 | Value of a lattice translation under its co-atom. (Contributed by NM, 20-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) | ||
Theorem | ltrnid 38156* | A lattice translation is the identity function iff all atoms not under the fiducial co-atom 𝑊 are equal to their values. (Contributed by NM, 24-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵))) | ||
Theorem | ltrnnid 38157* | If a lattice translation is not the identity, then there is an atom not under the fiducial co-atom 𝑊 and not equal to its translation. (Contributed by NM, 24-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝐹‘𝑝) ≠ 𝑝)) | ||
Theorem | ltrnatb 38158 | The lattice translation of an atom is an atom. (Contributed by NM, 20-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) | ||
Theorem | ltrncnvatb 38159 | The converse of the lattice translation of an atom is an atom. (Contributed by NM, 2-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐴 ↔ (◡𝐹‘𝑃) ∈ 𝐴)) | ||
Theorem | ltrnel 38160 | The lattice translation of an atom not under the fiducial co-atom is also an atom not under the fiducial co-atom. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 22-May-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) | ||
Theorem | ltrnat 38161 | The lattice translation of an atom is also an atom. TODO: See if this can shorten some ltrnel 38160 uses. (Contributed by NM, 25-May-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) | ||
Theorem | ltrncnvat 38162 | The converse of the lattice translation of an atom is an atom. (Contributed by NM, 9-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (◡𝐹‘𝑃) ∈ 𝐴) | ||
Theorem | ltrncnvel 38163 | The converse of the lattice translation of an atom not under the fiducial co-atom. (Contributed by NM, 10-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((◡𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (◡𝐹‘𝑃) ≤ 𝑊)) | ||
Theorem | ltrncoelN 38164 | Composition of lattice translations of an atom. TODO: See if this can shorten some ltrnel 38160 uses. (Contributed by NM, 1-May-2013.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘(𝐺‘𝑃)) ∈ 𝐴 ∧ ¬ (𝐹‘(𝐺‘𝑃)) ≤ 𝑊)) | ||
Theorem | ltrncoat 38165 | Composition of lattice translations of an atom. TODO: See if this can shorten some ltrnel 38160, ltrnat 38161 uses. (Contributed by NM, 1-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → (𝐹‘(𝐺‘𝑃)) ∈ 𝐴) | ||
Theorem | ltrncoval 38166 | Two ways to express value of translation composition. (Contributed by NM, 31-May-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑃) = (𝐹‘(𝐺‘𝑃))) | ||
Theorem | ltrncnv 38167 | The converse of a lattice translation is a lattice translation. (Contributed by NM, 10-May-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ◡𝐹 ∈ 𝑇) | ||
Theorem | ltrn11at 38168 | Frequently used one-to-one property of lattice translation atoms. (Contributed by NM, 5-May-2013.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → (𝐹‘𝑃) ≠ (𝐹‘𝑄)) | ||
Theorem | ltrneq2 38169* | The equality of two translations is determined by their equality at atoms. (Contributed by NM, 2-Mar-2014.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ↔ 𝐹 = 𝐺)) | ||
Theorem | ltrneq 38170* | The equality of two translations is determined by their equality at atoms not under co-atom 𝑊. (Contributed by NM, 20-Jun-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = (𝐺‘𝑝)) ↔ 𝐹 = 𝐺)) | ||
Theorem | idltrn 38171 | The identity function is a lattice translation. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 18-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝑇) | ||
Theorem | ltrnmw 38172 | Property of lattice translation value. Remark below Lemma B in [Crawley] p. 112. TODO: Can this be used in more places? (Contributed by NM, 20-May-2012.) (Proof shortened by OpenAI, 25-Mar-2020.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∧ 𝑊) = 0 ) | ||
Theorem | dilfsetN 38173* | The mapping from fiducial atom to set of dilations. (Contributed by NM, 30-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑊 = (WAtoms‘𝐾) & ⊢ 𝑀 = (PAut‘𝐾) & ⊢ 𝐿 = (Dil‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → 𝐿 = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝑑) → (𝑓‘𝑥) = 𝑥)})) | ||
Theorem | dilsetN 38174* | The set of dilations for a fiducial atom 𝐷. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑊 = (WAtoms‘𝐾) & ⊢ 𝑀 = (PAut‘𝐾) & ⊢ 𝐿 = (Dil‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐿‘𝐷) = {𝑓 ∈ 𝑀 ∣ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝑓‘𝑥) = 𝑥)}) | ||
Theorem | isdilN 38175* | The predicate "is a dilation". (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑊 = (WAtoms‘𝐾) & ⊢ 𝑀 = (PAut‘𝐾) & ⊢ 𝐿 = (Dil‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐹 ∈ (𝐿‘𝐷) ↔ (𝐹 ∈ 𝑀 ∧ ∀𝑥 ∈ 𝑆 (𝑥 ⊆ (𝑊‘𝐷) → (𝐹‘𝑥) = 𝑥)))) | ||
Theorem | trnfsetN 38176* | The mapping from fiducial atom to set of translations. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑊 = (WAtoms‘𝐾) & ⊢ 𝑀 = (PAut‘𝐾) & ⊢ 𝐿 = (Dil‘𝐾) & ⊢ 𝑇 = (Trn‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐶 → 𝑇 = (𝑑 ∈ 𝐴 ↦ {𝑓 ∈ (𝐿‘𝑑) ∣ ∀𝑞 ∈ (𝑊‘𝑑)∀𝑟 ∈ (𝑊‘𝑑)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝑑})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝑑}))})) | ||
Theorem | trnsetN 38177* | The set of translations for a fiducial atom 𝐷. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑊 = (WAtoms‘𝐾) & ⊢ 𝑀 = (PAut‘𝐾) & ⊢ 𝐿 = (Dil‘𝐾) & ⊢ 𝑇 = (Trn‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑇‘𝐷) = {𝑓 ∈ (𝐿‘𝐷) ∣ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝑓‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝑓‘𝑟)) ∩ ( ⊥ ‘{𝐷}))}) | ||
Theorem | istrnN 38178* | The predicate "is a translation". (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑊 = (WAtoms‘𝐾) & ⊢ 𝑀 = (PAut‘𝐾) & ⊢ 𝐿 = (Dil‘𝐾) & ⊢ 𝑇 = (Trn‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝐹 ∈ (𝑇‘𝐷) ↔ (𝐹 ∈ (𝐿‘𝐷) ∧ ∀𝑞 ∈ (𝑊‘𝐷)∀𝑟 ∈ (𝑊‘𝐷)((𝑞 + (𝐹‘𝑞)) ∩ ( ⊥ ‘{𝐷})) = ((𝑟 + (𝐹‘𝑟)) ∩ ( ⊥ ‘{𝐷}))))) | ||
Syntax | ctrl 38179 | Extend class notation with set of all traces of lattice translations. |
class trL | ||
Definition | df-trl 38180* | Define trace of a lattice translation. (Contributed by NM, 20-May-2012.) |
⊢ trL = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (℩𝑥 ∈ (Base‘𝑘)∀𝑝 ∈ (Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤 → 𝑥 = ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤)))))) | ||
Theorem | trlfset 38181* | The set of all traces of lattice translations for a lattice 𝐾. (Contributed by NM, 20-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐶 → (trL‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑤 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑤)))))) | ||
Theorem | trlset 38182* | The set of traces of lattice translations for a fiducial co-atom 𝑊. (Contributed by NM, 20-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻) → 𝑅 = (𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))) | ||
Theorem | trlval 38183* | The value of the trace of a lattice translation. (Contributed by NM, 20-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) = (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) | ||
Theorem | trlval2 38184 | The value of the trace of a lattice translation, given any atom 𝑃 not under the fiducial co-atom 𝑊. Note: this requires only the weaker assumption 𝐾 ∈ Lat; we use 𝐾 ∈ HL for convenience. (Contributed by NM, 20-May-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐹) = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊)) | ||
Theorem | trlcl 38185 | Closure of the trace of a lattice translation. (Contributed by NM, 22-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ 𝐵) | ||
Theorem | trlcnv 38186 | The trace of the converse of a lattice translation. (Contributed by NM, 10-May-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘◡𝐹) = (𝑅‘𝐹)) | ||
Theorem | trljat1 38187 | The value of a translation of an atom 𝑃 not under the fiducial co-atom 𝑊, joined with trace. Equation above Lemma C in [Crawley] p. 112. TODO: shorten with atmod3i1 37885? (Contributed by NM, 22-May-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ (𝑅‘𝐹)) = (𝑃 ∨ (𝐹‘𝑃))) | ||
Theorem | trljat2 38188 | The value of a translation of an atom 𝑃 not under the fiducial co-atom 𝑊, joined with trace. Equation above Lemma C in [Crawley] p. 112. (Contributed by NM, 25-May-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∨ (𝑅‘𝐹)) = (𝑃 ∨ (𝐹‘𝑃))) | ||
Theorem | trljat3 38189 | The value of a translation of an atom 𝑃 not under the fiducial co-atom 𝑊, joined with trace. Equation above Lemma C in [Crawley] p. 112. (Contributed by NM, 22-May-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ (𝑅‘𝐹)) = ((𝐹‘𝑃) ∨ (𝑅‘𝐹))) | ||
Theorem | trlat 38190 | If an atom differs from its translation, the trace is an atom. Equation above Lemma C in [Crawley] p. 112. (Contributed by NM, 23-May-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑅‘𝐹) ∈ 𝐴) | ||
Theorem | trl0 38191 | If an atom not under the fiducial co-atom 𝑊 equals its lattice translation, the trace of the translation is zero. (Contributed by NM, 24-May-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → (𝑅‘𝐹) = 0 ) | ||
Theorem | trlator0 38192 | The trace of a lattice translation is an atom or zero. (Contributed by NM, 5-May-2013.) |
⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ 𝐴 ∨ (𝑅‘𝐹) = 0 )) | ||
Theorem | trlatn0 38193 | The trace of a lattice translation is an atom iff it is nonzero. (Contributed by NM, 14-Jun-2013.) |
⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ 𝐴 ↔ (𝑅‘𝐹) ≠ 0 )) | ||
Theorem | trlnidat 38194 | The trace of a lattice translation other than the identity is an atom. Remark above Lemma C in [Crawley] p. 112. (Contributed by NM, 23-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑅‘𝐹) ∈ 𝐴) | ||
Theorem | ltrnnidn 38195 | If a lattice translation is not the identity, then the translation of any atom not under the fiducial co-atom 𝑊 is different from the atom. Remark above Lemma C in [Crawley] p. 112. (Contributed by NM, 24-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹‘𝑃) ≠ 𝑃) | ||
Theorem | ltrnideq 38196 | Property of the identity lattice translation. (Contributed by NM, 27-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹‘𝑃) = 𝑃)) | ||
Theorem | trlid0 38197 | The trace of the identity translation is zero. (Contributed by NM, 11-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑅‘( I ↾ 𝐵)) = 0 ) | ||
Theorem | trlnidatb 38198 | A lattice translation is not the identity iff its trace is an atom. TODO: Can proofs be reorganized so this goes with trlnidat 38194? Why do both this and ltrnideq 38196 need trlnidat 38194? (Contributed by NM, 4-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹 ≠ ( I ↾ 𝐵) ↔ (𝑅‘𝐹) ∈ 𝐴)) | ||
Theorem | trlid0b 38199 | A lattice translation is the identity iff its trace is zero. (Contributed by NM, 14-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹 = ( I ↾ 𝐵) ↔ (𝑅‘𝐹) = 0 )) | ||
Theorem | trlnid 38200 | Different translations with the same trace cannot be the identity. (Contributed by NM, 26-Jul-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ 𝐺 ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → 𝐹 ≠ ( I ↾ 𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |