![]() |
Metamath
Proof Explorer Theorem List (p. 382 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30158) |
![]() (30159-31681) |
![]() (31682-47805) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | omllaw 38101 | The orthomodular law. (Contributed by NM, 18-Sep-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (π β€ π β π = (π β¨ (π β§ ( β₯ βπ))))) | ||
Theorem | omllaw2N 38102 | Variation of orthomodular law. Definition of OML law in [Kalmbach] p. 22. (pjoml2i 30825 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (π β€ π β (π β¨ (( β₯ βπ) β§ π)) = π)) | ||
Theorem | omllaw3 38103 | Orthomodular law equivalent. Theorem 2(ii) of [Kalmbach] p. 22. (pjoml 30676 analog.) (Contributed by NM, 19-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) & β’ 0 = (0.βπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β ((π β€ π β§ (π β§ ( β₯ βπ)) = 0 ) β π = π)) | ||
Theorem | omllaw4 38104 | Orthomodular law equivalent. Remark in [Holland95] p. 223. (Contributed by NM, 19-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (π β€ π β (( β₯ β(( β₯ βπ) β§ π)) β§ π) = π)) | ||
Theorem | omllaw5N 38105 | The orthomodular law. Remark in [Kalmbach] p. 22. (pjoml5 30853 analog.) (Contributed by NM, 14-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (π β¨ (( β₯ βπ) β§ (π β¨ π))) = (π β¨ π)) | ||
Theorem | cmtcomlemN 38106 | Lemma for cmtcomN 38107. (cmcmlem 30831 analog.) (Contributed by NM, 7-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (ππΆπ β ππΆπ)) | ||
Theorem | cmtcomN 38107 | Commutation is symmetric. Theorem 2(v) in [Kalmbach] p. 22. (cmcmi 30832 analog.) (Contributed by NM, 7-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (ππΆπ β ππΆπ)) | ||
Theorem | cmt2N 38108 | Commutation with orthocomplement. Theorem 2.3(i) of [Beran] p. 39. (cmcm2i 30833 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β₯ = (ocβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (ππΆπ β ππΆ( β₯ βπ))) | ||
Theorem | cmt3N 38109 | Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (cmcm4i 30835 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β₯ = (ocβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (ππΆπ β ( β₯ βπ)πΆπ)) | ||
Theorem | cmt4N 38110 | Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (cmcm4i 30835 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β₯ = (ocβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (ππΆπ β ( β₯ βπ)πΆ( β₯ βπ))) | ||
Theorem | cmtbr2N 38111 | Alternate definition of the commutes relation. Remark in [Kalmbach] p. 23. (cmbr2i 30836 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (ππΆπ β π = ((π β¨ π) β§ (π β¨ ( β₯ βπ))))) | ||
Theorem | cmtbr3N 38112 | Alternate definition for the commutes relation. Lemma 3 of [Kalmbach] p. 23. (cmbr3 30848 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (ππΆπ β (π β§ (( β₯ βπ) β¨ π)) = (π β§ π))) | ||
Theorem | cmtbr4N 38113 | Alternate definition for the commutes relation. (cmbr4i 30841 analog.) (Contributed by NM, 10-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (ππΆπ β (π β§ (( β₯ βπ) β¨ π)) β€ π)) | ||
Theorem | lecmtN 38114 | Ordered elements commute. (lecmi 30842 analog.) (Contributed by NM, 10-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (π β€ π β ππΆπ)) | ||
Theorem | cmtidN 38115 | Any element commutes with itself. (cmidi 30850 analog.) (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ π β π΅) β ππΆπ) | ||
Theorem | omlfh1N 38116 | Foulis-Holland Theorem, part 1. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Part of Theorem 5 in [Kalmbach] p. 25. (fh1 30858 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ (ππΆπ β§ ππΆπ)) β (π β§ (π β¨ π)) = ((π β§ π) β¨ (π β§ π))) | ||
Theorem | omlfh3N 38117 | Foulis-Holland Theorem, part 3. Dual of omlfh1N 38116. (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ (ππΆπ β§ ππΆπ)) β (π β¨ (π β§ π)) = ((π β¨ π) β§ (π β¨ π))) | ||
Theorem | omlmod1i2N 38118 | Analogue of modular law atmod1i2 38718 that holds in any OML. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ πΆ = (cmβπΎ) β β’ ((πΎ β OML β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ (π β€ π β§ ππΆπ)) β (π β¨ (π β§ π)) = ((π β¨ π) β§ π)) | ||
Theorem | omlspjN 38119 | Contraction of a Sasaki projection. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) β β’ ((πΎ β OML β§ (π β π΅ β§ π β π΅) β§ π β€ π) β ((π β¨ ( β₯ βπ)) β§ π) = π) | ||
Syntax | ccvr 38120 | Extend class notation with covers relation. |
class β | ||
Syntax | catm 38121 | Extend class notation with atoms. |
class Atoms | ||
Syntax | cal 38122 | Extend class notation with atomic lattices. |
class AtLat | ||
Syntax | clc 38123 | Extend class notation with lattices with the covering property. |
class CvLat | ||
Definition | df-covers 38124* | Define the covers relation ("is covered by") for posets. "π is covered by π " means that π is strictly less than π and there is nothing in between. See cvrval 38127 for the relation form. (Contributed by NM, 18-Sep-2011.) |
β’ β = (π β V β¦ {β¨π, πβ© β£ ((π β (Baseβπ) β§ π β (Baseβπ)) β§ π(ltβπ)π β§ Β¬ βπ§ β (Baseβπ)(π(ltβπ)π§ β§ π§(ltβπ)π))}) | ||
Definition | df-ats 38125* | Define the class of poset atoms. (Contributed by NM, 18-Sep-2011.) |
β’ Atoms = (π β V β¦ {π β (Baseβπ) β£ (0.βπ)( β βπ)π}) | ||
Theorem | cvrfval 38126* | Value of covers relation "is covered by". (Contributed by NM, 18-Sep-2011.) |
β’ π΅ = (BaseβπΎ) & β’ < = (ltβπΎ) & β’ πΆ = ( β βπΎ) β β’ (πΎ β π΄ β πΆ = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ π₯ < π¦ β§ Β¬ βπ§ β π΅ (π₯ < π§ β§ π§ < π¦))}) | ||
Theorem | cvrval 38127* | Binary relation expressing π΅ covers π΄, which means that π΅ is larger than π΄ and there is nothing in between. Definition 3.2.18 of [PtakPulmannova] p. 68. (cvbr 31522 analog.) (Contributed by NM, 18-Sep-2011.) |
β’ π΅ = (BaseβπΎ) & β’ < = (ltβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β π΄ β§ π β π΅ β§ π β π΅) β (ππΆπ β (π < π β§ Β¬ βπ§ β π΅ (π < π§ β§ π§ < π)))) | ||
Theorem | cvrlt 38128 | The covers relation implies the less-than relation. (cvpss 31525 analog.) (Contributed by NM, 8-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ < = (ltβπΎ) & β’ πΆ = ( β βπΎ) β β’ (((πΎ β π΄ β§ π β π΅ β§ π β π΅) β§ ππΆπ) β π < π) | ||
Theorem | cvrnbtwn 38129 | There is no element between the two arguments of the covers relation. (cvnbtwn 31526 analog.) (Contributed by NM, 18-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ < = (ltβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β π΄ β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ ππΆπ) β Β¬ (π < π β§ π < π)) | ||
Theorem | ncvr1 38130 | No element covers the lattice unity. (Contributed by NM, 8-Jul-2013.) |
β’ π΅ = (BaseβπΎ) & β’ 1 = (1.βπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β OP β§ π β π΅) β Β¬ 1 πΆπ) | ||
Theorem | cvrletrN 38131 | Property of an element above a covering. (Contributed by NM, 7-Dec-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ < = (ltβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((ππΆπ β§ π β€ π) β π < π)) | ||
Theorem | cvrval2 38132* | Binary relation expressing π covers π. Definition of covers in [Kalmbach] p. 15. (cvbr2 31523 analog.) (Contributed by NM, 16-Nov-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ < = (ltβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β π΄ β§ π β π΅ β§ π β π΅) β (ππΆπ β (π < π β§ βπ§ β π΅ ((π < π§ β§ π§ β€ π) β π§ = π)))) | ||
Theorem | cvrnbtwn2 38133 | The covers relation implies no in-betweenness. (cvnbtwn2 31527 analog.) (Contributed by NM, 17-Nov-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ < = (ltβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ ππΆπ) β ((π < π β§ π β€ π) β π = π)) | ||
Theorem | cvrnbtwn3 38134 | The covers relation implies no in-betweenness. (cvnbtwn3 31528 analog.) (Contributed by NM, 4-Nov-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ < = (ltβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ ππΆπ) β ((π β€ π β§ π < π) β π = π)) | ||
Theorem | cvrcon3b 38135 | Contraposition law for the covers relation. (cvcon3 31524 analog.) (Contributed by NM, 4-Nov-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β₯ = (ocβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β OP β§ π β π΅ β§ π β π΅) β (ππΆπ β ( β₯ βπ)πΆ( β₯ βπ))) | ||
Theorem | cvrle 38136 | The covers relation implies the "less than or equal to" relation. (Contributed by NM, 12-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΆ = ( β βπΎ) β β’ (((πΎ β π΄ β§ π β π΅ β§ π β π΅) β§ ππΆπ) β π β€ π) | ||
Theorem | cvrnbtwn4 38137 | The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of [MaedaMaeda] p. 31. (cvnbtwn4 31529 analog.) (Contributed by NM, 18-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ ππΆπ) β ((π β€ π β§ π β€ π) β (π = π β¨ π = π))) | ||
Theorem | cvrnle 38138 | The covers relation implies the negation of the converse "less than or equal to" relation. (Contributed by NM, 18-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΆ = ( β βπΎ) β β’ (((πΎ β Poset β§ π β π΅ β§ π β π΅) β§ ππΆπ) β Β¬ π β€ π) | ||
Theorem | cvrne 38139 | The covers relation implies inequality. (Contributed by NM, 13-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) β β’ (((πΎ β π΄ β§ π β π΅ β§ π β π΅) β§ ππΆπ) β π β π) | ||
Theorem | cvrnrefN 38140 | The covers relation is not reflexive. (cvnref 31531 analog.) (Contributed by NM, 1-Nov-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β π΄ β§ π β π΅) β Β¬ ππΆπ) | ||
Theorem | cvrcmp 38141 | If two lattice elements that cover a third are comparable, then they are equal. (Contributed by NM, 6-Feb-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β Poset β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ (ππΆπ β§ ππΆπ)) β (π β€ π β π = π)) | ||
Theorem | cvrcmp2 38142 | If two lattice elements covered by a third are comparable, then they are equal. (Contributed by NM, 20-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΆ = ( β βπΎ) β β’ ((πΎ β OP β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ (ππΆπ β§ ππΆπ)) β (π β€ π β π = π)) | ||
Theorem | pats 38143* | The set of atoms in a poset. (Contributed by NM, 18-Sep-2011.) |
β’ π΅ = (BaseβπΎ) & β’ 0 = (0.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (πΎ β π· β π΄ = {π₯ β π΅ β£ 0 πΆπ₯}) | ||
Theorem | isat 38144 | The predicate "is an atom". (ela 31579 analog.) (Contributed by NM, 18-Sep-2011.) |
β’ π΅ = (BaseβπΎ) & β’ 0 = (0.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (πΎ β π· β (π β π΄ β (π β π΅ β§ 0 πΆπ))) | ||
Theorem | isat2 38145 | The predicate "is an atom". (elatcv0 31581 analog.) (Contributed by NM, 18-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ 0 = (0.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β π· β§ π β π΅) β (π β π΄ β 0 πΆπ)) | ||
Theorem | atcvr0 38146 | An atom covers zero. (atcv0 31582 analog.) (Contributed by NM, 4-Nov-2011.) |
β’ 0 = (0.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β π· β§ π β π΄) β 0 πΆπ) | ||
Theorem | atbase 38147 | An atom is a member of the lattice base set (i.e. a lattice element). (atelch 31584 analog.) (Contributed by NM, 10-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (π β π΄ β π β π΅) | ||
Theorem | atssbase 38148 | The set of atoms is a subset of the base set. (atssch 31583 analog.) (Contributed by NM, 21-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ π΄ β π΅ | ||
Theorem | 0ltat 38149 | An atom is greater than zero. (Contributed by NM, 4-Jul-2012.) |
β’ 0 = (0.βπΎ) & β’ < = (ltβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β OP β§ π β π΄) β 0 < π) | ||
Theorem | leatb 38150 | A poset element less than or equal to an atom equals either zero or the atom. (atss 31586 analog.) (Contributed by NM, 17-Nov-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β OP β§ π β π΅ β§ π β π΄) β (π β€ π β (π = π β¨ π = 0 ))) | ||
Theorem | leat 38151 | A poset element less than or equal to an atom equals either zero or the atom. (Contributed by NM, 15-Oct-2013.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β OP β§ π β π΅ β§ π β π΄) β§ π β€ π) β (π = π β¨ π = 0 )) | ||
Theorem | leat2 38152 | A nonzero poset element less than or equal to an atom equals the atom. (Contributed by NM, 6-Mar-2013.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β OP β§ π β π΅ β§ π β π΄) β§ (π β 0 β§ π β€ π)) β π = π) | ||
Theorem | leat3 38153 | A poset element less than or equal to an atom is either an atom or zero. (Contributed by NM, 2-Dec-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β OP β§ π β π΅ β§ π β π΄) β§ π β€ π) β (π β π΄ β¨ π = 0 )) | ||
Theorem | meetat 38154 | The meet of any element with an atom is either the atom or zero. (Contributed by NM, 28-Aug-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β OL β§ π β π΅ β§ π β π΄) β ((π β§ π) = π β¨ (π β§ π) = 0 )) | ||
Theorem | meetat2 38155 | The meet of any element with an atom is either the atom or zero. (Contributed by NM, 30-Aug-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β OL β§ π β π΅ β§ π β π΄) β ((π β§ π) β π΄ β¨ (π β§ π) = 0 )) | ||
Definition | df-atl 38156* | Define the class of atomic lattices, in which every nonzero element is greater than or equal to an atom. We also ensure the existence of a lattice zero, since a lattice by itself may not have a zero. (Contributed by NM, 18-Sep-2011.) (Revised by NM, 14-Sep-2018.) |
β’ AtLat = {π β Lat β£ ((Baseβπ) β dom (glbβπ) β§ βπ₯ β (Baseβπ)(π₯ β (0.βπ) β βπ β (Atomsβπ)π(leβπ)π₯))} | ||
Theorem | isatl 38157* | The predicate "is an atomic lattice." Every nonzero element is less than or equal to an atom. (Contributed by NM, 18-Sep-2011.) (Revised by NM, 14-Sep-2018.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (πΎ β AtLat β (πΎ β Lat β§ π΅ β dom πΊ β§ βπ₯ β π΅ (π₯ β 0 β βπ¦ β π΄ π¦ β€ π₯))) | ||
Theorem | atllat 38158 | An atomic lattice is a lattice. (Contributed by NM, 21-Oct-2011.) |
β’ (πΎ β AtLat β πΎ β Lat) | ||
Theorem | atlpos 38159 | An atomic lattice is a poset. (Contributed by NM, 5-Nov-2012.) |
β’ (πΎ β AtLat β πΎ β Poset) | ||
Theorem | atl0dm 38160 | Condition necessary for zero element to exist. (Contributed by NM, 14-Sep-2018.) |
β’ π΅ = (BaseβπΎ) & β’ π = (lubβπΎ) & β’ πΊ = (glbβπΎ) β β’ (πΎ β AtLat β π΅ β dom πΊ) | ||
Theorem | atl0cl 38161 | An atomic lattice has a zero element. We can use this in place of op0cl 38042 for lattices without orthocomplements. (Contributed by NM, 5-Nov-2012.) |
β’ π΅ = (BaseβπΎ) & β’ 0 = (0.βπΎ) β β’ (πΎ β AtLat β 0 β π΅) | ||
Theorem | atl0le 38162 | Orthoposet zero is less than or equal to any element. (ch0le 30681 analog.) (Contributed by NM, 12-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) β β’ ((πΎ β AtLat β§ π β π΅) β 0 β€ π) | ||
Theorem | atlle0 38163 | An element less than or equal to zero equals zero. (chle0 30683 analog.) (Contributed by NM, 21-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) β β’ ((πΎ β AtLat β§ π β π΅) β (π β€ 0 β π = 0 )) | ||
Theorem | atlltn0 38164 | A lattice element greater than zero is nonzero. (Contributed by NM, 1-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ < = (ltβπΎ) & β’ 0 = (0.βπΎ) β β’ ((πΎ β AtLat β§ π β π΅) β ( 0 < π β π β 0 )) | ||
Theorem | isat3 38165* | The predicate "is an atom". (elat2 31580 analog.) (Contributed by NM, 27-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (πΎ β AtLat β (π β π΄ β (π β π΅ β§ π β 0 β§ βπ₯ β π΅ (π₯ β€ π β (π₯ = π β¨ π₯ = 0 ))))) | ||
Theorem | atn0 38166 | An atom is not zero. (atne0 31585 analog.) (Contributed by NM, 5-Nov-2012.) |
β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β AtLat β§ π β π΄) β π β 0 ) | ||
Theorem | atnle0 38167 | An atom is not less than or equal to zero. (Contributed by NM, 17-Oct-2011.) |
β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β AtLat β§ π β π΄) β Β¬ π β€ 0 ) | ||
Theorem | atlen0 38168 | A lattice element is nonzero if an atom is under it. (Contributed by NM, 26-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β AtLat β§ π β π΅ β§ π β π΄) β§ π β€ π) β π β 0 ) | ||
Theorem | atcmp 38169 | If two atoms are comparable, they are equal. (atsseq 31587 analog.) (Contributed by NM, 13-Oct-2011.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β (π β€ π β π = π)) | ||
Theorem | atncmp 38170 | Frequently-used variation of atcmp 38169. (Contributed by NM, 29-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β (Β¬ π β€ π β π β π)) | ||
Theorem | atnlt 38171 | Two atoms cannot satisfy the less than relation. (Contributed by NM, 7-Feb-2012.) |
β’ < = (ltβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β Β¬ π < π) | ||
Theorem | atcvreq0 38172 | An element covered by an atom must be zero. (atcveq0 31588 analog.) (Contributed by NM, 4-Nov-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β AtLat β§ π β π΅ β§ π β π΄) β (ππΆπ β π = 0 )) | ||
Theorem | atncvrN 38173 | Two atoms cannot satisfy the covering relation. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β Β¬ ππΆπ) | ||
Theorem | atlex 38174* | Every nonzero element of an atomic lattice is greater than or equal to an atom. (hatomic 31600 analog.) (Contributed by NM, 21-Oct-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β AtLat β§ π β π΅ β§ π β 0 ) β βπ¦ β π΄ π¦ β€ π) | ||
Theorem | atnle 38175 | Two ways of expressing "an atom is not less than or equal to a lattice element." (atnssm0 31616 analog.) (Contributed by NM, 5-Nov-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΅) β (Β¬ π β€ π β (π β§ π) = 0 )) | ||
Theorem | atnem0 38176 | The meet of distinct atoms is zero. (atnemeq0 31617 analog.) (Contributed by NM, 5-Nov-2012.) |
β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β (π β π β (π β§ π) = 0 )) | ||
Theorem | atlatmstc 38177* | An atomic, complete, orthomodular lattice is atomistic i.e. every element is the join of the atoms under it. See remark before Proposition 1 in [Kalmbach] p. 140; also remark in [BeltramettiCassinelli] p. 98. (hatomistici 31602 analog.) (Contributed by NM, 5-Nov-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 1 = (lubβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat) β§ π β π΅) β ( 1 β{π¦ β π΄ β£ π¦ β€ π}) = π) | ||
Theorem | atlatle 38178* | The ordering of two Hilbert lattice elements is determined by the atoms under them. (chrelat3 31611 analog.) (Contributed by NM, 5-Nov-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat) β§ π β π΅ β§ π β π΅) β (π β€ π β βπ β π΄ (π β€ π β π β€ π))) | ||
Theorem | atlrelat1 38179* | An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of [MaedaMaeda] p. 30. (chpssati 31603, with β§ swapped, analog.) (Contributed by NM, 4-Dec-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ < = (ltβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat) β§ π β π΅ β§ π β π΅) β (π < π β βπ β π΄ (Β¬ π β€ π β§ π β€ π))) | ||
Definition | df-cvlat 38180* | Define the class of atomic lattices with the covering property. (This is actually the exchange property, but they are equivalent. The literature usually uses the covering property terminology.) (Contributed by NM, 5-Nov-2012.) |
β’ CvLat = {π β AtLat β£ βπ β (Atomsβπ)βπ β (Atomsβπ)βπ β (Baseβπ)((Β¬ π(leβπ)π β§ π(leβπ)(π(joinβπ)π)) β π(leβπ)(π(joinβπ)π))} | ||
Theorem | iscvlat 38181* | The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (πΎ β CvLat β (πΎ β AtLat β§ βπ β π΄ βπ β π΄ βπ₯ β π΅ ((Β¬ π β€ π₯ β§ π β€ (π₯ β¨ π)) β π β€ (π₯ β¨ π)))) | ||
Theorem | iscvlat2N 38182* | The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (πΎ β CvLat β (πΎ β AtLat β§ βπ β π΄ βπ β π΄ βπ₯ β π΅ (((π β§ π₯) = 0 β§ π β€ (π₯ β¨ π)) β π β€ (π₯ β¨ π)))) | ||
Theorem | cvlatl 38183 | An atomic lattice with the covering property is an atomic lattice. (Contributed by NM, 5-Nov-2012.) |
β’ (πΎ β CvLat β πΎ β AtLat) | ||
Theorem | cvllat 38184 | An atomic lattice with the covering property is a lattice. (Contributed by NM, 5-Nov-2012.) |
β’ (πΎ β CvLat β πΎ β Lat) | ||
Theorem | cvlposN 38185 | An atomic lattice with the covering property is a poset. (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
β’ (πΎ β CvLat β πΎ β Poset) | ||
Theorem | cvlexch1 38186 | An atomic covering lattice has the exchange property. (Contributed by NM, 6-Nov-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΅) β§ Β¬ π β€ π) β (π β€ (π β¨ π) β π β€ (π β¨ π))) | ||
Theorem | cvlexch2 38187 | An atomic covering lattice has the exchange property. (Contributed by NM, 6-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΅) β§ Β¬ π β€ π) β (π β€ (π β¨ π) β π β€ (π β¨ π))) | ||
Theorem | cvlexchb1 38188 | An atomic covering lattice has the exchange property. (Contributed by NM, 16-Nov-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΅) β§ Β¬ π β€ π) β (π β€ (π β¨ π) β (π β¨ π) = (π β¨ π))) | ||
Theorem | cvlexchb2 38189 | An atomic covering lattice has the exchange property. (Contributed by NM, 22-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΅) β§ Β¬ π β€ π) β (π β€ (π β¨ π) β (π β¨ π) = (π β¨ π))) | ||
Theorem | cvlexch3 38190 | An atomic covering lattice has the exchange property. (atexch 31621 analog.) (Contributed by NM, 5-Nov-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΅) β§ (π β§ π) = 0 ) β (π β€ (π β¨ π) β π β€ (π β¨ π))) | ||
Theorem | cvlexch4N 38191 | An atomic covering lattice has the exchange property. Part of Definition 7.8 of [MaedaMaeda] p. 32. (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΅) β§ (π β§ π) = 0 ) β (π β€ (π β¨ π) β (π β¨ π) = (π β¨ π))) | ||
Theorem | cvlatexchb1 38192 | A version of cvlexchb1 38188 for atoms. (Contributed by NM, 5-Nov-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π β€ (π β¨ π) β (π β¨ π) = (π β¨ π))) | ||
Theorem | cvlatexchb2 38193 | A version of cvlexchb2 38189 for atoms. (Contributed by NM, 5-Nov-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π β€ (π β¨ π ) β (π β¨ π ) = (π β¨ π ))) | ||
Theorem | cvlatexch1 38194 | Atom exchange property. (Contributed by NM, 5-Nov-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π β€ (π β¨ π) β π β€ (π β¨ π))) | ||
Theorem | cvlatexch2 38195 | Atom exchange property. (Contributed by NM, 5-Nov-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π β€ (π β¨ π ) β π β€ (π β¨ π ))) | ||
Theorem | cvlatexch3 38196 | Atom exchange property. (Contributed by NM, 29-Nov-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β π )) β (π β€ (π β¨ π ) β (π β¨ π) = (π β¨ π ))) | ||
Theorem | cvlcvr1 38197 | The covering property. Proposition 1(ii) in [Kalmbach] p. 140 (and its converse). (chcv1 31595 analog.) (Contributed by NM, 5-Nov-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β§ π β π΅ β§ π β π΄) β (Β¬ π β€ π β ππΆ(π β¨ π))) | ||
Theorem | cvlcvrp 38198 | A Hilbert lattice satisfies the covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (cvp 31615 analog.) (Contributed by NM, 5-Nov-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β§ π β π΅ β§ π β π΄) β ((π β§ π) = 0 β ππΆ(π β¨ π))) | ||
Theorem | cvlatcvr1 38199 | An atom is covered by its join with a different atom. (Contributed by NM, 5-Nov-2012.) |
β’ β¨ = (joinβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β§ π β π΄ β§ π β π΄) β (π β π β ππΆ(π β¨ π))) | ||
Theorem | cvlatcvr2 38200 | An atom is covered by its join with a different atom. (Contributed by NM, 5-Nov-2012.) |
β’ β¨ = (joinβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β§ π β π΄ β§ π β π΄) β (π β π β ππΆ(π β¨ π))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |