Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpset Structured version   Visualization version   GIF version

Theorem lshpset 38938
Description: The set of all hyperplanes of a left module or left vector space. The vector 𝑣 is called a generating vector for the hyperplane. (Contributed by NM, 29-Jun-2014.)
Hypotheses
Ref Expression
lshpset.v 𝑉 = (Base‘𝑊)
lshpset.n 𝑁 = (LSpan‘𝑊)
lshpset.s 𝑆 = (LSubSp‘𝑊)
lshpset.h 𝐻 = (LSHyp‘𝑊)
Assertion
Ref Expression
lshpset (𝑊𝑋𝐻 = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
Distinct variable groups:   𝑆,𝑠   𝑣,𝑉   𝑣,𝑠,𝑊
Allowed substitution hints:   𝑆(𝑣)   𝐻(𝑣,𝑠)   𝑁(𝑣,𝑠)   𝑉(𝑠)   𝑋(𝑣,𝑠)

Proof of Theorem lshpset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lshpset.h . 2 𝐻 = (LSHyp‘𝑊)
2 elex 3484 . . 3 (𝑊𝑋𝑊 ∈ V)
3 fveq2 6886 . . . . . 6 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
4 lshpset.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
53, 4eqtr4di 2787 . . . . 5 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆)
6 fveq2 6886 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
7 lshpset.v . . . . . . . 8 𝑉 = (Base‘𝑊)
86, 7eqtr4di 2787 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
98neeq2d 2991 . . . . . 6 (𝑤 = 𝑊 → (𝑠 ≠ (Base‘𝑤) ↔ 𝑠𝑉))
10 fveq2 6886 . . . . . . . . . 10 (𝑤 = 𝑊 → (LSpan‘𝑤) = (LSpan‘𝑊))
11 lshpset.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
1210, 11eqtr4di 2787 . . . . . . . . 9 (𝑤 = 𝑊 → (LSpan‘𝑤) = 𝑁)
1312fveq1d 6888 . . . . . . . 8 (𝑤 = 𝑊 → ((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (𝑁‘(𝑠 ∪ {𝑣})))
1413, 8eqeq12d 2750 . . . . . . 7 (𝑤 = 𝑊 → (((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤) ↔ (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉))
158, 14rexeqbidv 3330 . . . . . 6 (𝑤 = 𝑊 → (∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤) ↔ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉))
169, 15anbi12d 632 . . . . 5 (𝑤 = 𝑊 → ((𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤)) ↔ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)))
175, 16rabeqbidv 3438 . . . 4 (𝑤 = 𝑊 → {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))} = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
18 df-lshyp 38937 . . . 4 LSHyp = (𝑤 ∈ V ↦ {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))})
194fvexi 6900 . . . . 5 𝑆 ∈ V
2019rabex 5319 . . . 4 {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)} ∈ V
2117, 18, 20fvmpt 6996 . . 3 (𝑊 ∈ V → (LSHyp‘𝑊) = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
222, 21syl 17 . 2 (𝑊𝑋 → (LSHyp‘𝑊) = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
231, 22eqtrid 2781 1 (𝑊𝑋𝐻 = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  wrex 3059  {crab 3419  Vcvv 3463  cun 3929  {csn 4606  cfv 6541  Basecbs 17229  LSubSpclss 20897  LSpanclspn 20937  LSHypclsh 38935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-lshyp 38937
This theorem is referenced by:  islshp  38939
  Copyright terms: Public domain W3C validator