Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpset Structured version   Visualization version   GIF version

Theorem lshpset 36116
Description: The set of all hyperplanes of a left module or left vector space. The vector 𝑣 is called a generating vector for the hyperplane. (Contributed by NM, 29-Jun-2014.)
Hypotheses
Ref Expression
lshpset.v 𝑉 = (Base‘𝑊)
lshpset.n 𝑁 = (LSpan‘𝑊)
lshpset.s 𝑆 = (LSubSp‘𝑊)
lshpset.h 𝐻 = (LSHyp‘𝑊)
Assertion
Ref Expression
lshpset (𝑊𝑋𝐻 = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
Distinct variable groups:   𝑆,𝑠   𝑣,𝑉   𝑣,𝑠,𝑊
Allowed substitution hints:   𝑆(𝑣)   𝐻(𝑣,𝑠)   𝑁(𝑣,𝑠)   𝑉(𝑠)   𝑋(𝑣,𝑠)

Proof of Theorem lshpset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lshpset.h . 2 𝐻 = (LSHyp‘𝑊)
2 elex 3514 . . 3 (𝑊𝑋𝑊 ∈ V)
3 fveq2 6672 . . . . . 6 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
4 lshpset.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
53, 4syl6eqr 2876 . . . . 5 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆)
6 fveq2 6672 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
7 lshpset.v . . . . . . . 8 𝑉 = (Base‘𝑊)
86, 7syl6eqr 2876 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
98neeq2d 3078 . . . . . 6 (𝑤 = 𝑊 → (𝑠 ≠ (Base‘𝑤) ↔ 𝑠𝑉))
10 fveq2 6672 . . . . . . . . . 10 (𝑤 = 𝑊 → (LSpan‘𝑤) = (LSpan‘𝑊))
11 lshpset.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
1210, 11syl6eqr 2876 . . . . . . . . 9 (𝑤 = 𝑊 → (LSpan‘𝑤) = 𝑁)
1312fveq1d 6674 . . . . . . . 8 (𝑤 = 𝑊 → ((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (𝑁‘(𝑠 ∪ {𝑣})))
1413, 8eqeq12d 2839 . . . . . . 7 (𝑤 = 𝑊 → (((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤) ↔ (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉))
158, 14rexeqbidv 3404 . . . . . 6 (𝑤 = 𝑊 → (∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤) ↔ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉))
169, 15anbi12d 632 . . . . 5 (𝑤 = 𝑊 → ((𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤)) ↔ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)))
175, 16rabeqbidv 3487 . . . 4 (𝑤 = 𝑊 → {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))} = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
18 df-lshyp 36115 . . . 4 LSHyp = (𝑤 ∈ V ↦ {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))})
194fvexi 6686 . . . . 5 𝑆 ∈ V
2019rabex 5237 . . . 4 {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)} ∈ V
2117, 18, 20fvmpt 6770 . . 3 (𝑊 ∈ V → (LSHyp‘𝑊) = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
222, 21syl 17 . 2 (𝑊𝑋 → (LSHyp‘𝑊) = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
231, 22syl5eq 2870 1 (𝑊𝑋𝐻 = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wrex 3141  {crab 3144  Vcvv 3496  cun 3936  {csn 4569  cfv 6357  Basecbs 16485  LSubSpclss 19705  LSpanclspn 19745  LSHypclsh 36113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-lshyp 36115
This theorem is referenced by:  islshp  36117
  Copyright terms: Public domain W3C validator