Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpset Structured version   Visualization version   GIF version

Theorem lshpset 37836
Description: The set of all hyperplanes of a left module or left vector space. The vector 𝑣 is called a generating vector for the hyperplane. (Contributed by NM, 29-Jun-2014.)
Hypotheses
Ref Expression
lshpset.v 𝑉 = (Baseβ€˜π‘Š)
lshpset.n 𝑁 = (LSpanβ€˜π‘Š)
lshpset.s 𝑆 = (LSubSpβ€˜π‘Š)
lshpset.h 𝐻 = (LSHypβ€˜π‘Š)
Assertion
Ref Expression
lshpset (π‘Š ∈ 𝑋 β†’ 𝐻 = {𝑠 ∈ 𝑆 ∣ (𝑠 β‰  𝑉 ∧ βˆƒπ‘£ ∈ 𝑉 (π‘β€˜(𝑠 βˆͺ {𝑣})) = 𝑉)})
Distinct variable groups:   𝑆,𝑠   𝑣,𝑉   𝑣,𝑠,π‘Š
Allowed substitution hints:   𝑆(𝑣)   𝐻(𝑣,𝑠)   𝑁(𝑣,𝑠)   𝑉(𝑠)   𝑋(𝑣,𝑠)

Proof of Theorem lshpset
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 lshpset.h . 2 𝐻 = (LSHypβ€˜π‘Š)
2 elex 3492 . . 3 (π‘Š ∈ 𝑋 β†’ π‘Š ∈ V)
3 fveq2 6888 . . . . . 6 (𝑀 = π‘Š β†’ (LSubSpβ€˜π‘€) = (LSubSpβ€˜π‘Š))
4 lshpset.s . . . . . 6 𝑆 = (LSubSpβ€˜π‘Š)
53, 4eqtr4di 2790 . . . . 5 (𝑀 = π‘Š β†’ (LSubSpβ€˜π‘€) = 𝑆)
6 fveq2 6888 . . . . . . . 8 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
7 lshpset.v . . . . . . . 8 𝑉 = (Baseβ€˜π‘Š)
86, 7eqtr4di 2790 . . . . . . 7 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = 𝑉)
98neeq2d 3001 . . . . . 6 (𝑀 = π‘Š β†’ (𝑠 β‰  (Baseβ€˜π‘€) ↔ 𝑠 β‰  𝑉))
10 fveq2 6888 . . . . . . . . . 10 (𝑀 = π‘Š β†’ (LSpanβ€˜π‘€) = (LSpanβ€˜π‘Š))
11 lshpset.n . . . . . . . . . 10 𝑁 = (LSpanβ€˜π‘Š)
1210, 11eqtr4di 2790 . . . . . . . . 9 (𝑀 = π‘Š β†’ (LSpanβ€˜π‘€) = 𝑁)
1312fveq1d 6890 . . . . . . . 8 (𝑀 = π‘Š β†’ ((LSpanβ€˜π‘€)β€˜(𝑠 βˆͺ {𝑣})) = (π‘β€˜(𝑠 βˆͺ {𝑣})))
1413, 8eqeq12d 2748 . . . . . . 7 (𝑀 = π‘Š β†’ (((LSpanβ€˜π‘€)β€˜(𝑠 βˆͺ {𝑣})) = (Baseβ€˜π‘€) ↔ (π‘β€˜(𝑠 βˆͺ {𝑣})) = 𝑉))
158, 14rexeqbidv 3343 . . . . . 6 (𝑀 = π‘Š β†’ (βˆƒπ‘£ ∈ (Baseβ€˜π‘€)((LSpanβ€˜π‘€)β€˜(𝑠 βˆͺ {𝑣})) = (Baseβ€˜π‘€) ↔ βˆƒπ‘£ ∈ 𝑉 (π‘β€˜(𝑠 βˆͺ {𝑣})) = 𝑉))
169, 15anbi12d 631 . . . . 5 (𝑀 = π‘Š β†’ ((𝑠 β‰  (Baseβ€˜π‘€) ∧ βˆƒπ‘£ ∈ (Baseβ€˜π‘€)((LSpanβ€˜π‘€)β€˜(𝑠 βˆͺ {𝑣})) = (Baseβ€˜π‘€)) ↔ (𝑠 β‰  𝑉 ∧ βˆƒπ‘£ ∈ 𝑉 (π‘β€˜(𝑠 βˆͺ {𝑣})) = 𝑉)))
175, 16rabeqbidv 3449 . . . 4 (𝑀 = π‘Š β†’ {𝑠 ∈ (LSubSpβ€˜π‘€) ∣ (𝑠 β‰  (Baseβ€˜π‘€) ∧ βˆƒπ‘£ ∈ (Baseβ€˜π‘€)((LSpanβ€˜π‘€)β€˜(𝑠 βˆͺ {𝑣})) = (Baseβ€˜π‘€))} = {𝑠 ∈ 𝑆 ∣ (𝑠 β‰  𝑉 ∧ βˆƒπ‘£ ∈ 𝑉 (π‘β€˜(𝑠 βˆͺ {𝑣})) = 𝑉)})
18 df-lshyp 37835 . . . 4 LSHyp = (𝑀 ∈ V ↦ {𝑠 ∈ (LSubSpβ€˜π‘€) ∣ (𝑠 β‰  (Baseβ€˜π‘€) ∧ βˆƒπ‘£ ∈ (Baseβ€˜π‘€)((LSpanβ€˜π‘€)β€˜(𝑠 βˆͺ {𝑣})) = (Baseβ€˜π‘€))})
194fvexi 6902 . . . . 5 𝑆 ∈ V
2019rabex 5331 . . . 4 {𝑠 ∈ 𝑆 ∣ (𝑠 β‰  𝑉 ∧ βˆƒπ‘£ ∈ 𝑉 (π‘β€˜(𝑠 βˆͺ {𝑣})) = 𝑉)} ∈ V
2117, 18, 20fvmpt 6995 . . 3 (π‘Š ∈ V β†’ (LSHypβ€˜π‘Š) = {𝑠 ∈ 𝑆 ∣ (𝑠 β‰  𝑉 ∧ βˆƒπ‘£ ∈ 𝑉 (π‘β€˜(𝑠 βˆͺ {𝑣})) = 𝑉)})
222, 21syl 17 . 2 (π‘Š ∈ 𝑋 β†’ (LSHypβ€˜π‘Š) = {𝑠 ∈ 𝑆 ∣ (𝑠 β‰  𝑉 ∧ βˆƒπ‘£ ∈ 𝑉 (π‘β€˜(𝑠 βˆͺ {𝑣})) = 𝑉)})
231, 22eqtrid 2784 1 (π‘Š ∈ 𝑋 β†’ 𝐻 = {𝑠 ∈ 𝑆 ∣ (𝑠 β‰  𝑉 ∧ βˆƒπ‘£ ∈ 𝑉 (π‘β€˜(𝑠 βˆͺ {𝑣})) = 𝑉)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070  {crab 3432  Vcvv 3474   βˆͺ cun 3945  {csn 4627  β€˜cfv 6540  Basecbs 17140  LSubSpclss 20534  LSpanclspn 20574  LSHypclsh 37833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-lshyp 37835
This theorem is referenced by:  islshp  37837
  Copyright terms: Public domain W3C validator