Step | Hyp | Ref
| Expression |
1 | | lshpset.h |
. 2
⊢ 𝐻 = (LSHyp‘𝑊) |
2 | | elex 3450 |
. . 3
⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) |
3 | | fveq2 6774 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊)) |
4 | | lshpset.s |
. . . . . 6
⊢ 𝑆 = (LSubSp‘𝑊) |
5 | 3, 4 | eqtr4di 2796 |
. . . . 5
⊢ (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆) |
6 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) |
7 | | lshpset.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑊) |
8 | 6, 7 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
9 | 8 | neeq2d 3004 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (𝑠 ≠ (Base‘𝑤) ↔ 𝑠 ≠ 𝑉)) |
10 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (LSpan‘𝑤) = (LSpan‘𝑊)) |
11 | | lshpset.n |
. . . . . . . . . 10
⊢ 𝑁 = (LSpan‘𝑊) |
12 | 10, 11 | eqtr4di 2796 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (LSpan‘𝑤) = 𝑁) |
13 | 12 | fveq1d 6776 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (𝑁‘(𝑠 ∪ {𝑣}))) |
14 | 13, 8 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤) ↔ (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)) |
15 | 8, 14 | rexeqbidv 3337 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤) ↔ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)) |
16 | 9, 15 | anbi12d 631 |
. . . . 5
⊢ (𝑤 = 𝑊 → ((𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤)) ↔ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉))) |
17 | 5, 16 | rabeqbidv 3420 |
. . . 4
⊢ (𝑤 = 𝑊 → {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))} = {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)}) |
18 | | df-lshyp 36991 |
. . . 4
⊢ LSHyp =
(𝑤 ∈ V ↦ {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))}) |
19 | 4 | fvexi 6788 |
. . . . 5
⊢ 𝑆 ∈ V |
20 | 19 | rabex 5256 |
. . . 4
⊢ {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)} ∈ V |
21 | 17, 18, 20 | fvmpt 6875 |
. . 3
⊢ (𝑊 ∈ V →
(LSHyp‘𝑊) = {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)}) |
22 | 2, 21 | syl 17 |
. 2
⊢ (𝑊 ∈ 𝑋 → (LSHyp‘𝑊) = {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)}) |
23 | 1, 22 | eqtrid 2790 |
1
⊢ (𝑊 ∈ 𝑋 → 𝐻 = {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)}) |