| Step | Hyp | Ref
| Expression |
| 1 | | lshpset.h |
. 2
⊢ 𝐻 = (LSHyp‘𝑊) |
| 2 | | elex 3484 |
. . 3
⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) |
| 3 | | fveq2 6886 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊)) |
| 4 | | lshpset.s |
. . . . . 6
⊢ 𝑆 = (LSubSp‘𝑊) |
| 5 | 3, 4 | eqtr4di 2787 |
. . . . 5
⊢ (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆) |
| 6 | | fveq2 6886 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) |
| 7 | | lshpset.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑊) |
| 8 | 6, 7 | eqtr4di 2787 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
| 9 | 8 | neeq2d 2991 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (𝑠 ≠ (Base‘𝑤) ↔ 𝑠 ≠ 𝑉)) |
| 10 | | fveq2 6886 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (LSpan‘𝑤) = (LSpan‘𝑊)) |
| 11 | | lshpset.n |
. . . . . . . . . 10
⊢ 𝑁 = (LSpan‘𝑊) |
| 12 | 10, 11 | eqtr4di 2787 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (LSpan‘𝑤) = 𝑁) |
| 13 | 12 | fveq1d 6888 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (𝑁‘(𝑠 ∪ {𝑣}))) |
| 14 | 13, 8 | eqeq12d 2750 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤) ↔ (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)) |
| 15 | 8, 14 | rexeqbidv 3330 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤) ↔ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)) |
| 16 | 9, 15 | anbi12d 632 |
. . . . 5
⊢ (𝑤 = 𝑊 → ((𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤)) ↔ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉))) |
| 17 | 5, 16 | rabeqbidv 3438 |
. . . 4
⊢ (𝑤 = 𝑊 → {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))} = {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)}) |
| 18 | | df-lshyp 38937 |
. . . 4
⊢ LSHyp =
(𝑤 ∈ V ↦ {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))}) |
| 19 | 4 | fvexi 6900 |
. . . . 5
⊢ 𝑆 ∈ V |
| 20 | 19 | rabex 5319 |
. . . 4
⊢ {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)} ∈ V |
| 21 | 17, 18, 20 | fvmpt 6996 |
. . 3
⊢ (𝑊 ∈ V →
(LSHyp‘𝑊) = {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)}) |
| 22 | 2, 21 | syl 17 |
. 2
⊢ (𝑊 ∈ 𝑋 → (LSHyp‘𝑊) = {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)}) |
| 23 | 1, 22 | eqtrid 2781 |
1
⊢ (𝑊 ∈ 𝑋 → 𝐻 = {𝑠 ∈ 𝑆 ∣ (𝑠 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)}) |