Detailed syntax breakdown of Definition df-mapd
Step | Hyp | Ref
| Expression |
1 | | cmpd 39565 |
. 2
class
mapd |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3422 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar 𝑤 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑘 |
6 | | clh 37925 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6418 |
. . . 4
class
(LHyp‘𝑘) |
8 | | vs |
. . . . 5
setvar 𝑠 |
9 | 4 | cv 1538 |
. . . . . . 7
class 𝑤 |
10 | | cdvh 39019 |
. . . . . . . 8
class
DVecH |
11 | 5, 10 | cfv 6418 |
. . . . . . 7
class
(DVecH‘𝑘) |
12 | 9, 11 | cfv 6418 |
. . . . . 6
class
((DVecH‘𝑘)‘𝑤) |
13 | | clss 20108 |
. . . . . 6
class
LSubSp |
14 | 12, 13 | cfv 6418 |
. . . . 5
class
(LSubSp‘((DVecH‘𝑘)‘𝑤)) |
15 | | vf |
. . . . . . . . . . . 12
setvar 𝑓 |
16 | 15 | cv 1538 |
. . . . . . . . . . 11
class 𝑓 |
17 | | clk 37026 |
. . . . . . . . . . . 12
class
LKer |
18 | 12, 17 | cfv 6418 |
. . . . . . . . . . 11
class
(LKer‘((DVecH‘𝑘)‘𝑤)) |
19 | 16, 18 | cfv 6418 |
. . . . . . . . . 10
class
((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) |
20 | | coch 39288 |
. . . . . . . . . . . 12
class
ocH |
21 | 5, 20 | cfv 6418 |
. . . . . . . . . . 11
class
(ocH‘𝑘) |
22 | 9, 21 | cfv 6418 |
. . . . . . . . . 10
class
((ocH‘𝑘)‘𝑤) |
23 | 19, 22 | cfv 6418 |
. . . . . . . . 9
class
(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) |
24 | 23, 22 | cfv 6418 |
. . . . . . . 8
class
(((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) |
25 | 24, 19 | wceq 1539 |
. . . . . . 7
wff
(((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) |
26 | 8 | cv 1538 |
. . . . . . . 8
class 𝑠 |
27 | 23, 26 | wss 3883 |
. . . . . . 7
wff
(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) ⊆ 𝑠 |
28 | 25, 27 | wa 395 |
. . . . . 6
wff
((((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) ∧ (((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) ⊆ 𝑠) |
29 | | clfn 36998 |
. . . . . . 7
class
LFnl |
30 | 12, 29 | cfv 6418 |
. . . . . 6
class
(LFnl‘((DVecH‘𝑘)‘𝑤)) |
31 | 28, 15, 30 | crab 3067 |
. . . . 5
class {𝑓 ∈
(LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ ((((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) ∧ (((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) ⊆ 𝑠)} |
32 | 8, 14, 31 | cmpt 5153 |
. . . 4
class (𝑠 ∈
(LSubSp‘((DVecH‘𝑘)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ ((((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) ∧ (((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) ⊆ 𝑠)}) |
33 | 4, 7, 32 | cmpt 5153 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ ((((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) ∧ (((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) ⊆ 𝑠)})) |
34 | 2, 3, 33 | cmpt 5153 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ ((((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) ∧ (((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) ⊆ 𝑠)}))) |
35 | 1, 34 | wceq 1539 |
1
wff mapd =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ ((((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) ∧ (((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) ⊆ 𝑠)}))) |