Detailed syntax breakdown of Definition df-mapd
| Step | Hyp | Ref
| Expression |
| 1 | | cmpd 41626 |
. 2
class
mapd |
| 2 | | vk |
. . 3
setvar 𝑘 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vw |
. . . 4
setvar 𝑤 |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑘 |
| 6 | | clh 39986 |
. . . . 5
class
LHyp |
| 7 | 5, 6 | cfv 6561 |
. . . 4
class
(LHyp‘𝑘) |
| 8 | | vs |
. . . . 5
setvar 𝑠 |
| 9 | 4 | cv 1539 |
. . . . . . 7
class 𝑤 |
| 10 | | cdvh 41080 |
. . . . . . . 8
class
DVecH |
| 11 | 5, 10 | cfv 6561 |
. . . . . . 7
class
(DVecH‘𝑘) |
| 12 | 9, 11 | cfv 6561 |
. . . . . 6
class
((DVecH‘𝑘)‘𝑤) |
| 13 | | clss 20929 |
. . . . . 6
class
LSubSp |
| 14 | 12, 13 | cfv 6561 |
. . . . 5
class
(LSubSp‘((DVecH‘𝑘)‘𝑤)) |
| 15 | | vf |
. . . . . . . . . . . 12
setvar 𝑓 |
| 16 | 15 | cv 1539 |
. . . . . . . . . . 11
class 𝑓 |
| 17 | | clk 39086 |
. . . . . . . . . . . 12
class
LKer |
| 18 | 12, 17 | cfv 6561 |
. . . . . . . . . . 11
class
(LKer‘((DVecH‘𝑘)‘𝑤)) |
| 19 | 16, 18 | cfv 6561 |
. . . . . . . . . 10
class
((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) |
| 20 | | coch 41349 |
. . . . . . . . . . . 12
class
ocH |
| 21 | 5, 20 | cfv 6561 |
. . . . . . . . . . 11
class
(ocH‘𝑘) |
| 22 | 9, 21 | cfv 6561 |
. . . . . . . . . 10
class
((ocH‘𝑘)‘𝑤) |
| 23 | 19, 22 | cfv 6561 |
. . . . . . . . 9
class
(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) |
| 24 | 23, 22 | cfv 6561 |
. . . . . . . 8
class
(((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) |
| 25 | 24, 19 | wceq 1540 |
. . . . . . 7
wff
(((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) |
| 26 | 8 | cv 1539 |
. . . . . . . 8
class 𝑠 |
| 27 | 23, 26 | wss 3951 |
. . . . . . 7
wff
(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) ⊆ 𝑠 |
| 28 | 25, 27 | wa 395 |
. . . . . 6
wff
((((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) ∧ (((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) ⊆ 𝑠) |
| 29 | | clfn 39058 |
. . . . . . 7
class
LFnl |
| 30 | 12, 29 | cfv 6561 |
. . . . . 6
class
(LFnl‘((DVecH‘𝑘)‘𝑤)) |
| 31 | 28, 15, 30 | crab 3436 |
. . . . 5
class {𝑓 ∈
(LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ ((((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) ∧ (((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) ⊆ 𝑠)} |
| 32 | 8, 14, 31 | cmpt 5225 |
. . . 4
class (𝑠 ∈
(LSubSp‘((DVecH‘𝑘)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ ((((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) ∧ (((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) ⊆ 𝑠)}) |
| 33 | 4, 7, 32 | cmpt 5225 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ ((((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) ∧ (((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) ⊆ 𝑠)})) |
| 34 | 2, 3, 33 | cmpt 5225 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ ((((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) ∧ (((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) ⊆ 𝑠)}))) |
| 35 | 1, 34 | wceq 1540 |
1
wff mapd =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ ((((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) ∧ (((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) ⊆ 𝑠)}))) |