Step | Hyp | Ref
| Expression |
1 | | mapd1o.f |
. . . . . 6
⊢ 𝐹 = (LFnl‘𝑈) |
2 | 1 | fvexi 6788 |
. . . . 5
⊢ 𝐹 ∈ V |
3 | 2 | rabex 5256 |
. . . 4
⊢ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑡)} ∈ V |
4 | | eqid 2738 |
. . . 4
⊢ (𝑡 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑡)}) = (𝑡 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑡)}) |
5 | 3, 4 | fnmpti 6576 |
. . 3
⊢ (𝑡 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑡)}) Fn 𝑆 |
6 | | mapd1o.k |
. . . . 5
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
7 | | mapd1o.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
8 | | mapd1o.u |
. . . . . 6
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
9 | | mapd1o.s |
. . . . . 6
⊢ 𝑆 = (LSubSp‘𝑈) |
10 | | mapd1o.l |
. . . . . 6
⊢ 𝐿 = (LKer‘𝑈) |
11 | | mapd1o.o |
. . . . . 6
⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
12 | | mapd1o.m |
. . . . . 6
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
13 | 7, 8, 9, 1, 10, 11, 12 | mapdfval 39641 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑀 = (𝑡 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑡)})) |
14 | 6, 13 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑀 = (𝑡 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑡)})) |
15 | 14 | fneq1d 6526 |
. . 3
⊢ (𝜑 → (𝑀 Fn 𝑆 ↔ (𝑡 ∈ 𝑆 ↦ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑡)}) Fn 𝑆)) |
16 | 5, 15 | mpbiri 257 |
. 2
⊢ (𝜑 → 𝑀 Fn 𝑆) |
17 | 2 | rabex 5256 |
. . . . . . 7
⊢ {𝑔 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔) ∧ (𝑂‘(𝐿‘𝑔)) ⊆ 𝑡)} ∈ V |
18 | | eqid 2738 |
. . . . . . 7
⊢ (𝑡 ∈ 𝑆 ↦ {𝑔 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔) ∧ (𝑂‘(𝐿‘𝑔)) ⊆ 𝑡)}) = (𝑡 ∈ 𝑆 ↦ {𝑔 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔) ∧ (𝑂‘(𝐿‘𝑔)) ⊆ 𝑡)}) |
19 | 17, 18 | fnmpti 6576 |
. . . . . 6
⊢ (𝑡 ∈ 𝑆 ↦ {𝑔 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔) ∧ (𝑂‘(𝐿‘𝑔)) ⊆ 𝑡)}) Fn 𝑆 |
20 | 7, 8, 9, 1, 10, 11, 12 | mapdfval 39641 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑀 = (𝑡 ∈ 𝑆 ↦ {𝑔 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔) ∧ (𝑂‘(𝐿‘𝑔)) ⊆ 𝑡)})) |
21 | 6, 20 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑀 = (𝑡 ∈ 𝑆 ↦ {𝑔 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔) ∧ (𝑂‘(𝐿‘𝑔)) ⊆ 𝑡)})) |
22 | 21 | fneq1d 6526 |
. . . . . 6
⊢ (𝜑 → (𝑀 Fn 𝑆 ↔ (𝑡 ∈ 𝑆 ↦ {𝑔 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔) ∧ (𝑂‘(𝐿‘𝑔)) ⊆ 𝑡)}) Fn 𝑆)) |
23 | 19, 22 | mpbiri 257 |
. . . . 5
⊢ (𝜑 → 𝑀 Fn 𝑆) |
24 | | fvelrnb 6830 |
. . . . 5
⊢ (𝑀 Fn 𝑆 → (𝑡 ∈ ran 𝑀 ↔ ∃𝑐 ∈ 𝑆 (𝑀‘𝑐) = 𝑡)) |
25 | 23, 24 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ ran 𝑀 ↔ ∃𝑐 ∈ 𝑆 (𝑀‘𝑐) = 𝑡)) |
26 | 6 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑆) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
27 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑆) → 𝑐 ∈ 𝑆) |
28 | 7, 8, 9, 1, 10, 11, 12, 26, 27 | mapdval 39642 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑆) → (𝑀‘𝑐) = {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑐)}) |
29 | | mapd1o.d |
. . . . . . . . . 10
⊢ 𝐷 = (LDual‘𝑈) |
30 | | mapd1o.t |
. . . . . . . . . 10
⊢ 𝑇 = (LSubSp‘𝐷) |
31 | | mapd1o.c |
. . . . . . . . . 10
⊢ 𝐶 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} |
32 | | eqid 2738 |
. . . . . . . . . 10
⊢ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑐)} = {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑐)} |
33 | 7, 11, 8, 9, 1, 10,
29, 30, 31, 32, 26, 27 | lclkrs2 39554 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑆) → ({𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑐)} ⊆ 𝐶)) |
34 | | elin 3903 |
. . . . . . . . . 10
⊢ ({𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑐)} ∈ (𝑇 ∩ 𝒫 𝐶) ↔ ({𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑐)} ∈ 𝒫 𝐶)) |
35 | 2 | rabex 5256 |
. . . . . . . . . . . 12
⊢ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑐)} ∈ V |
36 | 35 | elpw 4537 |
. . . . . . . . . . 11
⊢ ({𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑐)} ∈ 𝒫 𝐶 ↔ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑐)} ⊆ 𝐶) |
37 | 36 | anbi2i 623 |
. . . . . . . . . 10
⊢ (({𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑐)} ∈ 𝒫 𝐶) ↔ ({𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑐)} ⊆ 𝐶)) |
38 | 34, 37 | bitr2i 275 |
. . . . . . . . 9
⊢ (({𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑐)} ⊆ 𝐶) ↔ {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑐)} ∈ (𝑇 ∩ 𝒫 𝐶)) |
39 | 33, 38 | sylib 217 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑆) → {𝑓 ∈ 𝐹 ∣ ((𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ (𝑂‘(𝐿‘𝑓)) ⊆ 𝑐)} ∈ (𝑇 ∩ 𝒫 𝐶)) |
40 | 28, 39 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑆) → (𝑀‘𝑐) ∈ (𝑇 ∩ 𝒫 𝐶)) |
41 | | eleq1 2826 |
. . . . . . 7
⊢ ((𝑀‘𝑐) = 𝑡 → ((𝑀‘𝑐) ∈ (𝑇 ∩ 𝒫 𝐶) ↔ 𝑡 ∈ (𝑇 ∩ 𝒫 𝐶))) |
42 | 40, 41 | syl5ibcom 244 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝑆) → ((𝑀‘𝑐) = 𝑡 → 𝑡 ∈ (𝑇 ∩ 𝒫 𝐶))) |
43 | 42 | rexlimdva 3213 |
. . . . 5
⊢ (𝜑 → (∃𝑐 ∈ 𝑆 (𝑀‘𝑐) = 𝑡 → 𝑡 ∈ (𝑇 ∩ 𝒫 𝐶))) |
44 | | eqid 2738 |
. . . . . . . 8
⊢ ∪ 𝑓 ∈ 𝑡 (𝑂‘(𝐿‘𝑓)) = ∪
𝑓 ∈ 𝑡 (𝑂‘(𝐿‘𝑓)) |
45 | 6 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
46 | | inss1 4162 |
. . . . . . . . . 10
⊢ (𝑇 ∩ 𝒫 𝐶) ⊆ 𝑇 |
47 | 46 | sseli 3917 |
. . . . . . . . 9
⊢ (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → 𝑡 ∈ 𝑇) |
48 | 47 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → 𝑡 ∈ 𝑇) |
49 | | inss2 4163 |
. . . . . . . . . . 11
⊢ (𝑇 ∩ 𝒫 𝐶) ⊆ 𝒫 𝐶 |
50 | 49 | sseli 3917 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → 𝑡 ∈ 𝒫 𝐶) |
51 | 50 | elpwid 4544 |
. . . . . . . . 9
⊢ (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → 𝑡 ⊆ 𝐶) |
52 | 51 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → 𝑡 ⊆ 𝐶) |
53 | 7, 11, 8, 9, 1, 10,
29, 30, 31, 44, 45, 48, 52 | lcfr 39599 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → ∪ 𝑓 ∈ 𝑡 (𝑂‘(𝐿‘𝑓)) ∈ 𝑆) |
54 | 7, 11, 12, 8, 9, 1,
10, 29, 30, 31, 45, 48, 52, 44 | mapdrval 39661 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → (𝑀‘∪
𝑓 ∈ 𝑡 (𝑂‘(𝐿‘𝑓))) = 𝑡) |
55 | | fveqeq2 6783 |
. . . . . . . 8
⊢ (𝑐 = ∪ 𝑓 ∈ 𝑡 (𝑂‘(𝐿‘𝑓)) → ((𝑀‘𝑐) = 𝑡 ↔ (𝑀‘∪
𝑓 ∈ 𝑡 (𝑂‘(𝐿‘𝑓))) = 𝑡)) |
56 | 55 | rspcev 3561 |
. . . . . . 7
⊢
((∪ 𝑓 ∈ 𝑡 (𝑂‘(𝐿‘𝑓)) ∈ 𝑆 ∧ (𝑀‘∪
𝑓 ∈ 𝑡 (𝑂‘(𝐿‘𝑓))) = 𝑡) → ∃𝑐 ∈ 𝑆 (𝑀‘𝑐) = 𝑡) |
57 | 53, 54, 56 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → ∃𝑐 ∈ 𝑆 (𝑀‘𝑐) = 𝑡) |
58 | 57 | ex 413 |
. . . . 5
⊢ (𝜑 → (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → ∃𝑐 ∈ 𝑆 (𝑀‘𝑐) = 𝑡)) |
59 | 43, 58 | impbid 211 |
. . . 4
⊢ (𝜑 → (∃𝑐 ∈ 𝑆 (𝑀‘𝑐) = 𝑡 ↔ 𝑡 ∈ (𝑇 ∩ 𝒫 𝐶))) |
60 | 25, 59 | bitrd 278 |
. . 3
⊢ (𝜑 → (𝑡 ∈ ran 𝑀 ↔ 𝑡 ∈ (𝑇 ∩ 𝒫 𝐶))) |
61 | 60 | eqrdv 2736 |
. 2
⊢ (𝜑 → ran 𝑀 = (𝑇 ∩ 𝒫 𝐶)) |
62 | 6 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
63 | | simprl 768 |
. . . . 5
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → 𝑡 ∈ 𝑆) |
64 | | simprr 770 |
. . . . 5
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → 𝑢 ∈ 𝑆) |
65 | 7, 8, 9, 12, 62, 63, 64 | mapd11 39653 |
. . . 4
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ((𝑀‘𝑡) = (𝑀‘𝑢) ↔ 𝑡 = 𝑢)) |
66 | 65 | biimpd 228 |
. . 3
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ((𝑀‘𝑡) = (𝑀‘𝑢) → 𝑡 = 𝑢)) |
67 | 66 | ralrimivva 3123 |
. 2
⊢ (𝜑 → ∀𝑡 ∈ 𝑆 ∀𝑢 ∈ 𝑆 ((𝑀‘𝑡) = (𝑀‘𝑢) → 𝑡 = 𝑢)) |
68 | | dff1o6 7147 |
. 2
⊢ (𝑀:𝑆–1-1-onto→(𝑇 ∩ 𝒫 𝐶) ↔ (𝑀 Fn 𝑆 ∧ ran 𝑀 = (𝑇 ∩ 𝒫 𝐶) ∧ ∀𝑡 ∈ 𝑆 ∀𝑢 ∈ 𝑆 ((𝑀‘𝑡) = (𝑀‘𝑢) → 𝑡 = 𝑢))) |
69 | 16, 61, 67, 68 | syl3anbrc 1342 |
1
⊢ (𝜑 → 𝑀:𝑆–1-1-onto→(𝑇 ∩ 𝒫 𝐶)) |