Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapd1o Structured version   Visualization version   GIF version

Theorem mapd1o 41672
Description: The map defined by df-mapd 41649 is one-to-one and onto the set of dual subspaces of functionals with closed kernels. This shows 𝑀 satisfies part of the definition of projectivity of [Baer] p. 40. TODO: change theorems leading to this (lcfr 41609, mapdrval 41671, lclkrs 41563, lclkr 41557,...) to use 𝑇 ∩ 𝒫 𝐶? TODO: maybe get rid of $d's for 𝑔 versus 𝐾𝑈𝑊; propagate to mapdrn 41673 and any others. (Contributed by NM, 12-Mar-2015.)
Hypotheses
Ref Expression
mapd1o.h 𝐻 = (LHyp‘𝐾)
mapd1o.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapd1o.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapd1o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapd1o.s 𝑆 = (LSubSp‘𝑈)
mapd1o.f 𝐹 = (LFnl‘𝑈)
mapd1o.l 𝐿 = (LKer‘𝑈)
mapd1o.d 𝐷 = (LDual‘𝑈)
mapd1o.t 𝑇 = (LSubSp‘𝐷)
mapd1o.c 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
mapd1o.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
mapd1o (𝜑𝑀:𝑆1-1-onto→(𝑇 ∩ 𝒫 𝐶))
Distinct variable groups:   𝑔,𝐹   𝑔,𝐾   𝑔,𝐿   𝑔,𝑂   𝑈,𝑔   𝑔,𝑊
Allowed substitution hints:   𝜑(𝑔)   𝐶(𝑔)   𝐷(𝑔)   𝑆(𝑔)   𝑇(𝑔)   𝐻(𝑔)   𝑀(𝑔)

Proof of Theorem mapd1o
Dummy variables 𝑓 𝑐 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapd1o.f . . . . . 6 𝐹 = (LFnl‘𝑈)
21fvexi 6895 . . . . 5 𝐹 ∈ V
32rabex 5314 . . . 4 {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)} ∈ V
4 eqid 2736 . . . 4 (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}) = (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)})
53, 4fnmpti 6686 . . 3 (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}) Fn 𝑆
6 mapd1o.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 mapd1o.h . . . . . 6 𝐻 = (LHyp‘𝐾)
8 mapd1o.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
9 mapd1o.s . . . . . 6 𝑆 = (LSubSp‘𝑈)
10 mapd1o.l . . . . . 6 𝐿 = (LKer‘𝑈)
11 mapd1o.o . . . . . 6 𝑂 = ((ocH‘𝐾)‘𝑊)
12 mapd1o.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
137, 8, 9, 1, 10, 11, 12mapdfval 41651 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑀 = (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}))
146, 13syl 17 . . . 4 (𝜑𝑀 = (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}))
1514fneq1d 6636 . . 3 (𝜑 → (𝑀 Fn 𝑆 ↔ (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}) Fn 𝑆))
165, 15mpbiri 258 . 2 (𝜑𝑀 Fn 𝑆)
172rabex 5314 . . . . . . 7 {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)} ∈ V
18 eqid 2736 . . . . . . 7 (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}) = (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)})
1917, 18fnmpti 6686 . . . . . 6 (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}) Fn 𝑆
207, 8, 9, 1, 10, 11, 12mapdfval 41651 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑀 = (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}))
216, 20syl 17 . . . . . . 7 (𝜑𝑀 = (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}))
2221fneq1d 6636 . . . . . 6 (𝜑 → (𝑀 Fn 𝑆 ↔ (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}) Fn 𝑆))
2319, 22mpbiri 258 . . . . 5 (𝜑𝑀 Fn 𝑆)
24 fvelrnb 6944 . . . . 5 (𝑀 Fn 𝑆 → (𝑡 ∈ ran 𝑀 ↔ ∃𝑐𝑆 (𝑀𝑐) = 𝑡))
2523, 24syl 17 . . . 4 (𝜑 → (𝑡 ∈ ran 𝑀 ↔ ∃𝑐𝑆 (𝑀𝑐) = 𝑡))
266adantr 480 . . . . . . . . 9 ((𝜑𝑐𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
27 simpr 484 . . . . . . . . 9 ((𝜑𝑐𝑆) → 𝑐𝑆)
287, 8, 9, 1, 10, 11, 12, 26, 27mapdval 41652 . . . . . . . 8 ((𝜑𝑐𝑆) → (𝑀𝑐) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)})
29 mapd1o.d . . . . . . . . . 10 𝐷 = (LDual‘𝑈)
30 mapd1o.t . . . . . . . . . 10 𝑇 = (LSubSp‘𝐷)
31 mapd1o.c . . . . . . . . . 10 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
32 eqid 2736 . . . . . . . . . 10 {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)}
337, 11, 8, 9, 1, 10, 29, 30, 31, 32, 26, 27lclkrs2 41564 . . . . . . . . 9 ((𝜑𝑐𝑆) → ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ⊆ 𝐶))
34 elin 3947 . . . . . . . . . 10 ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ (𝑇 ∩ 𝒫 𝐶) ↔ ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝒫 𝐶))
352rabex 5314 . . . . . . . . . . . 12 {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ V
3635elpw 4584 . . . . . . . . . . 11 ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝒫 𝐶 ↔ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ⊆ 𝐶)
3736anbi2i 623 . . . . . . . . . 10 (({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝒫 𝐶) ↔ ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ⊆ 𝐶))
3834, 37bitr2i 276 . . . . . . . . 9 (({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ⊆ 𝐶) ↔ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ (𝑇 ∩ 𝒫 𝐶))
3933, 38sylib 218 . . . . . . . 8 ((𝜑𝑐𝑆) → {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ (𝑇 ∩ 𝒫 𝐶))
4028, 39eqeltrd 2835 . . . . . . 7 ((𝜑𝑐𝑆) → (𝑀𝑐) ∈ (𝑇 ∩ 𝒫 𝐶))
41 eleq1 2823 . . . . . . 7 ((𝑀𝑐) = 𝑡 → ((𝑀𝑐) ∈ (𝑇 ∩ 𝒫 𝐶) ↔ 𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
4240, 41syl5ibcom 245 . . . . . 6 ((𝜑𝑐𝑆) → ((𝑀𝑐) = 𝑡𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
4342rexlimdva 3142 . . . . 5 (𝜑 → (∃𝑐𝑆 (𝑀𝑐) = 𝑡𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
44 eqid 2736 . . . . . . . 8 𝑓𝑡 (𝑂‘(𝐿𝑓)) = 𝑓𝑡 (𝑂‘(𝐿𝑓))
456adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
46 inss1 4217 . . . . . . . . . 10 (𝑇 ∩ 𝒫 𝐶) ⊆ 𝑇
4746sseli 3959 . . . . . . . . 9 (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → 𝑡𝑇)
4847adantl 481 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → 𝑡𝑇)
49 inss2 4218 . . . . . . . . . . 11 (𝑇 ∩ 𝒫 𝐶) ⊆ 𝒫 𝐶
5049sseli 3959 . . . . . . . . . 10 (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → 𝑡 ∈ 𝒫 𝐶)
5150elpwid 4589 . . . . . . . . 9 (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → 𝑡𝐶)
5251adantl 481 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → 𝑡𝐶)
537, 11, 8, 9, 1, 10, 29, 30, 31, 44, 45, 48, 52lcfr 41609 . . . . . . 7 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → 𝑓𝑡 (𝑂‘(𝐿𝑓)) ∈ 𝑆)
547, 11, 12, 8, 9, 1, 10, 29, 30, 31, 45, 48, 52, 44mapdrval 41671 . . . . . . 7 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → (𝑀 𝑓𝑡 (𝑂‘(𝐿𝑓))) = 𝑡)
55 fveqeq2 6890 . . . . . . . 8 (𝑐 = 𝑓𝑡 (𝑂‘(𝐿𝑓)) → ((𝑀𝑐) = 𝑡 ↔ (𝑀 𝑓𝑡 (𝑂‘(𝐿𝑓))) = 𝑡))
5655rspcev 3606 . . . . . . 7 (( 𝑓𝑡 (𝑂‘(𝐿𝑓)) ∈ 𝑆 ∧ (𝑀 𝑓𝑡 (𝑂‘(𝐿𝑓))) = 𝑡) → ∃𝑐𝑆 (𝑀𝑐) = 𝑡)
5753, 54, 56syl2anc 584 . . . . . 6 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → ∃𝑐𝑆 (𝑀𝑐) = 𝑡)
5857ex 412 . . . . 5 (𝜑 → (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → ∃𝑐𝑆 (𝑀𝑐) = 𝑡))
5943, 58impbid 212 . . . 4 (𝜑 → (∃𝑐𝑆 (𝑀𝑐) = 𝑡𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
6025, 59bitrd 279 . . 3 (𝜑 → (𝑡 ∈ ran 𝑀𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
6160eqrdv 2734 . 2 (𝜑 → ran 𝑀 = (𝑇 ∩ 𝒫 𝐶))
626adantr 480 . . . . 5 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
63 simprl 770 . . . . 5 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → 𝑡𝑆)
64 simprr 772 . . . . 5 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → 𝑢𝑆)
657, 8, 9, 12, 62, 63, 64mapd11 41663 . . . 4 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → ((𝑀𝑡) = (𝑀𝑢) ↔ 𝑡 = 𝑢))
6665biimpd 229 . . 3 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → ((𝑀𝑡) = (𝑀𝑢) → 𝑡 = 𝑢))
6766ralrimivva 3188 . 2 (𝜑 → ∀𝑡𝑆𝑢𝑆 ((𝑀𝑡) = (𝑀𝑢) → 𝑡 = 𝑢))
68 dff1o6 7273 . 2 (𝑀:𝑆1-1-onto→(𝑇 ∩ 𝒫 𝐶) ↔ (𝑀 Fn 𝑆 ∧ ran 𝑀 = (𝑇 ∩ 𝒫 𝐶) ∧ ∀𝑡𝑆𝑢𝑆 ((𝑀𝑡) = (𝑀𝑢) → 𝑡 = 𝑢)))
6916, 61, 67, 68syl3anbrc 1344 1 (𝜑𝑀:𝑆1-1-onto→(𝑇 ∩ 𝒫 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  {crab 3420  cin 3930  wss 3931  𝒫 cpw 4580   ciun 4972  cmpt 5206  ran crn 5660   Fn wfn 6531  1-1-ontowf1o 6535  cfv 6536  LSubSpclss 20893  LFnlclfn 39080  LKerclk 39108  LDualcld 39146  HLchlt 39373  LHypclh 40008  DVecHcdvh 41102  ocHcoch 41371  mapdcmpd 41648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-riotaBAD 38976
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-undef 8277  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-0g 17460  df-mre 17603  df-mrc 17604  df-acs 17606  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-cntz 19305  df-oppg 19334  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-nzr 20478  df-rlreg 20659  df-domn 20660  df-drng 20696  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lvec 21066  df-lsatoms 38999  df-lshyp 39000  df-lcv 39042  df-lfl 39081  df-lkr 39109  df-ldual 39147  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374  df-llines 39522  df-lplanes 39523  df-lvols 39524  df-lines 39525  df-psubsp 39527  df-pmap 39528  df-padd 39820  df-lhyp 40012  df-laut 40013  df-ldil 40128  df-ltrn 40129  df-trl 40183  df-tgrp 40767  df-tendo 40779  df-edring 40781  df-dveca 41027  df-disoa 41053  df-dvech 41103  df-dib 41163  df-dic 41197  df-dih 41253  df-doch 41372  df-djh 41419  df-mapd 41649
This theorem is referenced by:  mapdrn  41673  mapdcnvcl  41676  mapdcl  41677  mapdcnvid1N  41678  mapdcnvid2  41681
  Copyright terms: Public domain W3C validator