Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapd1o Structured version   Visualization version   GIF version

Theorem mapd1o 41627
Description: The map defined by df-mapd 41604 is one-to-one and onto the set of dual subspaces of functionals with closed kernels. This shows 𝑀 satisfies part of the definition of projectivity of [Baer] p. 40. TODO: change theorems leading to this (lcfr 41564, mapdrval 41626, lclkrs 41518, lclkr 41512,...) to use 𝑇 ∩ 𝒫 𝐶? TODO: maybe get rid of $d's for 𝑔 versus 𝐾𝑈𝑊; propagate to mapdrn 41628 and any others. (Contributed by NM, 12-Mar-2015.)
Hypotheses
Ref Expression
mapd1o.h 𝐻 = (LHyp‘𝐾)
mapd1o.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapd1o.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapd1o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapd1o.s 𝑆 = (LSubSp‘𝑈)
mapd1o.f 𝐹 = (LFnl‘𝑈)
mapd1o.l 𝐿 = (LKer‘𝑈)
mapd1o.d 𝐷 = (LDual‘𝑈)
mapd1o.t 𝑇 = (LSubSp‘𝐷)
mapd1o.c 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
mapd1o.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
mapd1o (𝜑𝑀:𝑆1-1-onto→(𝑇 ∩ 𝒫 𝐶))
Distinct variable groups:   𝑔,𝐹   𝑔,𝐾   𝑔,𝐿   𝑔,𝑂   𝑈,𝑔   𝑔,𝑊
Allowed substitution hints:   𝜑(𝑔)   𝐶(𝑔)   𝐷(𝑔)   𝑆(𝑔)   𝑇(𝑔)   𝐻(𝑔)   𝑀(𝑔)

Proof of Theorem mapd1o
Dummy variables 𝑓 𝑐 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapd1o.f . . . . . 6 𝐹 = (LFnl‘𝑈)
21fvexi 6840 . . . . 5 𝐹 ∈ V
32rabex 5281 . . . 4 {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)} ∈ V
4 eqid 2729 . . . 4 (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}) = (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)})
53, 4fnmpti 6629 . . 3 (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}) Fn 𝑆
6 mapd1o.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 mapd1o.h . . . . . 6 𝐻 = (LHyp‘𝐾)
8 mapd1o.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
9 mapd1o.s . . . . . 6 𝑆 = (LSubSp‘𝑈)
10 mapd1o.l . . . . . 6 𝐿 = (LKer‘𝑈)
11 mapd1o.o . . . . . 6 𝑂 = ((ocH‘𝐾)‘𝑊)
12 mapd1o.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
137, 8, 9, 1, 10, 11, 12mapdfval 41606 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑀 = (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}))
146, 13syl 17 . . . 4 (𝜑𝑀 = (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}))
1514fneq1d 6579 . . 3 (𝜑 → (𝑀 Fn 𝑆 ↔ (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}) Fn 𝑆))
165, 15mpbiri 258 . 2 (𝜑𝑀 Fn 𝑆)
172rabex 5281 . . . . . . 7 {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)} ∈ V
18 eqid 2729 . . . . . . 7 (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}) = (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)})
1917, 18fnmpti 6629 . . . . . 6 (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}) Fn 𝑆
207, 8, 9, 1, 10, 11, 12mapdfval 41606 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑀 = (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}))
216, 20syl 17 . . . . . . 7 (𝜑𝑀 = (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}))
2221fneq1d 6579 . . . . . 6 (𝜑 → (𝑀 Fn 𝑆 ↔ (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}) Fn 𝑆))
2319, 22mpbiri 258 . . . . 5 (𝜑𝑀 Fn 𝑆)
24 fvelrnb 6887 . . . . 5 (𝑀 Fn 𝑆 → (𝑡 ∈ ran 𝑀 ↔ ∃𝑐𝑆 (𝑀𝑐) = 𝑡))
2523, 24syl 17 . . . 4 (𝜑 → (𝑡 ∈ ran 𝑀 ↔ ∃𝑐𝑆 (𝑀𝑐) = 𝑡))
266adantr 480 . . . . . . . . 9 ((𝜑𝑐𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
27 simpr 484 . . . . . . . . 9 ((𝜑𝑐𝑆) → 𝑐𝑆)
287, 8, 9, 1, 10, 11, 12, 26, 27mapdval 41607 . . . . . . . 8 ((𝜑𝑐𝑆) → (𝑀𝑐) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)})
29 mapd1o.d . . . . . . . . . 10 𝐷 = (LDual‘𝑈)
30 mapd1o.t . . . . . . . . . 10 𝑇 = (LSubSp‘𝐷)
31 mapd1o.c . . . . . . . . . 10 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
32 eqid 2729 . . . . . . . . . 10 {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)}
337, 11, 8, 9, 1, 10, 29, 30, 31, 32, 26, 27lclkrs2 41519 . . . . . . . . 9 ((𝜑𝑐𝑆) → ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ⊆ 𝐶))
34 elin 3921 . . . . . . . . . 10 ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ (𝑇 ∩ 𝒫 𝐶) ↔ ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝒫 𝐶))
352rabex 5281 . . . . . . . . . . . 12 {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ V
3635elpw 4557 . . . . . . . . . . 11 ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝒫 𝐶 ↔ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ⊆ 𝐶)
3736anbi2i 623 . . . . . . . . . 10 (({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝒫 𝐶) ↔ ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ⊆ 𝐶))
3834, 37bitr2i 276 . . . . . . . . 9 (({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ⊆ 𝐶) ↔ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ (𝑇 ∩ 𝒫 𝐶))
3933, 38sylib 218 . . . . . . . 8 ((𝜑𝑐𝑆) → {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ (𝑇 ∩ 𝒫 𝐶))
4028, 39eqeltrd 2828 . . . . . . 7 ((𝜑𝑐𝑆) → (𝑀𝑐) ∈ (𝑇 ∩ 𝒫 𝐶))
41 eleq1 2816 . . . . . . 7 ((𝑀𝑐) = 𝑡 → ((𝑀𝑐) ∈ (𝑇 ∩ 𝒫 𝐶) ↔ 𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
4240, 41syl5ibcom 245 . . . . . 6 ((𝜑𝑐𝑆) → ((𝑀𝑐) = 𝑡𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
4342rexlimdva 3130 . . . . 5 (𝜑 → (∃𝑐𝑆 (𝑀𝑐) = 𝑡𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
44 eqid 2729 . . . . . . . 8 𝑓𝑡 (𝑂‘(𝐿𝑓)) = 𝑓𝑡 (𝑂‘(𝐿𝑓))
456adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
46 inss1 4190 . . . . . . . . . 10 (𝑇 ∩ 𝒫 𝐶) ⊆ 𝑇
4746sseli 3933 . . . . . . . . 9 (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → 𝑡𝑇)
4847adantl 481 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → 𝑡𝑇)
49 inss2 4191 . . . . . . . . . . 11 (𝑇 ∩ 𝒫 𝐶) ⊆ 𝒫 𝐶
5049sseli 3933 . . . . . . . . . 10 (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → 𝑡 ∈ 𝒫 𝐶)
5150elpwid 4562 . . . . . . . . 9 (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → 𝑡𝐶)
5251adantl 481 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → 𝑡𝐶)
537, 11, 8, 9, 1, 10, 29, 30, 31, 44, 45, 48, 52lcfr 41564 . . . . . . 7 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → 𝑓𝑡 (𝑂‘(𝐿𝑓)) ∈ 𝑆)
547, 11, 12, 8, 9, 1, 10, 29, 30, 31, 45, 48, 52, 44mapdrval 41626 . . . . . . 7 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → (𝑀 𝑓𝑡 (𝑂‘(𝐿𝑓))) = 𝑡)
55 fveqeq2 6835 . . . . . . . 8 (𝑐 = 𝑓𝑡 (𝑂‘(𝐿𝑓)) → ((𝑀𝑐) = 𝑡 ↔ (𝑀 𝑓𝑡 (𝑂‘(𝐿𝑓))) = 𝑡))
5655rspcev 3579 . . . . . . 7 (( 𝑓𝑡 (𝑂‘(𝐿𝑓)) ∈ 𝑆 ∧ (𝑀 𝑓𝑡 (𝑂‘(𝐿𝑓))) = 𝑡) → ∃𝑐𝑆 (𝑀𝑐) = 𝑡)
5753, 54, 56syl2anc 584 . . . . . 6 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → ∃𝑐𝑆 (𝑀𝑐) = 𝑡)
5857ex 412 . . . . 5 (𝜑 → (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → ∃𝑐𝑆 (𝑀𝑐) = 𝑡))
5943, 58impbid 212 . . . 4 (𝜑 → (∃𝑐𝑆 (𝑀𝑐) = 𝑡𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
6025, 59bitrd 279 . . 3 (𝜑 → (𝑡 ∈ ran 𝑀𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
6160eqrdv 2727 . 2 (𝜑 → ran 𝑀 = (𝑇 ∩ 𝒫 𝐶))
626adantr 480 . . . . 5 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
63 simprl 770 . . . . 5 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → 𝑡𝑆)
64 simprr 772 . . . . 5 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → 𝑢𝑆)
657, 8, 9, 12, 62, 63, 64mapd11 41618 . . . 4 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → ((𝑀𝑡) = (𝑀𝑢) ↔ 𝑡 = 𝑢))
6665biimpd 229 . . 3 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → ((𝑀𝑡) = (𝑀𝑢) → 𝑡 = 𝑢))
6766ralrimivva 3172 . 2 (𝜑 → ∀𝑡𝑆𝑢𝑆 ((𝑀𝑡) = (𝑀𝑢) → 𝑡 = 𝑢))
68 dff1o6 7216 . 2 (𝑀:𝑆1-1-onto→(𝑇 ∩ 𝒫 𝐶) ↔ (𝑀 Fn 𝑆 ∧ ran 𝑀 = (𝑇 ∩ 𝒫 𝐶) ∧ ∀𝑡𝑆𝑢𝑆 ((𝑀𝑡) = (𝑀𝑢) → 𝑡 = 𝑢)))
6916, 61, 67, 68syl3anbrc 1344 1 (𝜑𝑀:𝑆1-1-onto→(𝑇 ∩ 𝒫 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  cin 3904  wss 3905  𝒫 cpw 4553   ciun 4944  cmpt 5176  ran crn 5624   Fn wfn 6481  1-1-ontowf1o 6485  cfv 6486  LSubSpclss 20852  LFnlclfn 39035  LKerclk 39063  LDualcld 39101  HLchlt 39328  LHypclh 39963  DVecHcdvh 41057  ocHcoch 41326  mapdcmpd 41603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-riotaBAD 38931
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-undef 8213  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-0g 17363  df-mre 17506  df-mrc 17507  df-acs 17509  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cntz 19214  df-oppg 19243  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-nzr 20416  df-rlreg 20597  df-domn 20598  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lvec 21025  df-lsatoms 38954  df-lshyp 38955  df-lcv 38997  df-lfl 39036  df-lkr 39064  df-ldual 39102  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138  df-tgrp 40722  df-tendo 40734  df-edring 40736  df-dveca 40982  df-disoa 41008  df-dvech 41058  df-dib 41118  df-dic 41152  df-dih 41208  df-doch 41327  df-djh 41374  df-mapd 41604
This theorem is referenced by:  mapdrn  41628  mapdcnvcl  41631  mapdcl  41632  mapdcnvid1N  41633  mapdcnvid2  41636
  Copyright terms: Public domain W3C validator