Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapd1o Structured version   Visualization version   GIF version

Theorem mapd1o 41631
Description: The map defined by df-mapd 41608 is one-to-one and onto the set of dual subspaces of functionals with closed kernels. This shows 𝑀 satisfies part of the definition of projectivity of [Baer] p. 40. TODO: change theorems leading to this (lcfr 41568, mapdrval 41630, lclkrs 41522, lclkr 41516,...) to use 𝑇 ∩ 𝒫 𝐶? TODO: maybe get rid of $d's for 𝑔 versus 𝐾𝑈𝑊; propagate to mapdrn 41632 and any others. (Contributed by NM, 12-Mar-2015.)
Hypotheses
Ref Expression
mapd1o.h 𝐻 = (LHyp‘𝐾)
mapd1o.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapd1o.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapd1o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapd1o.s 𝑆 = (LSubSp‘𝑈)
mapd1o.f 𝐹 = (LFnl‘𝑈)
mapd1o.l 𝐿 = (LKer‘𝑈)
mapd1o.d 𝐷 = (LDual‘𝑈)
mapd1o.t 𝑇 = (LSubSp‘𝐷)
mapd1o.c 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
mapd1o.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
mapd1o (𝜑𝑀:𝑆1-1-onto→(𝑇 ∩ 𝒫 𝐶))
Distinct variable groups:   𝑔,𝐹   𝑔,𝐾   𝑔,𝐿   𝑔,𝑂   𝑈,𝑔   𝑔,𝑊
Allowed substitution hints:   𝜑(𝑔)   𝐶(𝑔)   𝐷(𝑔)   𝑆(𝑔)   𝑇(𝑔)   𝐻(𝑔)   𝑀(𝑔)

Proof of Theorem mapd1o
Dummy variables 𝑓 𝑐 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapd1o.f . . . . . 6 𝐹 = (LFnl‘𝑈)
21fvexi 6921 . . . . 5 𝐹 ∈ V
32rabex 5345 . . . 4 {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)} ∈ V
4 eqid 2735 . . . 4 (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}) = (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)})
53, 4fnmpti 6712 . . 3 (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}) Fn 𝑆
6 mapd1o.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 mapd1o.h . . . . . 6 𝐻 = (LHyp‘𝐾)
8 mapd1o.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
9 mapd1o.s . . . . . 6 𝑆 = (LSubSp‘𝑈)
10 mapd1o.l . . . . . 6 𝐿 = (LKer‘𝑈)
11 mapd1o.o . . . . . 6 𝑂 = ((ocH‘𝐾)‘𝑊)
12 mapd1o.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
137, 8, 9, 1, 10, 11, 12mapdfval 41610 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑀 = (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}))
146, 13syl 17 . . . 4 (𝜑𝑀 = (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}))
1514fneq1d 6662 . . 3 (𝜑 → (𝑀 Fn 𝑆 ↔ (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}) Fn 𝑆))
165, 15mpbiri 258 . 2 (𝜑𝑀 Fn 𝑆)
172rabex 5345 . . . . . . 7 {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)} ∈ V
18 eqid 2735 . . . . . . 7 (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}) = (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)})
1917, 18fnmpti 6712 . . . . . 6 (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}) Fn 𝑆
207, 8, 9, 1, 10, 11, 12mapdfval 41610 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑀 = (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}))
216, 20syl 17 . . . . . . 7 (𝜑𝑀 = (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}))
2221fneq1d 6662 . . . . . 6 (𝜑 → (𝑀 Fn 𝑆 ↔ (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}) Fn 𝑆))
2319, 22mpbiri 258 . . . . 5 (𝜑𝑀 Fn 𝑆)
24 fvelrnb 6969 . . . . 5 (𝑀 Fn 𝑆 → (𝑡 ∈ ran 𝑀 ↔ ∃𝑐𝑆 (𝑀𝑐) = 𝑡))
2523, 24syl 17 . . . 4 (𝜑 → (𝑡 ∈ ran 𝑀 ↔ ∃𝑐𝑆 (𝑀𝑐) = 𝑡))
266adantr 480 . . . . . . . . 9 ((𝜑𝑐𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
27 simpr 484 . . . . . . . . 9 ((𝜑𝑐𝑆) → 𝑐𝑆)
287, 8, 9, 1, 10, 11, 12, 26, 27mapdval 41611 . . . . . . . 8 ((𝜑𝑐𝑆) → (𝑀𝑐) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)})
29 mapd1o.d . . . . . . . . . 10 𝐷 = (LDual‘𝑈)
30 mapd1o.t . . . . . . . . . 10 𝑇 = (LSubSp‘𝐷)
31 mapd1o.c . . . . . . . . . 10 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
32 eqid 2735 . . . . . . . . . 10 {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)}
337, 11, 8, 9, 1, 10, 29, 30, 31, 32, 26, 27lclkrs2 41523 . . . . . . . . 9 ((𝜑𝑐𝑆) → ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ⊆ 𝐶))
34 elin 3979 . . . . . . . . . 10 ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ (𝑇 ∩ 𝒫 𝐶) ↔ ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝒫 𝐶))
352rabex 5345 . . . . . . . . . . . 12 {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ V
3635elpw 4609 . . . . . . . . . . 11 ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝒫 𝐶 ↔ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ⊆ 𝐶)
3736anbi2i 623 . . . . . . . . . 10 (({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝒫 𝐶) ↔ ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ⊆ 𝐶))
3834, 37bitr2i 276 . . . . . . . . 9 (({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ⊆ 𝐶) ↔ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ (𝑇 ∩ 𝒫 𝐶))
3933, 38sylib 218 . . . . . . . 8 ((𝜑𝑐𝑆) → {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ (𝑇 ∩ 𝒫 𝐶))
4028, 39eqeltrd 2839 . . . . . . 7 ((𝜑𝑐𝑆) → (𝑀𝑐) ∈ (𝑇 ∩ 𝒫 𝐶))
41 eleq1 2827 . . . . . . 7 ((𝑀𝑐) = 𝑡 → ((𝑀𝑐) ∈ (𝑇 ∩ 𝒫 𝐶) ↔ 𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
4240, 41syl5ibcom 245 . . . . . 6 ((𝜑𝑐𝑆) → ((𝑀𝑐) = 𝑡𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
4342rexlimdva 3153 . . . . 5 (𝜑 → (∃𝑐𝑆 (𝑀𝑐) = 𝑡𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
44 eqid 2735 . . . . . . . 8 𝑓𝑡 (𝑂‘(𝐿𝑓)) = 𝑓𝑡 (𝑂‘(𝐿𝑓))
456adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
46 inss1 4245 . . . . . . . . . 10 (𝑇 ∩ 𝒫 𝐶) ⊆ 𝑇
4746sseli 3991 . . . . . . . . 9 (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → 𝑡𝑇)
4847adantl 481 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → 𝑡𝑇)
49 inss2 4246 . . . . . . . . . . 11 (𝑇 ∩ 𝒫 𝐶) ⊆ 𝒫 𝐶
5049sseli 3991 . . . . . . . . . 10 (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → 𝑡 ∈ 𝒫 𝐶)
5150elpwid 4614 . . . . . . . . 9 (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → 𝑡𝐶)
5251adantl 481 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → 𝑡𝐶)
537, 11, 8, 9, 1, 10, 29, 30, 31, 44, 45, 48, 52lcfr 41568 . . . . . . 7 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → 𝑓𝑡 (𝑂‘(𝐿𝑓)) ∈ 𝑆)
547, 11, 12, 8, 9, 1, 10, 29, 30, 31, 45, 48, 52, 44mapdrval 41630 . . . . . . 7 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → (𝑀 𝑓𝑡 (𝑂‘(𝐿𝑓))) = 𝑡)
55 fveqeq2 6916 . . . . . . . 8 (𝑐 = 𝑓𝑡 (𝑂‘(𝐿𝑓)) → ((𝑀𝑐) = 𝑡 ↔ (𝑀 𝑓𝑡 (𝑂‘(𝐿𝑓))) = 𝑡))
5655rspcev 3622 . . . . . . 7 (( 𝑓𝑡 (𝑂‘(𝐿𝑓)) ∈ 𝑆 ∧ (𝑀 𝑓𝑡 (𝑂‘(𝐿𝑓))) = 𝑡) → ∃𝑐𝑆 (𝑀𝑐) = 𝑡)
5753, 54, 56syl2anc 584 . . . . . 6 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → ∃𝑐𝑆 (𝑀𝑐) = 𝑡)
5857ex 412 . . . . 5 (𝜑 → (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → ∃𝑐𝑆 (𝑀𝑐) = 𝑡))
5943, 58impbid 212 . . . 4 (𝜑 → (∃𝑐𝑆 (𝑀𝑐) = 𝑡𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
6025, 59bitrd 279 . . 3 (𝜑 → (𝑡 ∈ ran 𝑀𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
6160eqrdv 2733 . 2 (𝜑 → ran 𝑀 = (𝑇 ∩ 𝒫 𝐶))
626adantr 480 . . . . 5 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
63 simprl 771 . . . . 5 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → 𝑡𝑆)
64 simprr 773 . . . . 5 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → 𝑢𝑆)
657, 8, 9, 12, 62, 63, 64mapd11 41622 . . . 4 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → ((𝑀𝑡) = (𝑀𝑢) ↔ 𝑡 = 𝑢))
6665biimpd 229 . . 3 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → ((𝑀𝑡) = (𝑀𝑢) → 𝑡 = 𝑢))
6766ralrimivva 3200 . 2 (𝜑 → ∀𝑡𝑆𝑢𝑆 ((𝑀𝑡) = (𝑀𝑢) → 𝑡 = 𝑢))
68 dff1o6 7295 . 2 (𝑀:𝑆1-1-onto→(𝑇 ∩ 𝒫 𝐶) ↔ (𝑀 Fn 𝑆 ∧ ran 𝑀 = (𝑇 ∩ 𝒫 𝐶) ∧ ∀𝑡𝑆𝑢𝑆 ((𝑀𝑡) = (𝑀𝑢) → 𝑡 = 𝑢)))
6916, 61, 67, 68syl3anbrc 1342 1 (𝜑𝑀:𝑆1-1-onto→(𝑇 ∩ 𝒫 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  {crab 3433  cin 3962  wss 3963  𝒫 cpw 4605   ciun 4996  cmpt 5231  ran crn 5690   Fn wfn 6558  1-1-ontowf1o 6562  cfv 6563  LSubSpclss 20947  LFnlclfn 39039  LKerclk 39067  LDualcld 39105  HLchlt 39332  LHypclh 39967  DVecHcdvh 41061  ocHcoch 41330  mapdcmpd 41607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-undef 8297  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-0g 17488  df-mre 17631  df-mrc 17632  df-acs 17634  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cntz 19348  df-oppg 19377  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-nzr 20530  df-rlreg 20711  df-domn 20712  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120  df-lsatoms 38958  df-lshyp 38959  df-lcv 39001  df-lfl 39040  df-lkr 39068  df-ldual 39106  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-tgrp 40726  df-tendo 40738  df-edring 40740  df-dveca 40986  df-disoa 41012  df-dvech 41062  df-dib 41122  df-dic 41156  df-dih 41212  df-doch 41331  df-djh 41378  df-mapd 41608
This theorem is referenced by:  mapdrn  41632  mapdcnvcl  41635  mapdcl  41636  mapdcnvid1N  41637  mapdcnvid2  41640
  Copyright terms: Public domain W3C validator