Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapd1o Structured version   Visualization version   GIF version

Theorem mapd1o 39662
Description: The map defined by df-mapd 39639 is one-to-one and onto the set of dual subspaces of functionals with closed kernels. This shows 𝑀 satisfies part of the definition of projectivity of [Baer] p. 40. TODO: change theorems leading to this (lcfr 39599, mapdrval 39661, lclkrs 39553, lclkr 39547,...) to use 𝑇 ∩ 𝒫 𝐶? TODO: maybe get rid of $d's for 𝑔 versus 𝐾𝑈𝑊; propagate to mapdrn 39663 and any others. (Contributed by NM, 12-Mar-2015.)
Hypotheses
Ref Expression
mapd1o.h 𝐻 = (LHyp‘𝐾)
mapd1o.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapd1o.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapd1o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapd1o.s 𝑆 = (LSubSp‘𝑈)
mapd1o.f 𝐹 = (LFnl‘𝑈)
mapd1o.l 𝐿 = (LKer‘𝑈)
mapd1o.d 𝐷 = (LDual‘𝑈)
mapd1o.t 𝑇 = (LSubSp‘𝐷)
mapd1o.c 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
mapd1o.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
mapd1o (𝜑𝑀:𝑆1-1-onto→(𝑇 ∩ 𝒫 𝐶))
Distinct variable groups:   𝑔,𝐹   𝑔,𝐾   𝑔,𝐿   𝑔,𝑂   𝑈,𝑔   𝑔,𝑊
Allowed substitution hints:   𝜑(𝑔)   𝐶(𝑔)   𝐷(𝑔)   𝑆(𝑔)   𝑇(𝑔)   𝐻(𝑔)   𝑀(𝑔)

Proof of Theorem mapd1o
Dummy variables 𝑓 𝑐 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapd1o.f . . . . . 6 𝐹 = (LFnl‘𝑈)
21fvexi 6788 . . . . 5 𝐹 ∈ V
32rabex 5256 . . . 4 {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)} ∈ V
4 eqid 2738 . . . 4 (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}) = (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)})
53, 4fnmpti 6576 . . 3 (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}) Fn 𝑆
6 mapd1o.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 mapd1o.h . . . . . 6 𝐻 = (LHyp‘𝐾)
8 mapd1o.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
9 mapd1o.s . . . . . 6 𝑆 = (LSubSp‘𝑈)
10 mapd1o.l . . . . . 6 𝐿 = (LKer‘𝑈)
11 mapd1o.o . . . . . 6 𝑂 = ((ocH‘𝐾)‘𝑊)
12 mapd1o.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
137, 8, 9, 1, 10, 11, 12mapdfval 39641 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑀 = (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}))
146, 13syl 17 . . . 4 (𝜑𝑀 = (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}))
1514fneq1d 6526 . . 3 (𝜑 → (𝑀 Fn 𝑆 ↔ (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}) Fn 𝑆))
165, 15mpbiri 257 . 2 (𝜑𝑀 Fn 𝑆)
172rabex 5256 . . . . . . 7 {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)} ∈ V
18 eqid 2738 . . . . . . 7 (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}) = (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)})
1917, 18fnmpti 6576 . . . . . 6 (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}) Fn 𝑆
207, 8, 9, 1, 10, 11, 12mapdfval 39641 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑀 = (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}))
216, 20syl 17 . . . . . . 7 (𝜑𝑀 = (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}))
2221fneq1d 6526 . . . . . 6 (𝜑 → (𝑀 Fn 𝑆 ↔ (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}) Fn 𝑆))
2319, 22mpbiri 257 . . . . 5 (𝜑𝑀 Fn 𝑆)
24 fvelrnb 6830 . . . . 5 (𝑀 Fn 𝑆 → (𝑡 ∈ ran 𝑀 ↔ ∃𝑐𝑆 (𝑀𝑐) = 𝑡))
2523, 24syl 17 . . . 4 (𝜑 → (𝑡 ∈ ran 𝑀 ↔ ∃𝑐𝑆 (𝑀𝑐) = 𝑡))
266adantr 481 . . . . . . . . 9 ((𝜑𝑐𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
27 simpr 485 . . . . . . . . 9 ((𝜑𝑐𝑆) → 𝑐𝑆)
287, 8, 9, 1, 10, 11, 12, 26, 27mapdval 39642 . . . . . . . 8 ((𝜑𝑐𝑆) → (𝑀𝑐) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)})
29 mapd1o.d . . . . . . . . . 10 𝐷 = (LDual‘𝑈)
30 mapd1o.t . . . . . . . . . 10 𝑇 = (LSubSp‘𝐷)
31 mapd1o.c . . . . . . . . . 10 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
32 eqid 2738 . . . . . . . . . 10 {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)}
337, 11, 8, 9, 1, 10, 29, 30, 31, 32, 26, 27lclkrs2 39554 . . . . . . . . 9 ((𝜑𝑐𝑆) → ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ⊆ 𝐶))
34 elin 3903 . . . . . . . . . 10 ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ (𝑇 ∩ 𝒫 𝐶) ↔ ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝒫 𝐶))
352rabex 5256 . . . . . . . . . . . 12 {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ V
3635elpw 4537 . . . . . . . . . . 11 ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝒫 𝐶 ↔ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ⊆ 𝐶)
3736anbi2i 623 . . . . . . . . . 10 (({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝒫 𝐶) ↔ ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ⊆ 𝐶))
3834, 37bitr2i 275 . . . . . . . . 9 (({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ⊆ 𝐶) ↔ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ (𝑇 ∩ 𝒫 𝐶))
3933, 38sylib 217 . . . . . . . 8 ((𝜑𝑐𝑆) → {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ (𝑇 ∩ 𝒫 𝐶))
4028, 39eqeltrd 2839 . . . . . . 7 ((𝜑𝑐𝑆) → (𝑀𝑐) ∈ (𝑇 ∩ 𝒫 𝐶))
41 eleq1 2826 . . . . . . 7 ((𝑀𝑐) = 𝑡 → ((𝑀𝑐) ∈ (𝑇 ∩ 𝒫 𝐶) ↔ 𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
4240, 41syl5ibcom 244 . . . . . 6 ((𝜑𝑐𝑆) → ((𝑀𝑐) = 𝑡𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
4342rexlimdva 3213 . . . . 5 (𝜑 → (∃𝑐𝑆 (𝑀𝑐) = 𝑡𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
44 eqid 2738 . . . . . . . 8 𝑓𝑡 (𝑂‘(𝐿𝑓)) = 𝑓𝑡 (𝑂‘(𝐿𝑓))
456adantr 481 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
46 inss1 4162 . . . . . . . . . 10 (𝑇 ∩ 𝒫 𝐶) ⊆ 𝑇
4746sseli 3917 . . . . . . . . 9 (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → 𝑡𝑇)
4847adantl 482 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → 𝑡𝑇)
49 inss2 4163 . . . . . . . . . . 11 (𝑇 ∩ 𝒫 𝐶) ⊆ 𝒫 𝐶
5049sseli 3917 . . . . . . . . . 10 (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → 𝑡 ∈ 𝒫 𝐶)
5150elpwid 4544 . . . . . . . . 9 (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → 𝑡𝐶)
5251adantl 482 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → 𝑡𝐶)
537, 11, 8, 9, 1, 10, 29, 30, 31, 44, 45, 48, 52lcfr 39599 . . . . . . 7 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → 𝑓𝑡 (𝑂‘(𝐿𝑓)) ∈ 𝑆)
547, 11, 12, 8, 9, 1, 10, 29, 30, 31, 45, 48, 52, 44mapdrval 39661 . . . . . . 7 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → (𝑀 𝑓𝑡 (𝑂‘(𝐿𝑓))) = 𝑡)
55 fveqeq2 6783 . . . . . . . 8 (𝑐 = 𝑓𝑡 (𝑂‘(𝐿𝑓)) → ((𝑀𝑐) = 𝑡 ↔ (𝑀 𝑓𝑡 (𝑂‘(𝐿𝑓))) = 𝑡))
5655rspcev 3561 . . . . . . 7 (( 𝑓𝑡 (𝑂‘(𝐿𝑓)) ∈ 𝑆 ∧ (𝑀 𝑓𝑡 (𝑂‘(𝐿𝑓))) = 𝑡) → ∃𝑐𝑆 (𝑀𝑐) = 𝑡)
5753, 54, 56syl2anc 584 . . . . . 6 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → ∃𝑐𝑆 (𝑀𝑐) = 𝑡)
5857ex 413 . . . . 5 (𝜑 → (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → ∃𝑐𝑆 (𝑀𝑐) = 𝑡))
5943, 58impbid 211 . . . 4 (𝜑 → (∃𝑐𝑆 (𝑀𝑐) = 𝑡𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
6025, 59bitrd 278 . . 3 (𝜑 → (𝑡 ∈ ran 𝑀𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
6160eqrdv 2736 . 2 (𝜑 → ran 𝑀 = (𝑇 ∩ 𝒫 𝐶))
626adantr 481 . . . . 5 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
63 simprl 768 . . . . 5 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → 𝑡𝑆)
64 simprr 770 . . . . 5 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → 𝑢𝑆)
657, 8, 9, 12, 62, 63, 64mapd11 39653 . . . 4 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → ((𝑀𝑡) = (𝑀𝑢) ↔ 𝑡 = 𝑢))
6665biimpd 228 . . 3 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → ((𝑀𝑡) = (𝑀𝑢) → 𝑡 = 𝑢))
6766ralrimivva 3123 . 2 (𝜑 → ∀𝑡𝑆𝑢𝑆 ((𝑀𝑡) = (𝑀𝑢) → 𝑡 = 𝑢))
68 dff1o6 7147 . 2 (𝑀:𝑆1-1-onto→(𝑇 ∩ 𝒫 𝐶) ↔ (𝑀 Fn 𝑆 ∧ ran 𝑀 = (𝑇 ∩ 𝒫 𝐶) ∧ ∀𝑡𝑆𝑢𝑆 ((𝑀𝑡) = (𝑀𝑢) → 𝑡 = 𝑢)))
6916, 61, 67, 68syl3anbrc 1342 1 (𝜑𝑀:𝑆1-1-onto→(𝑇 ∩ 𝒫 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  cin 3886  wss 3887  𝒫 cpw 4533   ciun 4924  cmpt 5157  ran crn 5590   Fn wfn 6428  1-1-ontowf1o 6432  cfv 6433  LSubSpclss 20193  LFnlclfn 37071  LKerclk 37099  LDualcld 37137  HLchlt 37364  LHypclh 37998  DVecHcdvh 39092  ocHcoch 39361  mapdcmpd 39638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-undef 8089  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-0g 17152  df-mre 17295  df-mrc 17296  df-acs 17298  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-oppg 18950  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-lsatoms 36990  df-lshyp 36991  df-lcv 37033  df-lfl 37072  df-lkr 37100  df-ldual 37138  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tgrp 38757  df-tendo 38769  df-edring 38771  df-dveca 39017  df-disoa 39043  df-dvech 39093  df-dib 39153  df-dic 39187  df-dih 39243  df-doch 39362  df-djh 39409  df-mapd 39639
This theorem is referenced by:  mapdrn  39663  mapdcnvcl  39666  mapdcl  39667  mapdcnvid1N  39668  mapdcnvid2  39671
  Copyright terms: Public domain W3C validator