Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapd1o Structured version   Visualization version   GIF version

Theorem mapd1o 41650
Description: The map defined by df-mapd 41627 is one-to-one and onto the set of dual subspaces of functionals with closed kernels. This shows 𝑀 satisfies part of the definition of projectivity of [Baer] p. 40. TODO: change theorems leading to this (lcfr 41587, mapdrval 41649, lclkrs 41541, lclkr 41535,...) to use 𝑇 ∩ 𝒫 𝐶? TODO: maybe get rid of $d's for 𝑔 versus 𝐾𝑈𝑊; propagate to mapdrn 41651 and any others. (Contributed by NM, 12-Mar-2015.)
Hypotheses
Ref Expression
mapd1o.h 𝐻 = (LHyp‘𝐾)
mapd1o.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapd1o.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapd1o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapd1o.s 𝑆 = (LSubSp‘𝑈)
mapd1o.f 𝐹 = (LFnl‘𝑈)
mapd1o.l 𝐿 = (LKer‘𝑈)
mapd1o.d 𝐷 = (LDual‘𝑈)
mapd1o.t 𝑇 = (LSubSp‘𝐷)
mapd1o.c 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
mapd1o.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
mapd1o (𝜑𝑀:𝑆1-1-onto→(𝑇 ∩ 𝒫 𝐶))
Distinct variable groups:   𝑔,𝐹   𝑔,𝐾   𝑔,𝐿   𝑔,𝑂   𝑈,𝑔   𝑔,𝑊
Allowed substitution hints:   𝜑(𝑔)   𝐶(𝑔)   𝐷(𝑔)   𝑆(𝑔)   𝑇(𝑔)   𝐻(𝑔)   𝑀(𝑔)

Proof of Theorem mapd1o
Dummy variables 𝑓 𝑐 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapd1o.f . . . . . 6 𝐹 = (LFnl‘𝑈)
21fvexi 6920 . . . . 5 𝐹 ∈ V
32rabex 5339 . . . 4 {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)} ∈ V
4 eqid 2737 . . . 4 (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}) = (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)})
53, 4fnmpti 6711 . . 3 (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}) Fn 𝑆
6 mapd1o.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 mapd1o.h . . . . . 6 𝐻 = (LHyp‘𝐾)
8 mapd1o.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
9 mapd1o.s . . . . . 6 𝑆 = (LSubSp‘𝑈)
10 mapd1o.l . . . . . 6 𝐿 = (LKer‘𝑈)
11 mapd1o.o . . . . . 6 𝑂 = ((ocH‘𝐾)‘𝑊)
12 mapd1o.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
137, 8, 9, 1, 10, 11, 12mapdfval 41629 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑀 = (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}))
146, 13syl 17 . . . 4 (𝜑𝑀 = (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}))
1514fneq1d 6661 . . 3 (𝜑 → (𝑀 Fn 𝑆 ↔ (𝑡𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑡)}) Fn 𝑆))
165, 15mpbiri 258 . 2 (𝜑𝑀 Fn 𝑆)
172rabex 5339 . . . . . . 7 {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)} ∈ V
18 eqid 2737 . . . . . . 7 (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}) = (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)})
1917, 18fnmpti 6711 . . . . . 6 (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}) Fn 𝑆
207, 8, 9, 1, 10, 11, 12mapdfval 41629 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑀 = (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}))
216, 20syl 17 . . . . . . 7 (𝜑𝑀 = (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}))
2221fneq1d 6661 . . . . . 6 (𝜑 → (𝑀 Fn 𝑆 ↔ (𝑡𝑆 ↦ {𝑔𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔) ∧ (𝑂‘(𝐿𝑔)) ⊆ 𝑡)}) Fn 𝑆))
2319, 22mpbiri 258 . . . . 5 (𝜑𝑀 Fn 𝑆)
24 fvelrnb 6969 . . . . 5 (𝑀 Fn 𝑆 → (𝑡 ∈ ran 𝑀 ↔ ∃𝑐𝑆 (𝑀𝑐) = 𝑡))
2523, 24syl 17 . . . 4 (𝜑 → (𝑡 ∈ ran 𝑀 ↔ ∃𝑐𝑆 (𝑀𝑐) = 𝑡))
266adantr 480 . . . . . . . . 9 ((𝜑𝑐𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
27 simpr 484 . . . . . . . . 9 ((𝜑𝑐𝑆) → 𝑐𝑆)
287, 8, 9, 1, 10, 11, 12, 26, 27mapdval 41630 . . . . . . . 8 ((𝜑𝑐𝑆) → (𝑀𝑐) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)})
29 mapd1o.d . . . . . . . . . 10 𝐷 = (LDual‘𝑈)
30 mapd1o.t . . . . . . . . . 10 𝑇 = (LSubSp‘𝐷)
31 mapd1o.c . . . . . . . . . 10 𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
32 eqid 2737 . . . . . . . . . 10 {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)}
337, 11, 8, 9, 1, 10, 29, 30, 31, 32, 26, 27lclkrs2 41542 . . . . . . . . 9 ((𝜑𝑐𝑆) → ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ⊆ 𝐶))
34 elin 3967 . . . . . . . . . 10 ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ (𝑇 ∩ 𝒫 𝐶) ↔ ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝒫 𝐶))
352rabex 5339 . . . . . . . . . . . 12 {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ V
3635elpw 4604 . . . . . . . . . . 11 ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝒫 𝐶 ↔ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ⊆ 𝐶)
3736anbi2i 623 . . . . . . . . . 10 (({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝒫 𝐶) ↔ ({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ⊆ 𝐶))
3834, 37bitr2i 276 . . . . . . . . 9 (({𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ 𝑇 ∧ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ⊆ 𝐶) ↔ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ (𝑇 ∩ 𝒫 𝐶))
3933, 38sylib 218 . . . . . . . 8 ((𝜑𝑐𝑆) → {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑐)} ∈ (𝑇 ∩ 𝒫 𝐶))
4028, 39eqeltrd 2841 . . . . . . 7 ((𝜑𝑐𝑆) → (𝑀𝑐) ∈ (𝑇 ∩ 𝒫 𝐶))
41 eleq1 2829 . . . . . . 7 ((𝑀𝑐) = 𝑡 → ((𝑀𝑐) ∈ (𝑇 ∩ 𝒫 𝐶) ↔ 𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
4240, 41syl5ibcom 245 . . . . . 6 ((𝜑𝑐𝑆) → ((𝑀𝑐) = 𝑡𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
4342rexlimdva 3155 . . . . 5 (𝜑 → (∃𝑐𝑆 (𝑀𝑐) = 𝑡𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
44 eqid 2737 . . . . . . . 8 𝑓𝑡 (𝑂‘(𝐿𝑓)) = 𝑓𝑡 (𝑂‘(𝐿𝑓))
456adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
46 inss1 4237 . . . . . . . . . 10 (𝑇 ∩ 𝒫 𝐶) ⊆ 𝑇
4746sseli 3979 . . . . . . . . 9 (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → 𝑡𝑇)
4847adantl 481 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → 𝑡𝑇)
49 inss2 4238 . . . . . . . . . . 11 (𝑇 ∩ 𝒫 𝐶) ⊆ 𝒫 𝐶
5049sseli 3979 . . . . . . . . . 10 (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → 𝑡 ∈ 𝒫 𝐶)
5150elpwid 4609 . . . . . . . . 9 (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → 𝑡𝐶)
5251adantl 481 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → 𝑡𝐶)
537, 11, 8, 9, 1, 10, 29, 30, 31, 44, 45, 48, 52lcfr 41587 . . . . . . 7 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → 𝑓𝑡 (𝑂‘(𝐿𝑓)) ∈ 𝑆)
547, 11, 12, 8, 9, 1, 10, 29, 30, 31, 45, 48, 52, 44mapdrval 41649 . . . . . . 7 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → (𝑀 𝑓𝑡 (𝑂‘(𝐿𝑓))) = 𝑡)
55 fveqeq2 6915 . . . . . . . 8 (𝑐 = 𝑓𝑡 (𝑂‘(𝐿𝑓)) → ((𝑀𝑐) = 𝑡 ↔ (𝑀 𝑓𝑡 (𝑂‘(𝐿𝑓))) = 𝑡))
5655rspcev 3622 . . . . . . 7 (( 𝑓𝑡 (𝑂‘(𝐿𝑓)) ∈ 𝑆 ∧ (𝑀 𝑓𝑡 (𝑂‘(𝐿𝑓))) = 𝑡) → ∃𝑐𝑆 (𝑀𝑐) = 𝑡)
5753, 54, 56syl2anc 584 . . . . . 6 ((𝜑𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)) → ∃𝑐𝑆 (𝑀𝑐) = 𝑡)
5857ex 412 . . . . 5 (𝜑 → (𝑡 ∈ (𝑇 ∩ 𝒫 𝐶) → ∃𝑐𝑆 (𝑀𝑐) = 𝑡))
5943, 58impbid 212 . . . 4 (𝜑 → (∃𝑐𝑆 (𝑀𝑐) = 𝑡𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
6025, 59bitrd 279 . . 3 (𝜑 → (𝑡 ∈ ran 𝑀𝑡 ∈ (𝑇 ∩ 𝒫 𝐶)))
6160eqrdv 2735 . 2 (𝜑 → ran 𝑀 = (𝑇 ∩ 𝒫 𝐶))
626adantr 480 . . . . 5 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
63 simprl 771 . . . . 5 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → 𝑡𝑆)
64 simprr 773 . . . . 5 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → 𝑢𝑆)
657, 8, 9, 12, 62, 63, 64mapd11 41641 . . . 4 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → ((𝑀𝑡) = (𝑀𝑢) ↔ 𝑡 = 𝑢))
6665biimpd 229 . . 3 ((𝜑 ∧ (𝑡𝑆𝑢𝑆)) → ((𝑀𝑡) = (𝑀𝑢) → 𝑡 = 𝑢))
6766ralrimivva 3202 . 2 (𝜑 → ∀𝑡𝑆𝑢𝑆 ((𝑀𝑡) = (𝑀𝑢) → 𝑡 = 𝑢))
68 dff1o6 7295 . 2 (𝑀:𝑆1-1-onto→(𝑇 ∩ 𝒫 𝐶) ↔ (𝑀 Fn 𝑆 ∧ ran 𝑀 = (𝑇 ∩ 𝒫 𝐶) ∧ ∀𝑡𝑆𝑢𝑆 ((𝑀𝑡) = (𝑀𝑢) → 𝑡 = 𝑢)))
6916, 61, 67, 68syl3anbrc 1344 1 (𝜑𝑀:𝑆1-1-onto→(𝑇 ∩ 𝒫 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  {crab 3436  cin 3950  wss 3951  𝒫 cpw 4600   ciun 4991  cmpt 5225  ran crn 5686   Fn wfn 6556  1-1-ontowf1o 6560  cfv 6561  LSubSpclss 20929  LFnlclfn 39058  LKerclk 39086  LDualcld 39124  HLchlt 39351  LHypclh 39986  DVecHcdvh 41080  ocHcoch 41349  mapdcmpd 41626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-riotaBAD 38954
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-undef 8298  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-0g 17486  df-mre 17629  df-mrc 17630  df-acs 17632  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cntz 19335  df-oppg 19364  df-lsm 19654  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-nzr 20513  df-rlreg 20694  df-domn 20695  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lvec 21102  df-lsatoms 38977  df-lshyp 38978  df-lcv 39020  df-lfl 39059  df-lkr 39087  df-ldual 39125  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501  df-lvols 39502  df-lines 39503  df-psubsp 39505  df-pmap 39506  df-padd 39798  df-lhyp 39990  df-laut 39991  df-ldil 40106  df-ltrn 40107  df-trl 40161  df-tgrp 40745  df-tendo 40757  df-edring 40759  df-dveca 41005  df-disoa 41031  df-dvech 41081  df-dib 41141  df-dic 41175  df-dih 41231  df-doch 41350  df-djh 41397  df-mapd 41627
This theorem is referenced by:  mapdrn  41651  mapdcnvcl  41654  mapdcl  41655  mapdcnvid1N  41656  mapdcnvid2  41659
  Copyright terms: Public domain W3C validator