HomeHome Metamath Proof Explorer
Theorem List (p. 410 of 484)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30784)
  Hilbert Space Explorer  Hilbert Space Explorer
(30785-32307)
  Users' Mathboxes  Users' Mathboxes
(32308-48350)
 

Theorem List for Metamath Proof Explorer - 40901-41000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdoch1 40901 Orthocomplement of the unit subspace (all vectors). (Contributed by NM, 19-Jun-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    0 = (0gβ€˜π‘ˆ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ( βŠ₯ β€˜π‘‰) = { 0 })
 
Theoremdochoc0 40902 The zero subspace is closed. (Contributed by NM, 16-Feb-2015.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &    0 = (0gβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    β‡’   (πœ‘ β†’ ( βŠ₯ β€˜( βŠ₯ β€˜{ 0 })) = { 0 })
 
Theoremdochoc1 40903 The unit subspace (all vectors) is closed. (Contributed by NM, 16-Feb-2015.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    β‡’   (πœ‘ β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‰)) = 𝑉)
 
Theoremdochvalr2 40904 Orthocomplement of a closed subspace. (Contributed by NM, 21-Jul-2014.)
𝐡 = (Baseβ€˜πΎ)    &    βŠ₯ = (ocβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ = ((ocHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡) β†’ (π‘β€˜(πΌβ€˜π‘‹)) = (πΌβ€˜( βŠ₯ β€˜π‘‹)))
 
Theoremdochvalr3 40905 Orthocomplement of a closed subspace. (Contributed by NM, 15-Jan-2015.)
βŠ₯ = (ocβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    β‡’   (πœ‘ β†’ ( βŠ₯ β€˜(β—‘πΌβ€˜π‘‹)) = (β—‘πΌβ€˜(π‘β€˜π‘‹)))
 
Theoremdoch2val2 40906* Double orthocomplement for DVecH vector space. (Contributed by NM, 26-Jul-2014.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 βŠ† 𝑉)    β‡’   (πœ‘ β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 βŠ† 𝑧})
 
Theoremdochss 40907 Subset law for orthocomplement. (Contributed by NM, 16-Apr-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘Œ βŠ† 𝑉 ∧ 𝑋 βŠ† π‘Œ) β†’ ( βŠ₯ β€˜π‘Œ) βŠ† ( βŠ₯ β€˜π‘‹))
 
Theoremdochocss 40908 Double negative law for orthocomplement of an arbitrary set of vectors. (Contributed by NM, 16-Apr-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑉) β†’ 𝑋 βŠ† ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)))
 
Theoremdochoc 40909 Double negative law for orthocomplement of a closed subspace. (Contributed by NM, 14-Mar-2014.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋)
 
Theoremdochsscl 40910 If a set of vectors is included in a closed set, so is its closure. (Contributed by NM, 17-Jun-2015.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 βŠ† 𝑉)    &   (πœ‘ β†’ π‘Œ ∈ ran 𝐼)    β‡’   (πœ‘ β†’ (𝑋 βŠ† π‘Œ ↔ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) βŠ† π‘Œ))
 
Theoremdochoccl 40911 A set of vectors is closed iff it equals its double orthocomplent. (Contributed by NM, 1-Jan-2015.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 βŠ† 𝑉)    β‡’   (πœ‘ β†’ (𝑋 ∈ ran 𝐼 ↔ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋))
 
Theoremdochord 40912 Ordering law for orthocomplement. (Contributed by NM, 12-Aug-2014.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    &   (πœ‘ β†’ π‘Œ ∈ ran 𝐼)    β‡’   (πœ‘ β†’ (𝑋 βŠ† π‘Œ ↔ ( βŠ₯ β€˜π‘Œ) βŠ† ( βŠ₯ β€˜π‘‹)))
 
Theoremdochord2N 40913 Ordering law for orthocomplement. (Contributed by NM, 29-Oct-2014.) (New usage is discouraged.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    &   (πœ‘ β†’ π‘Œ ∈ ran 𝐼)    β‡’   (πœ‘ β†’ (( βŠ₯ β€˜π‘‹) βŠ† π‘Œ ↔ ( βŠ₯ β€˜π‘Œ) βŠ† 𝑋))
 
Theoremdochord3 40914 Ordering law for orthocomplement. (Contributed by NM, 9-Mar-2015.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    &   (πœ‘ β†’ π‘Œ ∈ ran 𝐼)    β‡’   (πœ‘ β†’ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ↔ π‘Œ βŠ† ( βŠ₯ β€˜π‘‹)))
 
Theoremdoch11 40915 Orthocomplement is one-to-one. (Contributed by NM, 12-Aug-2014.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    &   (πœ‘ β†’ π‘Œ ∈ ran 𝐼)    β‡’   (πœ‘ β†’ (( βŠ₯ β€˜π‘‹) = ( βŠ₯ β€˜π‘Œ) ↔ 𝑋 = π‘Œ))
 
TheoremdochsordN 40916 Strict ordering law for orthocomplement. (Contributed by NM, 12-Aug-2014.) (New usage is discouraged.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    &   (πœ‘ β†’ π‘Œ ∈ ran 𝐼)    β‡’   (πœ‘ β†’ (𝑋 ⊊ π‘Œ ↔ ( βŠ₯ β€˜π‘Œ) ⊊ ( βŠ₯ β€˜π‘‹)))
 
Theoremdochn0nv 40917 An orthocomplement is nonzero iff the double orthocomplement is not the whole vector space. (Contributed by NM, 1-Jan-2015.)
𝐻 = (LHypβ€˜πΎ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    0 = (0gβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 βŠ† 𝑉)    β‡’   (πœ‘ β†’ (( βŠ₯ β€˜π‘‹) β‰  { 0 } ↔ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) β‰  𝑉))
 
Theoremdihoml4c 40918 Version of dihoml4 40919 with closed subspaces. (Contributed by NM, 15-Jan-2015.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    &   (πœ‘ β†’ π‘Œ ∈ ran 𝐼)    &   (πœ‘ β†’ 𝑋 βŠ† π‘Œ)    β‡’   (πœ‘ β†’ (( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ π‘Œ)) ∩ π‘Œ) = 𝑋)
 
Theoremdihoml4 40919 Orthomodular law for constructed vector space H. Lemma 3.3(1) in [Holland95] p. 215. (poml4N 39495 analog.) (Contributed by NM, 15-Jan-2015.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘ˆ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝑆)    &   (πœ‘ β†’ π‘Œ ∈ 𝑆)    &   (πœ‘ β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘Œ)) = π‘Œ)    &   (πœ‘ β†’ 𝑋 βŠ† π‘Œ)    β‡’   (πœ‘ β†’ (( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ π‘Œ)) ∩ π‘Œ) = ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)))
 
Theoremdochspss 40920 The span of a set of vectors is included in their double orthocomplement. (Contributed by NM, 26-Jul-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 βŠ† 𝑉)    β‡’   (πœ‘ β†’ (π‘β€˜π‘‹) βŠ† ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)))
 
Theoremdochocsp 40921 The span of an orthocomplement equals the orthocomplement of the span. (Contributed by NM, 7-Aug-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 βŠ† 𝑉)    β‡’   (πœ‘ β†’ ( βŠ₯ β€˜(π‘β€˜π‘‹)) = ( βŠ₯ β€˜π‘‹))
 
TheoremdochspocN 40922 The span of an orthocomplement equals the orthocomplement of the span. (Contributed by NM, 7-Aug-2014.) (New usage is discouraged.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 βŠ† 𝑉)    β‡’   (πœ‘ β†’ (π‘β€˜( βŠ₯ β€˜π‘‹)) = ( βŠ₯ β€˜(π‘β€˜π‘‹)))
 
Theoremdochocsn 40923 The double orthocomplement of a singleton is its span. (Contributed by NM, 13-Jan-2015.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    β‡’   (πœ‘ β†’ ( βŠ₯ β€˜( βŠ₯ β€˜{𝑋})) = (π‘β€˜{𝑋}))
 
Theoremdochsncom 40924 Swap vectors in an orthocomplement of a singleton. (Contributed by NM, 17-Jun-2015.)
𝐻 = (LHypβ€˜πΎ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ π‘Œ ∈ 𝑉)    β‡’   (πœ‘ β†’ (𝑋 ∈ ( βŠ₯ β€˜{π‘Œ}) ↔ π‘Œ ∈ ( βŠ₯ β€˜{𝑋})))
 
Theoremdochsat 40925 The double orthocomplement of an atom is an atom. (Contributed by NM, 29-Oct-2014.)
𝐻 = (LHypβ€˜πΎ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘ˆ)    &   π΄ = (LSAtomsβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑄 ∈ 𝑆)    β‡’   (πœ‘ β†’ (( βŠ₯ β€˜( βŠ₯ β€˜π‘„)) ∈ 𝐴 ↔ 𝑄 ∈ 𝐴))
 
Theoremdochshpncl 40926 If a hyperplane is not closed, its closure equals the vector space. (Contributed by NM, 29-Oct-2014.)
𝐻 = (LHypβ€˜πΎ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘Œ = (LSHypβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ π‘Œ)    β‡’   (πœ‘ β†’ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) β‰  𝑋 ↔ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑉))
 
Theoremdochlkr 40927 Equivalent conditions for the closure of a kernel to be a hyperplane. (Contributed by NM, 29-Oct-2014.)
𝐻 = (LHypβ€˜πΎ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΉ = (LFnlβ€˜π‘ˆ)    &   π‘Œ = (LSHypβ€˜π‘ˆ)    &   πΏ = (LKerβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    β‡’   (πœ‘ β†’ (( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜πΊ))) ∈ π‘Œ ↔ (( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜πΊ))) = (πΏβ€˜πΊ) ∧ (πΏβ€˜πΊ) ∈ π‘Œ)))
 
Theoremdochkrshp 40928 The closure of a kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014.)
𝐻 = (LHypβ€˜πΎ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘Œ = (LSHypβ€˜π‘ˆ)    &   πΉ = (LFnlβ€˜π‘ˆ)    &   πΏ = (LKerβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    β‡’   (πœ‘ β†’ (( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜πΊ))) β‰  𝑉 ↔ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜πΊ))) ∈ π‘Œ))
 
Theoremdochkrshp2 40929 Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.)
𝐻 = (LHypβ€˜πΎ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘Œ = (LSHypβ€˜π‘ˆ)    &   πΉ = (LFnlβ€˜π‘ˆ)    &   πΏ = (LKerβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    β‡’   (πœ‘ β†’ (( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜πΊ))) β‰  𝑉 ↔ (( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜πΊ))) = (πΏβ€˜πΊ) ∧ (πΏβ€˜πΊ) ∈ π‘Œ)))
 
Theoremdochkrshp3 40930 Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.)
𝐻 = (LHypβ€˜πΎ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   πΉ = (LFnlβ€˜π‘ˆ)    &   πΏ = (LKerβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    β‡’   (πœ‘ β†’ (( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜πΊ))) β‰  𝑉 ↔ (( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜πΊ))) = (πΏβ€˜πΊ) ∧ (πΏβ€˜πΊ) β‰  𝑉)))
 
Theoremdochkrshp4 40931 Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.)
𝐻 = (LHypβ€˜πΎ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   πΉ = (LFnlβ€˜π‘ˆ)    &   πΏ = (LKerβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    β‡’   (πœ‘ β†’ (( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜πΊ))) = (πΏβ€˜πΊ) ↔ (( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜πΊ))) β‰  𝑉 ∨ (πΏβ€˜πΊ) = 𝑉)))
 
Theoremdochdmj1 40932 De Morgan-like law for subspace orthocomplement. (Contributed by NM, 5-Aug-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑉 ∧ π‘Œ βŠ† 𝑉) β†’ ( βŠ₯ β€˜(𝑋 βˆͺ π‘Œ)) = (( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ)))
 
Theoremdochnoncon 40933 Law of noncontradiction. The intersection of a subspace and its orthocomplement is the zero subspace. (Contributed by NM, 16-Apr-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘ˆ)    &    0 = (0gβ€˜π‘ˆ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝑆) β†’ (𝑋 ∩ ( βŠ₯ β€˜π‘‹)) = { 0 })
 
Theoremdochnel2 40934 A nonzero member of a subspace doesn't belong to the orthocomplement of the subspace. (Contributed by NM, 28-Feb-2015.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘ˆ)    &    0 = (0gβ€˜π‘ˆ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑇 ∈ 𝑆)    &   (πœ‘ β†’ 𝑋 ∈ (𝑇 βˆ– { 0 }))    β‡’   (πœ‘ β†’ Β¬ 𝑋 ∈ ( βŠ₯ β€˜π‘‡))
 
Theoremdochnel 40935 A nonzero vector doesn't belong to the orthocomplement of its singleton. (Contributed by NM, 27-Oct-2014.)
𝐻 = (LHypβ€˜πΎ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    0 = (0gβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))    β‡’   (πœ‘ β†’ Β¬ 𝑋 ∈ ( βŠ₯ β€˜{𝑋}))
 
Syntaxcdjh 40936 Extend class notation with subspace join for DVecH vector space.
class joinH
 
Definitiondf-djh 40937* Define (closed) subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.)
joinH = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)), 𝑦 ∈ 𝒫 (Baseβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ↦ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜((((ocHβ€˜π‘˜)β€˜π‘€)β€˜π‘₯) ∩ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜π‘¦))))))
 
Theoremdjhffval 40938* Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.)
𝐻 = (LHypβ€˜πΎ)    β‡’   (𝐾 ∈ 𝑋 β†’ (joinHβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)), 𝑦 ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (((ocHβ€˜πΎ)β€˜π‘€)β€˜((((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘₯) ∩ (((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘¦))))))
 
Theoremdjhfval 40939* Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &    ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)    β‡’   ((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) β†’ ∨ = (π‘₯ ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦)))))
 
Theoremdjhval 40940 Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &    ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 βŠ† 𝑉 ∧ π‘Œ βŠ† 𝑉)) β†’ (𝑋 ∨ π‘Œ) = ( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ))))
 
Theoremdjhval2 40941 Value of subspace join for DVecH vector space. (Contributed by NM, 6-Aug-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &    ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑉 ∧ π‘Œ βŠ† 𝑉) β†’ (𝑋 ∨ π‘Œ) = ( βŠ₯ β€˜( βŠ₯ β€˜(𝑋 βˆͺ π‘Œ))))
 
Theoremdjhcl 40942 Closure of subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 βŠ† 𝑉 ∧ π‘Œ βŠ† 𝑉)) β†’ (𝑋 ∨ π‘Œ) ∈ ran 𝐼)
 
Theoremdjhlj 40943 Transfer lattice join to DVecH vector space closed subspace join. (Contributed by NM, 19-Jul-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π½ = ((joinHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (πΌβ€˜(𝑋 ∨ π‘Œ)) = ((πΌβ€˜π‘‹)𝐽(πΌβ€˜π‘Œ)))
 
TheoremdjhljjN 40944 Lattice join in terms of DVecH vector space closed subspace join. (Contributed by NM, 17-Aug-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π½ = ((joinHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 ∨ π‘Œ) = (β—‘πΌβ€˜((πΌβ€˜π‘‹)𝐽(πΌβ€˜π‘Œ))))
 
Theoremdjhjlj 40945 DVecH vector space closed subspace join in terms of lattice join. (Contributed by NM, 9-Aug-2014.)
∨ = (joinβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π½ = ((joinHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    &   (πœ‘ β†’ π‘Œ ∈ ran 𝐼)    β‡’   (πœ‘ β†’ (π‘‹π½π‘Œ) = (πΌβ€˜((β—‘πΌβ€˜π‘‹) ∨ (β—‘πΌβ€˜π‘Œ))))
 
Theoremdjhj 40946 DVecH vector space closed subspace join in terms of lattice join. (Contributed by NM, 17-Aug-2014.)
∨ = (joinβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π½ = ((joinHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    &   (πœ‘ β†’ π‘Œ ∈ ran 𝐼)    β‡’   (πœ‘ β†’ (β—‘πΌβ€˜(π‘‹π½π‘Œ)) = ((β—‘πΌβ€˜π‘‹) ∨ (β—‘πΌβ€˜π‘Œ)))
 
Theoremdjhcom 40947 Subspace join commutes. (Contributed by NM, 8-Aug-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 βŠ† 𝑉)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑉)    β‡’   (πœ‘ β†’ (𝑋 ∨ π‘Œ) = (π‘Œ ∨ 𝑋))
 
Theoremdjhspss 40948 Subspace span of union is a subset of subspace join. (Contributed by NM, 6-Aug-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &    ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 βŠ† 𝑉)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑉)    β‡’   (πœ‘ β†’ (π‘β€˜(𝑋 βˆͺ π‘Œ)) βŠ† (𝑋 ∨ π‘Œ))
 
Theoremdjhsumss 40949 Subspace sum is a subset of subspace join. (Contributed by NM, 6-Aug-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &    ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 βŠ† 𝑉)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑉)    β‡’   (πœ‘ β†’ (𝑋 βŠ• π‘Œ) βŠ† (𝑋 ∨ π‘Œ))
 
Theoremdihsumssj 40950 The subspace sum of two isomorphisms of lattice elements is less than the isomorphism of their lattice join. (Contributed by NM, 23-Sep-2014.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    β‡’   (πœ‘ β†’ ((πΌβ€˜π‘‹) βŠ• (πΌβ€˜π‘Œ)) βŠ† (πΌβ€˜(𝑋 ∨ π‘Œ)))
 
TheoremdjhunssN 40951 Subspace union is a subset of subspace join. (Contributed by NM, 6-Aug-2014.) (New usage is discouraged.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 βŠ† 𝑉)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑉)    β‡’   (πœ‘ β†’ (𝑋 βˆͺ π‘Œ) βŠ† (𝑋 ∨ π‘Œ))
 
Theoremdochdmm1 40952 De Morgan-like law for closed subspace orthocomplement. (Contributed by NM, 13-Jan-2015.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &    ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    &   (πœ‘ β†’ π‘Œ ∈ ran 𝐼)    β‡’   (πœ‘ β†’ ( βŠ₯ β€˜(𝑋 ∩ π‘Œ)) = (( βŠ₯ β€˜π‘‹) ∨ ( βŠ₯ β€˜π‘Œ)))
 
Theoremdjhexmid 40953 Excluded middle property of DVecH vector space closed subspace join. (Contributed by NM, 22-Jul-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &    ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑉) β†’ (𝑋 ∨ ( βŠ₯ β€˜π‘‹)) = 𝑉)
 
Theoremdjh01 40954 Closed subspace join with zero. (Contributed by NM, 9-Aug-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    0 = (0gβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    β‡’   (πœ‘ β†’ (𝑋 ∨ { 0 }) = 𝑋)
 
Theoremdjh02 40955 Closed subspace join with zero. (Contributed by NM, 9-Aug-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    0 = (0gβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    β‡’   (πœ‘ β†’ ({ 0 } ∨ 𝑋) = 𝑋)
 
Theoremdjhlsmcl 40956 A closed subspace sum equals subspace join. (shjshseli 31359 analog.) (Contributed by NM, 13-Aug-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘† = (LSubSpβ€˜π‘ˆ)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝑆)    &   (πœ‘ β†’ π‘Œ ∈ 𝑆)    β‡’   (πœ‘ β†’ ((𝑋 βŠ• π‘Œ) ∈ ran 𝐼 ↔ (𝑋 βŠ• π‘Œ) = (𝑋 ∨ π‘Œ)))
 
Theoremdjhcvat42 40957* A covering property. (cvrat42 38986 analog.) (Contributed by NM, 17-Aug-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    0 = (0gβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑆 ∈ ran 𝐼)    &   (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))    &   (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))    β‡’   (πœ‘ β†’ ((𝑆 β‰  { 0 } ∧ (π‘β€˜{𝑋}) βŠ† (𝑆 ∨ (π‘β€˜{π‘Œ}))) β†’ βˆƒπ‘§ ∈ (𝑉 βˆ– { 0 })((π‘β€˜{𝑧}) βŠ† 𝑆 ∧ (π‘β€˜{𝑋}) βŠ† ((π‘β€˜{𝑧}) ∨ (π‘β€˜{π‘Œ})))))
 
Theoremdihjatb 40958 Isomorphism H of lattice join of two atoms under the fiducial hyperplane. (Contributed by NM, 23-Sep-2014.)
≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ (𝑃 ∈ 𝐴 ∧ 𝑃 ≀ π‘Š))    &   (πœ‘ β†’ (𝑄 ∈ 𝐴 ∧ 𝑄 ≀ π‘Š))    β‡’   (πœ‘ β†’ (πΌβ€˜(𝑃 ∨ 𝑄)) = ((πΌβ€˜π‘ƒ) βŠ• (πΌβ€˜π‘„)))
 
Theoremdihjatc 40959 Isomorphism H of lattice join of an element under the fiducial hyperplane with atom not under it. (Contributed by NM, 26-Aug-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š))    &   (πœ‘ β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))    β‡’   (πœ‘ β†’ (πΌβ€˜(𝑋 ∨ 𝑃)) = ((πΌβ€˜π‘‹) βŠ• (πΌβ€˜π‘ƒ)))
 
Theoremdihjatcclem1 40960 Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))    &   (πœ‘ β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))    β‡’   (πœ‘ β†’ (πΌβ€˜(𝑃 ∨ 𝑄)) = (((πΌβ€˜π‘ƒ) βŠ• (πΌβ€˜π‘„)) βŠ• (πΌβ€˜π‘‰)))
 
Theoremdihjatcclem2 40961 Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))    &   (πœ‘ β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))    &   (πœ‘ β†’ (πΌβ€˜π‘‰) βŠ† ((πΌβ€˜π‘ƒ) βŠ• (πΌβ€˜π‘„)))    β‡’   (πœ‘ β†’ (πΌβ€˜(𝑃 ∨ 𝑄)) = ((πΌβ€˜π‘ƒ) βŠ• (πΌβ€˜π‘„)))
 
Theoremdihjatcclem3 40962* Lemma for dihjatcc 40964. (Contributed by NM, 28-Sep-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))    &   (πœ‘ β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))    &   πΆ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΊ = (℩𝑑 ∈ 𝑇 (π‘‘β€˜πΆ) = 𝑃)    &   π· = (℩𝑑 ∈ 𝑇 (π‘‘β€˜πΆ) = 𝑄)    β‡’   (πœ‘ β†’ (π‘…β€˜(𝐺 ∘ ◑𝐷)) = 𝑉)
 
Theoremdihjatcclem4 40963* Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = ((𝑃 ∨ 𝑄) ∧ π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))    &   (πœ‘ β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))    &   πΆ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΊ = (℩𝑑 ∈ 𝑇 (π‘‘β€˜πΆ) = 𝑃)    &   π· = (℩𝑑 ∈ 𝑇 (π‘‘β€˜πΆ) = 𝑄)    &   π‘ = (π‘Ž ∈ 𝐸 ↦ (𝑑 ∈ 𝑇 ↦ β—‘(π‘Žβ€˜π‘‘)))    &    0 = (𝑑 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π½ = (π‘Ž ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑑 ∈ 𝑇 ↦ ((π‘Žβ€˜π‘‘) ∘ (π‘β€˜π‘‘))))    β‡’   (πœ‘ β†’ (πΌβ€˜π‘‰) βŠ† ((πΌβ€˜π‘ƒ) βŠ• (πΌβ€˜π‘„)))
 
Theoremdihjatcc 40964 Isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014.)
≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))    &   (πœ‘ β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))    β‡’   (πœ‘ β†’ (πΌβ€˜(𝑃 ∨ 𝑄)) = ((πΌβ€˜π‘ƒ) βŠ• (πΌβ€˜π‘„)))
 
Theoremdihjat 40965 Isomorphism H of lattice join of two atoms. (Contributed by NM, 29-Sep-2014.)
𝐻 = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑃 ∈ 𝐴)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    β‡’   (πœ‘ β†’ (πΌβ€˜(𝑃 ∨ 𝑄)) = ((πΌβ€˜π‘ƒ) βŠ• (πΌβ€˜π‘„)))
 
Theoremdihprrnlem1N 40966 Lemma for dihprrn 40968, showing one of 4 cases. (Contributed by NM, 30-Aug-2014.) (New usage is discouraged.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ π‘Œ ∈ 𝑉)    &    ≀ = (leβ€˜πΎ)    &    0 = (0gβ€˜π‘ˆ)    &   (πœ‘ β†’ π‘Œ β‰  0 )    &   (πœ‘ β†’ (β—‘πΌβ€˜(π‘β€˜{𝑋})) ≀ π‘Š)    &   (πœ‘ β†’ Β¬ (β—‘πΌβ€˜(π‘β€˜{π‘Œ})) ≀ π‘Š)    β‡’   (πœ‘ β†’ (π‘β€˜{𝑋, π‘Œ}) ∈ ran 𝐼)
 
Theoremdihprrnlem2 40967 Lemma for dihprrn 40968. (Contributed by NM, 29-Sep-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ π‘Œ ∈ 𝑉)    &    0 = (0gβ€˜π‘ˆ)    &   (πœ‘ β†’ 𝑋 β‰  0 )    &   (πœ‘ β†’ π‘Œ β‰  0 )    β‡’   (πœ‘ β†’ (π‘β€˜{𝑋, π‘Œ}) ∈ ran 𝐼)
 
Theoremdihprrn 40968 The span of a vector pair belongs to the range of isomorphism H i.e. is a closed subspace. (Contributed by NM, 29-Sep-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ π‘Œ ∈ 𝑉)    β‡’   (πœ‘ β†’ (π‘β€˜{𝑋, π‘Œ}) ∈ ran 𝐼)
 
Theoremdjhlsmat 40969 The sum of two subspace atoms equals their join. TODO: seems convoluted to go via dihprrn 40968; should we directly use dihjat 40965? (Contributed by NM, 13-Aug-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ π‘Œ ∈ 𝑉)    β‡’   (πœ‘ β†’ ((π‘β€˜{𝑋}) βŠ• (π‘β€˜{π‘Œ})) = ((π‘β€˜{𝑋}) ∨ (π‘β€˜{π‘Œ})))
 
Theoremdihjat1lem 40970 Subspace sum of a closed subspace and an atom. (pmapjat1 39395 analog.) TODO: merge into dihjat1 40971? (Contributed by NM, 18-Aug-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    &    0 = (0gβ€˜π‘ˆ)    &   (πœ‘ β†’ 𝑇 ∈ (𝑉 βˆ– { 0 }))    β‡’   (πœ‘ β†’ (𝑋 ∨ (π‘β€˜{𝑇})) = (𝑋 βŠ• (π‘β€˜{𝑇})))
 
Theoremdihjat1 40971 Subspace sum of a closed subspace and an atom. (pmapjat1 39395 analog.) (Contributed by NM, 1-Oct-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    &   (πœ‘ β†’ 𝑇 ∈ 𝑉)    β‡’   (πœ‘ β†’ (𝑋 ∨ (π‘β€˜{𝑇})) = (𝑋 βŠ• (π‘β€˜{𝑇})))
 
Theoremdihsmsprn 40972 Subspace sum of a closed subspace and the span of a singleton. (Contributed by NM, 17-Jan-2015.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    &   (πœ‘ β†’ 𝑇 ∈ 𝑉)    β‡’   (πœ‘ β†’ (𝑋 βŠ• (π‘β€˜{𝑇})) ∈ ran 𝐼)
 
Theoremdihjat2 40973 The subspace sum of a closed subspace and an atom is the same as their subspace join. (Contributed by NM, 1-Oct-2014.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   π΄ = (LSAtomsβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    β‡’   (πœ‘ β†’ (𝑋 ∨ 𝑄) = (𝑋 βŠ• 𝑄))
 
Theoremdihjat3 40974 Isomorphism H of lattice join with an atom. (Contributed by NM, 25-Apr-2015.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ 𝑃 ∈ 𝐴)    β‡’   (πœ‘ β†’ (πΌβ€˜(𝑋 ∨ 𝑃)) = ((πΌβ€˜π‘‹) βŠ• (πΌβ€˜π‘ƒ)))
 
Theoremdihjat4 40975 Transfer the subspace sum of a closed subspace and an atom back to lattice join. (Contributed by NM, 25-Apr-2015.)
∨ = (joinβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   π΄ = (LSAtomsβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    β‡’   (πœ‘ β†’ (𝑋 βŠ• 𝑄) = (πΌβ€˜((β—‘πΌβ€˜π‘‹) ∨ (β—‘πΌβ€˜π‘„))))
 
Theoremdihjat6 40976 Transfer the subspace sum of a closed subspace and an atom back to lattice join. (Contributed by NM, 25-Apr-2015.)
∨ = (joinβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   π΄ = (LSAtomsβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    β‡’   (πœ‘ β†’ (β—‘πΌβ€˜(𝑋 βŠ• 𝑄)) = ((β—‘πΌβ€˜π‘‹) ∨ (β—‘πΌβ€˜π‘„)))
 
Theoremdihsmsnrn 40977 The subspace sum of two singleton spans is closed. (Contributed by NM, 27-Feb-2015.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ π‘Œ ∈ 𝑉)    β‡’   (πœ‘ β†’ ((π‘β€˜{𝑋}) βŠ• (π‘β€˜{π‘Œ})) ∈ ran 𝐼)
 
Theoremdihsmatrn 40978 The subspace sum of a closed subspace and an atom is closed. TODO: see if proof at http://math.stackexchange.com/a/1233211/50776 and Mon, 13 Apr 2015 20:44:07 -0400 email could be used instead of this and dihjat2 40973. (Contributed by NM, 15-Jan-2015.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   π΄ = (LSAtomsβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    β‡’   (πœ‘ β†’ (𝑋 βŠ• 𝑄) ∈ ran 𝐼)
 
Theoremdihjat5N 40979 Transfer lattice join with atom to subspace sum. (Contributed by NM, 25-Apr-2015.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ 𝑃 ∈ 𝐴)    β‡’   (πœ‘ β†’ (𝑋 ∨ 𝑃) = (β—‘πΌβ€˜((πΌβ€˜π‘‹) βŠ• (πΌβ€˜π‘ƒ))))
 
Theoremdvh4dimat 40980* There is an atom that is outside the subspace sum of 3 others. (Contributed by NM, 25-Apr-2015.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   π΄ = (LSAtomsβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑃 ∈ 𝐴)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    &   (πœ‘ β†’ 𝑅 ∈ 𝐴)    β‡’   (πœ‘ β†’ βˆƒπ‘  ∈ 𝐴 Β¬ 𝑠 βŠ† ((𝑃 βŠ• 𝑄) βŠ• 𝑅))
 
Theoremdvh3dimatN 40981* There is an atom that is outside the subspace sum of 2 others. (Contributed by NM, 25-Apr-2015.) (New usage is discouraged.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   π΄ = (LSAtomsβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑃 ∈ 𝐴)    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    β‡’   (πœ‘ β†’ βˆƒπ‘  ∈ 𝐴 Β¬ 𝑠 βŠ† (𝑃 βŠ• 𝑄))
 
Theoremdvh2dimatN 40982* Given an atom, there exists another. (Contributed by NM, 25-Apr-2015.) (New usage is discouraged.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑃 ∈ 𝐴)    β‡’   (πœ‘ β†’ βˆƒπ‘  ∈ 𝐴 𝑠 β‰  𝑃)
 
Theoremdvh1dimat 40983* There exists an atom. (Contributed by NM, 25-Apr-2015.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    β‡’   (πœ‘ β†’ βˆƒπ‘  𝑠 ∈ 𝐴)
 
Theoremdvh1dim 40984* There exists a nonzero vector. (Contributed by NM, 26-Apr-2015.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    0 = (0gβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    β‡’   (πœ‘ β†’ βˆƒπ‘§ ∈ 𝑉 𝑧 β‰  0 )
 
Theoremdvh4dimlem 40985* Lemma for dvh4dimN 40989. (Contributed by NM, 22-May-2015.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ π‘Œ ∈ 𝑉)    &   (πœ‘ β†’ 𝑍 ∈ 𝑉)    &    0 = (0gβ€˜π‘ˆ)    &   (πœ‘ β†’ 𝑋 β‰  0 )    &   (πœ‘ β†’ π‘Œ β‰  0 )    &   (πœ‘ β†’ 𝑍 β‰  0 )    β‡’   (πœ‘ β†’ βˆƒπ‘§ ∈ 𝑉 Β¬ 𝑧 ∈ (π‘β€˜{𝑋, π‘Œ, 𝑍}))
 
Theoremdvhdimlem 40986* Lemma for dvh2dim 40987 and dvh3dim 40988. TODO: make this obsolete and use dvh4dimlem 40985 directly? (Contributed by NM, 24-Apr-2015.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ π‘Œ ∈ 𝑉)    &    0 = (0gβ€˜π‘ˆ)    &   (πœ‘ β†’ 𝑋 β‰  0 )    &   (πœ‘ β†’ π‘Œ β‰  0 )    β‡’   (πœ‘ β†’ βˆƒπ‘§ ∈ 𝑉 Β¬ 𝑧 ∈ (π‘β€˜{𝑋, π‘Œ}))
 
Theoremdvh2dim 40987* There is a vector that is outside the span of another. (Contributed by NM, 25-Apr-2015.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    β‡’   (πœ‘ β†’ βˆƒπ‘§ ∈ 𝑉 Β¬ 𝑧 ∈ (π‘β€˜{𝑋}))
 
Theoremdvh3dim 40988* There is a vector that is outside the span of 2 others. (Contributed by NM, 24-Apr-2015.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ π‘Œ ∈ 𝑉)    β‡’   (πœ‘ β†’ βˆƒπ‘§ ∈ 𝑉 Β¬ 𝑧 ∈ (π‘β€˜{𝑋, π‘Œ}))
 
Theoremdvh4dimN 40989* There is a vector that is outside the span of 3 others. (Contributed by NM, 22-May-2015.) (New usage is discouraged.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ π‘Œ ∈ 𝑉)    &   (πœ‘ β†’ 𝑍 ∈ 𝑉)    β‡’   (πœ‘ β†’ βˆƒπ‘§ ∈ 𝑉 Β¬ 𝑧 ∈ (π‘β€˜{𝑋, π‘Œ, 𝑍}))
 
Theoremdvh3dim2 40990* There is a vector that is outside of 2 spans with a common vector. (Contributed by NM, 13-May-2015.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ π‘Œ ∈ 𝑉)    &   (πœ‘ β†’ 𝑍 ∈ 𝑉)    β‡’   (πœ‘ β†’ βˆƒπ‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ (π‘β€˜{𝑋, π‘Œ}) ∧ Β¬ 𝑧 ∈ (π‘β€˜{𝑋, 𝑍})))
 
Theoremdvh3dim3N 40991* There is a vector that is outside of 2 spans. TODO: decide to use either this or dvh3dim2 40990 everywhere. If this one is needed, make dvh3dim2 40990 into a lemma. (Contributed by NM, 21-May-2015.) (New usage is discouraged.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ π‘Œ ∈ 𝑉)    &   (πœ‘ β†’ 𝑍 ∈ 𝑉)    &   (πœ‘ β†’ 𝑇 ∈ 𝑉)    β‡’   (πœ‘ β†’ βˆƒπ‘§ ∈ 𝑉 (Β¬ 𝑧 ∈ (π‘β€˜{𝑋, π‘Œ}) ∧ Β¬ 𝑧 ∈ (π‘β€˜{𝑍, 𝑇})))
 
Theoremdochsnnz 40992 The orthocomplement of a singleton is nonzero. (Contributed by NM, 13-Jun-2015.)
𝐻 = (LHypβ€˜πΎ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    0 = (0gβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    β‡’   (πœ‘ β†’ ( βŠ₯ β€˜{𝑋}) β‰  { 0 })
 
Theoremdochsatshp 40993 The orthocomplement of a subspace atom is a hyperplane. (Contributed by NM, 27-Jul-2014.) (Revised by Mario Carneiro, 1-Oct-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘ˆ)    &   π‘Œ = (LSHypβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑄 ∈ 𝐴)    β‡’   (πœ‘ β†’ ( βŠ₯ β€˜π‘„) ∈ π‘Œ)
 
Theoremdochsatshpb 40994 The orthocomplement of a subspace atom is a hyperplane. (Contributed by NM, 29-Oct-2014.)
𝐻 = (LHypβ€˜πΎ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘ˆ)    &   π΄ = (LSAtomsβ€˜π‘ˆ)    &   π‘Œ = (LSHypβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑄 ∈ 𝑆)    β‡’   (πœ‘ β†’ (𝑄 ∈ 𝐴 ↔ ( βŠ₯ β€˜π‘„) ∈ π‘Œ))
 
Theoremdochsnshp 40995 The orthocomplement of a nonzero singleton is a hyperplane. (Contributed by NM, 3-Jan-2015.)
𝐻 = (LHypβ€˜πΎ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    0 = (0gβ€˜π‘ˆ)    &   π‘Œ = (LSHypβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))    β‡’   (πœ‘ β†’ ( βŠ₯ β€˜{𝑋}) ∈ π‘Œ)
 
Theoremdochshpsat 40996 A hyperplane is closed iff its orthocomplement is an atom. (Contributed by NM, 29-Oct-2014.)
𝐻 = (LHypβ€˜πΎ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘ˆ)    &   π‘Œ = (LSHypβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ π‘Œ)    β‡’   (πœ‘ β†’ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ↔ ( βŠ₯ β€˜π‘‹) ∈ 𝐴))
 
Theoremdochkrsat 40997 The orthocomplement of a kernel is an atom iff it is nonzero. (Contributed by NM, 1-Nov-2014.)
𝐻 = (LHypβ€˜πΎ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘ˆ)    &   πΉ = (LFnlβ€˜π‘ˆ)    &   πΏ = (LKerβ€˜π‘ˆ)    &    0 = (0gβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    β‡’   (πœ‘ β†’ (( βŠ₯ β€˜(πΏβ€˜πΊ)) β‰  { 0 } ↔ ( βŠ₯ β€˜(πΏβ€˜πΊ)) ∈ 𝐴))
 
Theoremdochkrsat2 40998 The orthocomplement of a kernel is an atom iff the double orthocomplement is not the vector space. (Contributed by NM, 1-Jan-2015.)
𝐻 = (LHypβ€˜πΎ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π΄ = (LSAtomsβ€˜π‘ˆ)    &   πΉ = (LFnlβ€˜π‘ˆ)    &   πΏ = (LKerβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    β‡’   (πœ‘ β†’ (( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜πΊ))) β‰  𝑉 ↔ ( βŠ₯ β€˜(πΏβ€˜πΊ)) ∈ 𝐴))
 
Theoremdochsat0 40999 The orthocomplement of a kernel is either an atom or zero. (Contributed by NM, 29-Jan-2015.)
𝐻 = (LHypβ€˜πΎ)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    0 = (0gβ€˜π‘ˆ)    &   π΄ = (LSAtomsβ€˜π‘ˆ)    &   πΉ = (LFnlβ€˜π‘ˆ)    &   πΏ = (LKerβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    β‡’   (πœ‘ β†’ (( βŠ₯ β€˜(πΏβ€˜πΊ)) ∈ 𝐴 ∨ ( βŠ₯ β€˜(πΏβ€˜πΊ)) = { 0 }))
 
Theoremdochkrsm 41000 The subspace sum of a closed subspace and a kernel orthocomplement is closed. (djhlsmcl 40956 can be used to convert sum to join.) (Contributed by NM, 29-Jan-2015.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΉ = (LFnlβ€˜π‘ˆ)    &   πΏ = (LKerβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    &   (πœ‘ β†’ 𝐺 ∈ 𝐹)    β‡’   (πœ‘ β†’ (𝑋 βŠ• ( βŠ₯ β€˜(πΏβ€˜πΊ))) ∈ ran 𝐼)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48350
  Copyright terms: Public domain < Previous  Next >