![]() |
Metamath
Proof Explorer Theorem List (p. 410 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30784) |
![]() (30785-32307) |
![]() (32308-48350) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | doch1 40901 | Orthocomplement of the unit subspace (all vectors). (Contributed by NM, 19-Jun-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) β β’ ((πΎ β HL β§ π β π») β ( β₯ βπ) = { 0 }) | ||
Theorem | dochoc0 40902 | The zero subspace is closed. (Contributed by NM, 16-Feb-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ 0 = (0gβπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β ( β₯ β( β₯ β{ 0 })) = { 0 }) | ||
Theorem | dochoc1 40903 | The unit subspace (all vectors) is closed. (Contributed by NM, 16-Feb-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β ( β₯ β( β₯ βπ)) = π) | ||
Theorem | dochvalr2 40904 | Orthocomplement of a closed subspace. (Contributed by NM, 21-Jul-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΅) β (πβ(πΌβπ)) = (πΌβ( β₯ βπ))) | ||
Theorem | dochvalr3 40905 | Orthocomplement of a closed subspace. (Contributed by NM, 15-Jan-2015.) |
β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) β β’ (π β ( β₯ β(β‘πΌβπ)) = (β‘πΌβ(πβπ))) | ||
Theorem | doch2val2 40906* | Double orthocomplement for DVecH vector space. (Contributed by NM, 26-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β ( β₯ β( β₯ βπ)) = β© {π§ β ran πΌ β£ π β π§}) | ||
Theorem | dochss 40907 | Subset law for orthocomplement. (Contributed by NM, 16-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β ( β₯ βπ) β ( β₯ βπ)) | ||
Theorem | dochocss 40908 | Double negative law for orthocomplement of an arbitrary set of vectors. (Contributed by NM, 16-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β π β ( β₯ β( β₯ βπ))) | ||
Theorem | dochoc 40909 | Double negative law for orthocomplement of a closed subspace. (Contributed by NM, 14-Mar-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β ( β₯ β( β₯ βπ)) = π) | ||
Theorem | dochsscl 40910 | If a set of vectors is included in a closed set, so is its closure. (Contributed by NM, 17-Jun-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β ran πΌ) β β’ (π β (π β π β ( β₯ β( β₯ βπ)) β π)) | ||
Theorem | dochoccl 40911 | A set of vectors is closed iff it equals its double orthocomplent. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (π β ran πΌ β ( β₯ β( β₯ βπ)) = π)) | ||
Theorem | dochord 40912 | Ordering law for orthocomplement. (Contributed by NM, 12-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (π β π β ( β₯ βπ) β ( β₯ βπ))) | ||
Theorem | dochord2N 40913 | Ordering law for orthocomplement. (Contributed by NM, 29-Oct-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (( β₯ βπ) β π β ( β₯ βπ) β π)) | ||
Theorem | dochord3 40914 | Ordering law for orthocomplement. (Contributed by NM, 9-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (π β ( β₯ βπ) β π β ( β₯ βπ))) | ||
Theorem | doch11 40915 | Orthocomplement is one-to-one. (Contributed by NM, 12-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (( β₯ βπ) = ( β₯ βπ) β π = π)) | ||
Theorem | dochsordN 40916 | Strict ordering law for orthocomplement. (Contributed by NM, 12-Aug-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (π β π β ( β₯ βπ) β ( β₯ βπ))) | ||
Theorem | dochn0nv 40917 | An orthocomplement is nonzero iff the double orthocomplement is not the whole vector space. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (( β₯ βπ) β { 0 } β ( β₯ β( β₯ βπ)) β π)) | ||
Theorem | dihoml4c 40918 | Version of dihoml4 40919 with closed subspaces. (Contributed by NM, 15-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) & β’ (π β π β π) β β’ (π β (( β₯ β(( β₯ βπ) β© π)) β© π) = π) | ||
Theorem | dihoml4 40919 | Orthomodular law for constructed vector space H. Lemma 3.3(1) in [Holland95] p. 215. (poml4N 39495 analog.) (Contributed by NM, 15-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β ( β₯ β( β₯ βπ)) = π) & β’ (π β π β π) β β’ (π β (( β₯ β(( β₯ βπ) β© π)) β© π) = ( β₯ β( β₯ βπ))) | ||
Theorem | dochspss 40920 | The span of a set of vectors is included in their double orthocomplement. (Contributed by NM, 26-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (πβπ) β ( β₯ β( β₯ βπ))) | ||
Theorem | dochocsp 40921 | The span of an orthocomplement equals the orthocomplement of the span. (Contributed by NM, 7-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β ( β₯ β(πβπ)) = ( β₯ βπ)) | ||
Theorem | dochspocN 40922 | The span of an orthocomplement equals the orthocomplement of the span. (Contributed by NM, 7-Aug-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (πβ( β₯ βπ)) = ( β₯ β(πβπ))) | ||
Theorem | dochocsn 40923 | The double orthocomplement of a singleton is its span. (Contributed by NM, 13-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β ( β₯ β( β₯ β{π})) = (πβ{π})) | ||
Theorem | dochsncom 40924 | Swap vectors in an orthocomplement of a singleton. (Contributed by NM, 17-Jun-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π β ( β₯ β{π}) β π β ( β₯ β{π}))) | ||
Theorem | dochsat 40925 | The double orthocomplement of an atom is an atom. (Contributed by NM, 29-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (( β₯ β( β₯ βπ)) β π΄ β π β π΄)) | ||
Theorem | dochshpncl 40926 | If a hyperplane is not closed, its closure equals the vector space. (Contributed by NM, 29-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSHypβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (( β₯ β( β₯ βπ)) β π β ( β₯ β( β₯ βπ)) = π)) | ||
Theorem | dochlkr 40927 | Equivalent conditions for the closure of a kernel to be a hyperplane. (Contributed by NM, 29-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΉ = (LFnlβπ) & β’ π = (LSHypβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) β π β (( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ) β§ (πΏβπΊ) β π))) | ||
Theorem | dochkrshp 40928 | The closure of a kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSHypβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) β π β ( β₯ β( β₯ β(πΏβπΊ))) β π)) | ||
Theorem | dochkrshp2 40929 | Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSHypβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) β π β (( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ) β§ (πΏβπΊ) β π))) | ||
Theorem | dochkrshp3 40930 | Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) β π β (( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ) β§ (πΏβπΊ) β π))) | ||
Theorem | dochkrshp4 40931 | Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ) β (( β₯ β( β₯ β(πΏβπΊ))) β π β¨ (πΏβπΊ) = π))) | ||
Theorem | dochdmj1 40932 | De Morgan-like law for subspace orthocomplement. (Contributed by NM, 5-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β ( β₯ β(π βͺ π)) = (( β₯ βπ) β© ( β₯ βπ))) | ||
Theorem | dochnoncon 40933 | Law of noncontradiction. The intersection of a subspace and its orthocomplement is the zero subspace. (Contributed by NM, 16-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ 0 = (0gβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β (π β© ( β₯ βπ)) = { 0 }) | ||
Theorem | dochnel2 40934 | A nonzero member of a subspace doesn't belong to the orthocomplement of the subspace. (Contributed by NM, 28-Feb-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ 0 = (0gβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β (π β { 0 })) β β’ (π β Β¬ π β ( β₯ βπ)) | ||
Theorem | dochnel 40935 | A nonzero vector doesn't belong to the orthocomplement of its singleton. (Contributed by NM, 27-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) β β’ (π β Β¬ π β ( β₯ β{π})) | ||
Syntax | cdjh 40936 | Extend class notation with subspace join for DVecH vector space. |
class joinH | ||
Definition | df-djh 40937* | Define (closed) subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
β’ joinH = (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β π« (Baseβ((DVecHβπ)βπ€)), π¦ β π« (Baseβ((DVecHβπ)βπ€)) β¦ (((ocHβπ)βπ€)β((((ocHβπ)βπ€)βπ₯) β© (((ocHβπ)βπ€)βπ¦)))))) | ||
Theorem | djhffval 40938* | Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
β’ π» = (LHypβπΎ) β β’ (πΎ β π β (joinHβπΎ) = (π€ β π» β¦ (π₯ β π« (Baseβ((DVecHβπΎ)βπ€)), π¦ β π« (Baseβ((DVecHβπΎ)βπ€)) β¦ (((ocHβπΎ)βπ€)β((((ocHβπΎ)βπ€)βπ₯) β© (((ocHβπΎ)βπ€)βπ¦)))))) | ||
Theorem | djhfval 40939* | Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) β β’ ((πΎ β π β§ π β π») β β¨ = (π₯ β π« π, π¦ β π« π β¦ ( β₯ β(( β₯ βπ₯) β© ( β₯ βπ¦))))) | ||
Theorem | djhval 40940 | Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π β§ π β π)) β (π β¨ π) = ( β₯ β(( β₯ βπ) β© ( β₯ βπ)))) | ||
Theorem | djhval2 40941 | Value of subspace join for DVecH vector space. (Contributed by NM, 6-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β (π β¨ π) = ( β₯ β( β₯ β(π βͺ π)))) | ||
Theorem | djhcl 40942 | Closure of subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β¨ = ((joinHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π β§ π β π)) β (π β¨ π) β ran πΌ) | ||
Theorem | djhlj 40943 | Transfer lattice join to DVecH vector space closed subspace join. (Contributed by NM, 19-Jul-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π½ = ((joinHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β π΅)) β (πΌβ(π β¨ π)) = ((πΌβπ)π½(πΌβπ))) | ||
Theorem | djhljjN 40944 | Lattice join in terms of DVecH vector space closed subspace join. (Contributed by NM, 17-Aug-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π½ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (π β¨ π) = (β‘πΌβ((πΌβπ)π½(πΌβπ)))) | ||
Theorem | djhjlj 40945 | DVecH vector space closed subspace join in terms of lattice join. (Contributed by NM, 9-Aug-2014.) |
β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π½ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (ππ½π) = (πΌβ((β‘πΌβπ) β¨ (β‘πΌβπ)))) | ||
Theorem | djhj 40946 | DVecH vector space closed subspace join in terms of lattice join. (Contributed by NM, 17-Aug-2014.) |
β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π½ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (β‘πΌβ(ππ½π)) = ((β‘πΌβπ) β¨ (β‘πΌβπ))) | ||
Theorem | djhcom 40947 | Subspace join commutes. (Contributed by NM, 8-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π β¨ π) = (π β¨ π)) | ||
Theorem | djhspss 40948 | Subspace span of union is a subset of subspace join. (Contributed by NM, 6-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (πβ(π βͺ π)) β (π β¨ π)) | ||
Theorem | djhsumss 40949 | Subspace sum is a subset of subspace join. (Contributed by NM, 6-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (LSSumβπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π β π) β (π β¨ π)) | ||
Theorem | dihsumssj 40950 | The subspace sum of two isomorphisms of lattice elements is less than the isomorphism of their lattice join. (Contributed by NM, 23-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β ((πΌβπ) β (πΌβπ)) β (πΌβ(π β¨ π))) | ||
Theorem | djhunssN 40951 | Subspace union is a subset of subspace join. (Contributed by NM, 6-Aug-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π βͺ π) β (π β¨ π)) | ||
Theorem | dochdmm1 40952 | De Morgan-like law for closed subspace orthocomplement. (Contributed by NM, 13-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β ( β₯ β(π β© π)) = (( β₯ βπ) β¨ ( β₯ βπ))) | ||
Theorem | djhexmid 40953 | Excluded middle property of DVecH vector space closed subspace join. (Contributed by NM, 22-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β (π β¨ ( β₯ βπ)) = π) | ||
Theorem | djh01 40954 | Closed subspace join with zero. (Contributed by NM, 9-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ 0 = (0gβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) β β’ (π β (π β¨ { 0 }) = π) | ||
Theorem | djh02 40955 | Closed subspace join with zero. (Contributed by NM, 9-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ 0 = (0gβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) β β’ (π β ({ 0 } β¨ π) = π) | ||
Theorem | djhlsmcl 40956 | A closed subspace sum equals subspace join. (shjshseli 31359 analog.) (Contributed by NM, 13-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β ((π β π) β ran πΌ β (π β π) = (π β¨ π))) | ||
Theorem | djhcvat42 40957* | A covering property. (cvrat42 38986 analog.) (Contributed by NM, 17-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) β β’ (π β ((π β { 0 } β§ (πβ{π}) β (π β¨ (πβ{π}))) β βπ§ β (π β { 0 })((πβ{π§}) β π β§ (πβ{π}) β ((πβ{π§}) β¨ (πβ{π}))))) | ||
Theorem | dihjatb 40958 | Isomorphism H of lattice join of two atoms under the fiducial hyperplane. (Contributed by NM, 23-Sep-2014.) |
β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ π β€ π)) & β’ (π β (π β π΄ β§ π β€ π)) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjatc 40959 | Isomorphism H of lattice join of an element under the fiducial hyperplane with atom not under it. (Contributed by NM, 26-Aug-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΅ β§ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjatcclem1 40960 | Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((π β¨ π) β§ π) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) β β’ (π β (πΌβ(π β¨ π)) = (((πΌβπ) β (πΌβπ)) β (πΌβπ))) | ||
Theorem | dihjatcclem2 40961 | Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((π β¨ π) β§ π) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (πΌβπ) β ((πΌβπ) β (πΌβπ))) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjatcclem3 40962* | Lemma for dihjatcc 40964. (Contributed by NM, 28-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((π β¨ π) β§ π) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ πΆ = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΊ = (β©π β π (πβπΆ) = π) & β’ π· = (β©π β π (πβπΆ) = π) β β’ (π β (π β(πΊ β β‘π·)) = π) | ||
Theorem | dihjatcclem4 40963* | Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((π β¨ π) β§ π) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ πΆ = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΊ = (β©π β π (πβπΆ) = π) & β’ π· = (β©π β π (πβπΆ) = π) & β’ π = (π β πΈ β¦ (π β π β¦ β‘(πβπ))) & β’ 0 = (π β π β¦ ( I βΎ π΅)) & β’ π½ = (π β πΈ, π β πΈ β¦ (π β π β¦ ((πβπ) β (πβπ)))) β β’ (π β (πΌβπ) β ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjatcc 40964 | Isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014.) |
β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjat 40965 | Isomorphism H of lattice join of two atoms. (Contributed by NM, 29-Sep-2014.) |
β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΄) & β’ (π β π β π΄) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihprrnlem1N 40966 | Lemma for dihprrn 40968, showing one of 4 cases. (Contributed by NM, 30-Aug-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β€ = (leβπΎ) & β’ 0 = (0gβπ) & β’ (π β π β 0 ) & β’ (π β (β‘πΌβ(πβ{π})) β€ π) & β’ (π β Β¬ (β‘πΌβ(πβ{π})) β€ π) β β’ (π β (πβ{π, π}) β ran πΌ) | ||
Theorem | dihprrnlem2 40967 | Lemma for dihprrn 40968. (Contributed by NM, 29-Sep-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ 0 = (0gβπ) & β’ (π β π β 0 ) & β’ (π β π β 0 ) β β’ (π β (πβ{π, π}) β ran πΌ) | ||
Theorem | dihprrn 40968 | The span of a vector pair belongs to the range of isomorphism H i.e. is a closed subspace. (Contributed by NM, 29-Sep-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (πβ{π, π}) β ran πΌ) | ||
Theorem | djhlsmat 40969 | The sum of two subspace atoms equals their join. TODO: seems convoluted to go via dihprrn 40968; should we directly use dihjat 40965? (Contributed by NM, 13-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β ((πβ{π}) β (πβ{π})) = ((πβ{π}) β¨ (πβ{π}))) | ||
Theorem | dihjat1lem 40970 | Subspace sum of a closed subspace and an atom. (pmapjat1 39395 analog.) TODO: merge into dihjat1 40971? (Contributed by NM, 18-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ 0 = (0gβπ) & β’ (π β π β (π β { 0 })) β β’ (π β (π β¨ (πβ{π})) = (π β (πβ{π}))) | ||
Theorem | dihjat1 40971 | Subspace sum of a closed subspace and an atom. (pmapjat1 39395 analog.) (Contributed by NM, 1-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β π) β β’ (π β (π β¨ (πβ{π})) = (π β (πβ{π}))) | ||
Theorem | dihsmsprn 40972 | Subspace sum of a closed subspace and the span of a singleton. (Contributed by NM, 17-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β π) β β’ (π β (π β (πβ{π})) β ran πΌ) | ||
Theorem | dihjat2 40973 | The subspace sum of a closed subspace and an atom is the same as their subspace join. (Contributed by NM, 1-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β π΄) β β’ (π β (π β¨ π) = (π β π)) | ||
Theorem | dihjat3 40974 | Isomorphism H of lattice join with an atom. (Contributed by NM, 25-Apr-2015.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) & β’ (π β π β π΄) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjat4 40975 | Transfer the subspace sum of a closed subspace and an atom back to lattice join. (Contributed by NM, 25-Apr-2015.) |
β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β π΄) β β’ (π β (π β π) = (πΌβ((β‘πΌβπ) β¨ (β‘πΌβπ)))) | ||
Theorem | dihjat6 40976 | Transfer the subspace sum of a closed subspace and an atom back to lattice join. (Contributed by NM, 25-Apr-2015.) |
β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β π΄) β β’ (π β (β‘πΌβ(π β π)) = ((β‘πΌβπ) β¨ (β‘πΌβπ))) | ||
Theorem | dihsmsnrn 40977 | The subspace sum of two singleton spans is closed. (Contributed by NM, 27-Feb-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β ((πβ{π}) β (πβ{π})) β ran πΌ) | ||
Theorem | dihsmatrn 40978 | The subspace sum of a closed subspace and an atom is closed. TODO: see if proof at http://math.stackexchange.com/a/1233211/50776 and Mon, 13 Apr 2015 20:44:07 -0400 email could be used instead of this and dihjat2 40973. (Contributed by NM, 15-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β π΄) β β’ (π β (π β π) β ran πΌ) | ||
Theorem | dihjat5N 40979 | Transfer lattice join with atom to subspace sum. (Contributed by NM, 25-Apr-2015.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) & β’ (π β π β π΄) β β’ (π β (π β¨ π) = (β‘πΌβ((πΌβπ) β (πΌβπ)))) | ||
Theorem | dvh4dimat 40980* | There is an atom that is outside the subspace sum of 3 others. (Contributed by NM, 25-Apr-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ (π β π β π΄) β β’ (π β βπ β π΄ Β¬ π β ((π β π) β π )) | ||
Theorem | dvh3dimatN 40981* | There is an atom that is outside the subspace sum of 2 others. (Contributed by NM, 25-Apr-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΄) & β’ (π β π β π΄) β β’ (π β βπ β π΄ Β¬ π β (π β π)) | ||
Theorem | dvh2dimatN 40982* | Given an atom, there exists another. (Contributed by NM, 25-Apr-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΄) β β’ (π β βπ β π΄ π β π) | ||
Theorem | dvh1dimat 40983* | There exists an atom. (Contributed by NM, 25-Apr-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β βπ π β π΄) | ||
Theorem | dvh1dim 40984* | There exists a nonzero vector. (Contributed by NM, 26-Apr-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β βπ§ β π π§ β 0 ) | ||
Theorem | dvh4dimlem 40985* | Lemma for dvh4dimN 40989. (Contributed by NM, 22-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ 0 = (0gβπ) & β’ (π β π β 0 ) & β’ (π β π β 0 ) & β’ (π β π β 0 ) β β’ (π β βπ§ β π Β¬ π§ β (πβ{π, π, π})) | ||
Theorem | dvhdimlem 40986* | Lemma for dvh2dim 40987 and dvh3dim 40988. TODO: make this obsolete and use dvh4dimlem 40985 directly? (Contributed by NM, 24-Apr-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ 0 = (0gβπ) & β’ (π β π β 0 ) & β’ (π β π β 0 ) β β’ (π β βπ§ β π Β¬ π§ β (πβ{π, π})) | ||
Theorem | dvh2dim 40987* | There is a vector that is outside the span of another. (Contributed by NM, 25-Apr-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β βπ§ β π Β¬ π§ β (πβ{π})) | ||
Theorem | dvh3dim 40988* | There is a vector that is outside the span of 2 others. (Contributed by NM, 24-Apr-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β βπ§ β π Β¬ π§ β (πβ{π, π})) | ||
Theorem | dvh4dimN 40989* | There is a vector that is outside the span of 3 others. (Contributed by NM, 22-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β βπ§ β π Β¬ π§ β (πβ{π, π, π})) | ||
Theorem | dvh3dim2 40990* | There is a vector that is outside of 2 spans with a common vector. (Contributed by NM, 13-May-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β βπ§ β π (Β¬ π§ β (πβ{π, π}) β§ Β¬ π§ β (πβ{π, π}))) | ||
Theorem | dvh3dim3N 40991* | There is a vector that is outside of 2 spans. TODO: decide to use either this or dvh3dim2 40990 everywhere. If this one is needed, make dvh3dim2 40990 into a lemma. (Contributed by NM, 21-May-2015.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β βπ§ β π (Β¬ π§ β (πβ{π, π}) β§ Β¬ π§ β (πβ{π, π}))) | ||
Theorem | dochsnnz 40992 | The orthocomplement of a singleton is nonzero. (Contributed by NM, 13-Jun-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β ( β₯ β{π}) β { 0 }) | ||
Theorem | dochsatshp 40993 | The orthocomplement of a subspace atom is a hyperplane. (Contributed by NM, 27-Jul-2014.) (Revised by Mario Carneiro, 1-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π΄ = (LSAtomsβπ) & β’ π = (LSHypβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΄) β β’ (π β ( β₯ βπ) β π) | ||
Theorem | dochsatshpb 40994 | The orthocomplement of a subspace atom is a hyperplane. (Contributed by NM, 29-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ π΄ = (LSAtomsβπ) & β’ π = (LSHypβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (π β π΄ β ( β₯ βπ) β π)) | ||
Theorem | dochsnshp 40995 | The orthocomplement of a nonzero singleton is a hyperplane. (Contributed by NM, 3-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSHypβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) β β’ (π β ( β₯ β{π}) β π) | ||
Theorem | dochshpsat 40996 | A hyperplane is closed iff its orthocomplement is an atom. (Contributed by NM, 29-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π΄ = (LSAtomsβπ) & β’ π = (LSHypβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (( β₯ β( β₯ βπ)) = π β ( β₯ βπ) β π΄)) | ||
Theorem | dochkrsat 40997 | The orthocomplement of a kernel is an atom iff it is nonzero. (Contributed by NM, 1-Nov-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π΄ = (LSAtomsβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ 0 = (0gβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β(πΏβπΊ)) β { 0 } β ( β₯ β(πΏβπΊ)) β π΄)) | ||
Theorem | dochkrsat2 40998 | The orthocomplement of a kernel is an atom iff the double orthocomplement is not the vector space. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π΄ = (LSAtomsβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) β π β ( β₯ β(πΏβπΊ)) β π΄)) | ||
Theorem | dochsat0 40999 | The orthocomplement of a kernel is either an atom or zero. (Contributed by NM, 29-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ 0 = (0gβπ) & β’ π΄ = (LSAtomsβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β(πΏβπΊ)) β π΄ β¨ ( β₯ β(πΏβπΊ)) = { 0 })) | ||
Theorem | dochkrsm 41000 | The subspace sum of a closed subspace and a kernel orthocomplement is closed. (djhlsmcl 40956 can be used to convert sum to join.) (Contributed by NM, 29-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β πΊ β πΉ) β β’ (π β (π β ( β₯ β(πΏβπΊ))) β ran πΌ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |