| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-mdv | Structured version Visualization version GIF version | ||
| Description: Define the set of distinct variable conditions, which are pairs of distinct variables. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| Ref | Expression |
|---|---|
| df-mdv | ⊢ mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmdv 35473 | . 2 class mDV | |
| 2 | vt | . . 3 setvar 𝑡 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . . . 6 class 𝑡 |
| 5 | cmvar 35466 | . . . . . 6 class mVR | |
| 6 | 4, 5 | cfv 6561 | . . . . 5 class (mVR‘𝑡) |
| 7 | 6, 6 | cxp 5683 | . . . 4 class ((mVR‘𝑡) × (mVR‘𝑡)) |
| 8 | cid 5577 | . . . 4 class I | |
| 9 | 7, 8 | cdif 3948 | . . 3 class (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) |
| 10 | 2, 3, 9 | cmpt 5225 | . 2 class (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I )) |
| 11 | 1, 10 | wceq 1540 | 1 wff mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I )) |
| Colors of variables: wff setvar class |
| This definition is referenced by: mdvval 35509 |
| Copyright terms: Public domain | W3C validator |