Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-mdv Structured version   Visualization version   GIF version

Definition df-mdv 32743
 Description: Define the set of distinct variable conditions, which are pairs of distinct variables. (Contributed by Mario Carneiro, 14-Jul-2016.)
Assertion
Ref Expression
df-mdv mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ))

Detailed syntax breakdown of Definition df-mdv
StepHypRef Expression
1 cmdv 32723 . 2 class mDV
2 vt . . 3 setvar 𝑡
3 cvv 3471 . . 3 class V
42cv 1537 . . . . . 6 class 𝑡
5 cmvar 32716 . . . . . 6 class mVR
64, 5cfv 6328 . . . . 5 class (mVR‘𝑡)
76, 6cxp 5526 . . . 4 class ((mVR‘𝑡) × (mVR‘𝑡))
8 cid 5432 . . . 4 class I
97, 8cdif 3907 . . 3 class (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I )
102, 3, 9cmpt 5119 . 2 class (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ))
111, 10wceq 1538 1 wff mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ))
 Colors of variables: wff setvar class This definition is referenced by:  mdvval  32759
 Copyright terms: Public domain W3C validator